301
|
Parrinello S, Napoli I, Ribeiro S, Digby PW, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010; 143:145-55. [PMID: 20869108 PMCID: PMC3826531 DOI: 10.1016/j.cell.2010.08.039] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/15/2010] [Accepted: 08/09/2010] [Indexed: 01/06/2023]
Abstract
The peripheral nervous system has astonishing regenerative capabilities in that cut nerves are able to reconnect and re-establish their function. Schwann cells are important players in this process, during which they dedifferentiate to a progenitor/stem cell and promote axonal regrowth. Here, we report that fibroblasts also play a key role. Upon nerve cut, ephrin-B/EphB2 signaling between fibroblasts and Schwann cells results in cell sorting, followed by directional collective cell migration of Schwann cells out of the nerve stumps to guide regrowing axons across the wound. Mechanistically, we find that cell-sorting downstream of EphB2 is mediated by the stemness factor Sox2 through N-cadherin relocalization to Schwann cell-cell contacts. In vivo, loss of EphB2 signaling impaired organized migration of Schwann cells, resulting in misdirected axonal regrowth. Our results identify a link between Ephs and Sox proteins, providing a mechanism by which progenitor cells can translate environmental cues to orchestrate the formation of new tissue.
Collapse
Affiliation(s)
- Simona Parrinello
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilaria Napoli
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Sara Ribeiro
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Patrick Wingfield Digby
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Marina Fedorova
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - David B. Parkinson
- Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, UK
| | - Robin D.S. Doddrell
- Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, UK
| | - Masanori Nakayama
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster D-48149, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster D-48149, Germany
| | - Alison C. Lloyd
- MRC Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
302
|
|
303
|
Abstract
Murine embryonic stem (ES) cells are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing is expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). Both isoforms can form homodimers and a heterodimer with each other, and each can interact with Nanog. By genomewide location analysis, we determined that Sall4a and Sall4b have overlapping, but not identical binding sites within the ES cell genome. In addition, Sall4b, but not Sall4a, binds preferentially to highly expressed loci in ES cells. Sall4a and Sall4b binding sites are distinguished by both epigenetic marks at target loci and their clustering with binding sites of other pluripotency factors. When ES cells expressing a single isoform of Sall4 are generated, Sall4b alone could maintain the pluripotent state, although it could not completely suppress all differentiation markers. Sall4a and Sall4b collaborate in maintenance of the pluripotent state but play distinct roles. Our work is novel in establishing such isoform-specific differences in ES cells.
Collapse
|
304
|
Abstract
The transcription factor Oct4 plays a central role in controlling the undifferentiated state of embryonic and induced pluripotent stem cells. Two complementary papers in this issue of Cell Stem Cell describe the extended network of proteins that interact with Oct4. Together, these studies broaden our understanding of the control of pluripotency.
Collapse
Affiliation(s)
- Ihor R Lemischka
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
| |
Collapse
|
305
|
van den Berg DLC, Snoek T, Mullin NP, Yates A, Bezstarosti K, Demmers J, Chambers I, Poot RA. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 2010; 6:369-81. [PMID: 20362541 PMCID: PMC2860243 DOI: 10.1016/j.stem.2010.02.014] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/25/2009] [Accepted: 02/05/2010] [Indexed: 01/06/2023]
Abstract
Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-β, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity.
Collapse
|
306
|
Noisa P, Urrutikoetxea-Uriguen A, Li M, Cui W. Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev Rep 2010; 6:438-49. [PMID: 20506046 DOI: 10.1007/s12015-010-9159-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Generation of lineage-specific human embryonic stem cell (hESC) reporter lines will facilitate the real time monitoring of differentiation in live cells and the identification of factors governing these processes. It will also enable researchers to purify specific cell populations from heterogeneous differentiated hESC progeny. Here we report the generation of clonally derived nestin-EGFP reporter hESC lines that express GFP under the control of the neuroepithelial specific nestin 2nd intron enhancer. We show that the nestin-EGFP hESC reporter lines retain the features of undifferentiated hESCs, are able to self-renew in hESC culture conditions and to differentiate into cells of all three germ layers. The nestin-EGFP reporter exhibited high expression in neural progenitor cells upon differentiation, although it is detectable at a low level in the undifferentiated state. Furthermore, the expression of the transgene is exclusively confined to the neural progenitors after differentiation. The specific expression of the transgene is determined by collaborative binding motifs of POU and SOX transcription factors in the nestin enhancer. Deletion of either of the binding elements resulted in a significant reduction of enhancer/promoter activity. Taken together, the nestin-EGFP reporter hESC lines are invaluable not only for the study of the neural differentiation process from hESCs but also for the enrichment of neural progenitor cells from other cell lineages.
