301
|
Joo SY, Cho KA, Jung YJ, Kim HS, Park SY, Choi YB, Hong KM, Woo SY, Seoh JY, Cho SJ, Ryu KH. Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy 2010; 12:361-70. [PMID: 20078382 DOI: 10.3109/14653240903502712] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS Graft-versus-host disease (GvHD) remains a major complication after allogeneic hematopoietic cell transplantation (HCT). Recent literature demonstrates a potential benefit of human mesenchymal stromal cells (MSC) for the treatment of refractory GvHD; however, the optimal dose remains uncertain. We set out to develop an animal model that can be used to study the effect of MSC on GvHD. METHODS A GvHD mouse model was established by transplanting C3H/he donor bone marrow (BM) cells and spleen cells into lethally irradiated BALB/c recipient mice. MSC were obtained from C3H/he mice and the C3H/10T1/2 murine MSC line. RESULTS The mRNA expression of Foxp3 in regional lymph nodes (LN) localized with T cells was markedly increased by the addition of C3H10T1/2 cells in a real-time polymerase chain reaction (PCR). Using a mixed lymphocyte reaction, we determined the optimal splenocyte proliferation inhibition dose (MSC:splenocyte ratios 1:2 and 1:1). Three different C3H10T1/2 cell doses (low, 0.5 x 10(6), intermediate, 1 x 10(6), and high, 2 x 10(6)) with a consistent splenocyte dose (1 x 10(6)) were evaluated for their therapeutic potential in an in vivo GvHD model. The clinical and histologic GvHD score and Kaplan-Meier survival rate were improved after MSC transplantation, and these results demonstrated a dose-dependent inhibition. CONCLUSIONS We conclude that MSC inhibit GvHD in a dose-dependent manner in this mouse model and this model can be used to study the effects of MSC on GvHD.
Collapse
Affiliation(s)
- Sun-Young Joo
- Department of Microbiology, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Bifari F, Pacelli L, Krampera M. Immunological properties of embryonic and adult stem cells. World J Stem Cells 2010; 2:50-60. [PMID: 21607122 PMCID: PMC3097923 DOI: 10.4252/wjsc.v2.i3.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 02/06/2023] Open
Abstract
The possibility of treating degenerative diseases by stem cell-based approaches is a promising therapeutical option. Among major concerns for the clinical application of stem cells, some derive from the possibility that stem cells may be rejected by the immune system as a consequence of histoincompatibility and that stem cells themselves may interfere with the normal functions of host immune response. Therefore, the immunogenicity and the immunomodulatory properties of stem cells must be carefully addressed. Although these properties are common features of different stem cell types, some peculiarities can be recognized and characterized for their proper clinical use.
Collapse
Affiliation(s)
- Francesco Bifari
- Francesco Bifari, Luciano Pacelli, Mauro Krampera, Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy
| | | | | |
Collapse
|
303
|
Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm 2010; 2010:865601. [PMID: 20628526 PMCID: PMC2902124 DOI: 10.1155/2010/865601] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/14/2010] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of special interest as therapeutic agents in the settings of both chronic inflammatory and autoimmune diseases. Toll-like receptors (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases due to the permanent exposure of the immune system to TLR-specific stimuli. Therefore, MSCs employed in therapy can be potentially exposed to TLR ligands, which may modulate MSC therapeutic potential in vivo. Recent results demonstrate that MSCs are activated by TLR ligands leading to modulation of the differentiation, migration, proliferation, survival, and immunosuppression capacities. However inconsistent results among authors have been reported suggesting that the source of MSCs, TLR stimuli employed or culture conditions play a role. Notably, activation by TLR ligands has not been reported to modulate the “immunoprivileged” phenotype of MSCs which is of special relevance regarding the use of allogeneic MSC-based therapies. In this review, we discuss the available data on the modulation of MSCs activity through TLR signalling.
Collapse
|
304
|
Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 2010; 21:1783-7. [PMID: 20375149 PMCID: PMC2877637 DOI: 10.1091/mbc.e09-07-0589] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 12/18/2022] Open
Abstract
In 2002, researchers at UCLA published a manuscript in Molecular Biology of the Cell describing a novel adult stem cell population isolated from adipose tissue-the adipose-derived stem cell (ASC). Since that time, the ASC has gone on to be one of the most popular adult stem cell populations currently being used in the stem cell field. With multilineage mesodermal potential and possible ectodermal and endodermal potentials also, the ASC could conceivably be an alternate to pluripotent ES cells in both the lab and in the clinic. In this retrospective article, a historical perspective on the ASC is given together with exciting new applications for the stem cell being considered today.
Collapse
Affiliation(s)
- Patricia A Zuk
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
305
|
Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respir Physiol Neurobiol 2010; 172:210-2. [PMID: 20594932 DOI: 10.1016/j.resp.2010.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 11/23/2022]
Abstract
The aim was to test the hypothesis that mesenchymal stem cells (MSC) could reduce the inflammation induced by recurrent airway occlusions in an animal model of obstructive sleep apnea (OSA). A nasal mask was applied to 30 anesthetized rats. Twenty rats were subjected to a pattern of recurrent obstructive apneas mimicking OSA (60/h, lasting 15 s each) for 5h. MSC (5x10(6) cells) were intravenously injected into 10 of these rats. Ten rats not subjected to apneas or MSC injection were used as controls. The rat blood serum concentrations of pro-inflammatory cytokine IL-1beta were measured by ELISA. IL-1beta was significantly greater in the rats subjected to recurrent apneas (66.7+/-41.2 pg/mL; m+/-SEM) than in controls (1.9+/-1.0 pg/mL; p<0.05). In the group of apneic rats subjected to MSC injection, IL-1beta was significantly reduced (6.1+/-3.8 pg/mL; p<0.05). In conclusion, MSC triggered an early anti-inflammatory response in rats subjected to recurrent obstructive apneas, suggesting that these stem cells could play a role in the physiological response to counterbalance inflammation in OSA.
Collapse
|
306
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
307
|
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an inflammatory autoimmune disease characterized by T-cell infiltration to the colon. Mesenchymal stem cells (MSCs) have the potential to rescue IBD owing to their immunosuppressive capabilities and clinical studies have shown positive influence on intestinal graft versus host disease. We demonstrate here a new method to coat MSCs with antibodies against addressins to enhance their delivery to the colon and thereby increase the therapeutic effectiveness. Bioluminescence imaging (BLI) demonstrated that vascular cell adhesion molecule antibody (Ab)-coated MSCs (Ab(VCAM-1)- MSCs) had the highest delivery efficiency to inflamed mesenteric lymph node (MLN) and colon compared to untreated MSCs, Ab(isotype)-MSCs, and Ab(MAdCAM)-MSCs. Therapeutically, when mice with IBD were injected with addressin Ab-coated MSCs, they showed dramatically improved survival rates, higher IBD therapeutic scores, and significantly improved body weight gain compared to mice injected with MSCs only, isotype Ab, free Ab plus MSCs, or vehicle-only controls. These data demonstrate that anti-addressin Ab coating on MSC increased cell delivery to inflamed colon and increased the efficacy of MSC treatment of IBD. This is the first study showing an increased therapeutic efficacy when stem cells are first coated with antibodies specifically target them to inflamed sites.
Collapse
|
308
|
Lin F, Josephs SF, Alexandrescu DT, Ramos F, Bogin V, Gammill V, Dasanu CA, De Necochea-Campion R, Patel AN, Carrier E, Koos DR. Lasers, stem cells, and COPD. J Transl Med 2010; 8:16. [PMID: 20158898 PMCID: PMC2830167 DOI: 10.1186/1479-5876-8-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/16/2010] [Indexed: 12/13/2022] Open
Abstract
The medical use of low level laser (LLL) irradiation has been occurring for decades, primarily in the area of tissue healing and inflammatory conditions. Despite little mechanistic knowledge, the concept of a non-invasive, non-thermal intervention that has the potential to modulate regenerative processes is worthy of attention when searching for novel methods of augmenting stem cell-based therapies. Here we discuss the use of LLL irradiation as a "photoceutical" for enhancing production of stem cell growth/chemoattractant factors, stimulation of angiogenesis, and directly augmenting proliferation of stem cells. The combination of LLL together with allogeneic and autologous stem cells, as well as post-mobilization directing of stem cells will be discussed.
Collapse
Affiliation(s)
- Feng Lin
- Entest BioMedical, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2009; 183:993-1004. [PMID: 19561093 DOI: 10.4049/jimmunol.0900803] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human clinical trials in type 1 diabetes (T1D) patients using mesenchymal stem cells (MSC) are presently underway without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in NOD mice. In comparison to NOD mice, BALB/c-MSC mice were found to express higher levels of the negative costimulatory molecule PD-L1 and to promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e., nonobese resistant mice or BALB/c), but not from NOD mice, delayed the onset of diabetes when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC temporarily resulted in reversal of hyperglycemia in 90% of NOD mice (p = 0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit. We also noted soft tissue and visceral tumors in NOD-MSC-treated mice, which were uniquely observed in this setting (i.e., no tumors were present with BALB/c- or nonobese resistant mice-MSC transfer). The importance of this observation remains to be explored in humans, as inbred mice such as NOD may be more susceptible to tumor formation. These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and, potentially, for other autoimmune disorders.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minev B. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009; 7:29. [PMID: 19393041 PMCID: PMC2679713 DOI: 10.1186/1479-5876-7-29] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/24/2009] [Indexed: 12/18/2022] Open
Abstract
The stromal vascular fraction (SVF) of adipose tissue is known to contain mesenchymal stem cells (MSC), T regulatory cells, endothelial precursor cells, preadipocytes, as well as anti-inflammatory M2 macrophages. Safety of autologous adipose tissue implantation is supported by extensive use of this procedure in cosmetic surgery, as well as by ongoing studies using in vitro expanded adipose derived MSC. Equine and canine studies demonstrating anti-inflammatory and regenerative effects of non-expanded SVF cells have yielded promising results. Although non-expanded SVF cells have been used successfully in accelerating healing of Crohn's fistulas, to our knowledge clinical use of these cells for systemic immune modulation has not been reported. In this communication we discuss the rationale for use of autologous SVF in treatment of multiple sclerosis and describe our experiences with three patients. Based on this rationale and initial experiences, we propose controlled trials of autologous SVF in various inflammatory conditions.
Collapse
|