Collapse
Affiliation(s)
- Parinya Noisa
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Hammersmith hospital campus, Du Cane Road, London, W12 0NN, UK
| | | | | | | |
Collapse
|
307
|
Hansen AE, Kristensen AT, Law I, Jørgensen JT, Engelholm SA. Hypoxia-inducible factors--regulation, role and comparative aspects in tumourigenesis. Vet Comp Oncol 2010; 9:16-37. [PMID: 21303451 DOI: 10.1111/j.1476-5829.2010.00233.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factors (HIFs) play a key role in the cellular response experienced in hypoxic tumours, mediating adaptive responses that allow hypoxic cells to survive in the hostile environment. Identification and understanding of tumour hypoxia and the influence on cellular processes carries important prognostic information and may help identify potential hypoxia circumventing and targeting strategies. This review summarizes current knowledge on HIF regulation and function in tumour cells and discusses the aspects of using companion animals as comparative spontaneous cancer models. Spontaneous tumours in companion animals hold a great research potential for the evaluation and understanding of tumour hypoxia and in the development of hypoxia-targeting therapeutics.
Collapse
Affiliation(s)
- A E Hansen
- Department of Small Animal Clinical Sciences, The Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
308
|
Tian J, Alimperti S, Lei P, Andreadis ST. Lentiviral microarrays for real-time monitoring of gene expression dynamics. LAB ON A CHIP 2010; 10:1967-1975. [PMID: 20520864 DOI: 10.1039/c003153d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We developed scalable live-cell microarrays to measure gene expression dynamics in real time and in a high-throughput manner. To this end, we generated dual-promoter lentiviral vectors harboring a transcriptional regulatory element encoding for green fluorescence protein to monitor cell activation in response to exogenous stimuli and a constitutive promoter driving red fluorescence protein for internal signal normalization. Lentivirus preparations were immobilized in a microarray format and after transduction on the array surface target cells were treated with cytokines and interrogated in real time using automated fluorescence microscopy, providing rich dynamic information over a period of several days. Data normalization by red fluorescence intensity eliminated errors due to spot-to-spot variability in transduction efficiency or changes in cell proliferation upon cytokine treatment. These results suggest that the lentivirus microarray can monitor gene expression in real-time and high-throughput manner thereby providing a useful tool for quantitative measurements of gene expression dynamics.
Collapse
Affiliation(s)
- Jun Tian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 908 Furnas Hall, Amherst, NY 14260-4200, USA
| | | | | | | |
Collapse
|
309
|
Comparison of the side populations in pretreatment and postrelapse neuroblastoma cell lines. Transl Oncol 2010; 3:246-51. [PMID: 20689766 DOI: 10.1593/tlo.09301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/01/2010] [Accepted: 02/08/2010] [Indexed: 01/15/2023] Open
Abstract
Cancer stem-like cells have been identified in both primary tumors and in cell lines and seem to have a high degree of inherent resistance to traditional chemotherapeutic agents. Relapsed cancers including neuroblastoma are generally chemotherapy-resistant and carry a very poor prognosis. We investigated the side populations of three pairs of neuroblastoma cell lines derived from single patients at the time of their initial presentation and then at relapse after multimodality therapy. We found that the size of the side populations in the relapsed cell lines was significantly increased compared with its paired pretreatment cell line. In addition, these side population cells showed increased proliferation and were significantly more efficient at forming colonies in soft agar than their prerelapse pair. Gene expression analysis of the stem cell genes NANOG and POU5F1 (Oct3/4) showed increased expression in the unsorted relapsed cell lines compared with pretreatment lines as well as in the side populations of the relapsed versus prerelapse cell line pairs. The increased size, proliferative ability, and colony-forming efficiency of the side populations of the postrelapse cell lines demonstrated in this study suggest that a population of stemlike cells is not being efficiently targeted by conventional therapy and implies that strategies to specifically target the stem cell fraction of neuroblastomas are needed to improve outcomes in this devastating childhood disease.
Collapse
|
310
|
Abstract
During early mammalian development, as the pluripotent cells that give rise to all of the tissues of the body proliferate and expand in number, they pass through transition states marked by a stepwise restriction in developmental potential and by changes in the expression of key regulatory genes. Recent findings show that cultured stem-cell lines derived from different stages of mouse development can mimic these transition states. They further reveal that there is a high degree of heterogeneity and plasticity in pluripotent populations in vitro and that these properties are modulated by extrinsic signalling. Understanding the extrinsic control of plasticity will guide efforts to use human pluripotent stem cells in research and therapy.
Collapse
Affiliation(s)
- Martin F Pera
- Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | |
Collapse
|
311
|
Navarro P, Avner P. An embryonic story: Analysis of the gene regulative network controlling Xist expression in mouse embryonic stem cells. Bioessays 2010; 32:581-8. [DOI: 10.1002/bies.201000019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
312
|
Patel SA, Simon MC. Functional analysis of the Cdk7.cyclin H.Mat1 complex in mouse embryonic stem cells and embryos. J Biol Chem 2010; 285:15587-15598. [PMID: 20231280 PMCID: PMC2865308 DOI: 10.1074/jbc.m109.081687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/22/2010] [Indexed: 01/27/2023] Open
Abstract
The trimeric Cdk7.cyclin H.Mat1 complex functions in cell cycle regulation, as the Cdk-activating kinase, and in transcription, as a module of the general transcription factor TFIIH. As a component of TFIIH, Cdk7 phosphorylates serines 5 and 7 of the carboxyl-terminal domain of RNA polymerase II and can also directly phosphorylate transcription factors to regulate gene expression. Here we have investigated the function of the Cdk7.cyclin H.Mat1 complex in murine embryonic stem (ES) cells and preimplantation embryos to determine whether it regulates the unique cell cycle structure and transcriptional network of pluripotent cells. We demonstrate that depletion of cyclin H leads to differentiation of ES cells independent of changes in cell cycle progression. In contrast, we observed that developmental genes are acutely up-regulated after cyclin H down-regulation, likely perturbing normal ES self-renewal pathways. We further demonstrate that Spt5, a known phosphorylation target of Cdk7, similarly regulates ES pluripotency and gene expression. Consistent with its function in ES cells, cyclin H depletion from mouse embryos also leads to defects in the expansion of the inner cell mass of blastocysts, a transient pluripotent stem cell population in vivo. Our findings indicate that cyclin H has an essential function in promoting the self-renewal of the pluripotent stem cells of blastocyst stage embryos. Collectively, these studies demonstrate a critical and novel role for cyclin H in maintaining ES cell identity and suggest that cyclin H has important functions in early embryonic development.
Collapse
Affiliation(s)
- Shetal A Patel
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
313
|
Selective Removal of Undifferentiated Embryonic Stem Cells from Differentiation Cultures Through HSV1 Thymidine Kinase and Ganciclovir Treatment. Stem Cell Rev Rep 2010; 6:450-61. [DOI: 10.1007/s12015-010-9148-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
314
|
Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 2010; 6:382-395. [PMID: 20362542 PMCID: PMC2860244 DOI: 10.1016/j.stem.2010.03.004] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 12/03/2022]
Abstract
The transcription factor Oct4 is key in embryonic stem cell identity and reprogramming. Insight into its partners should illuminate how the pluripotent state is established and regulated. Here, we identify a considerably expanded set of Oct4-binding proteins in mouse embryonic stem cells. We find that Oct4 associates with a varied set of proteins including regulators of gene expression and modulators of Oct4 function. Half of its partners are transcriptionally regulated by Oct4 itself or other stem cell transcription factors, whereas one-third display a significant change in expression upon cell differentiation. The majority of Oct4-associated proteins studied to date show an early lethal phenotype when mutated. A fraction of the human orthologs is associated with inherited developmental disorders or causative of cancer. The Oct4 interactome provides a resource for dissecting mechanisms of Oct4 function, enlightening the basis of pluripotency and development, and identifying potential additional reprogramming factors.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Benjamin Lang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Haydn Prosser
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Allan Bradley
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
315
|
Kobi D, Steunou AL, Dembélé D, Legras S, Larue L, Nieto L, Davidson I. Genome-wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene. Pigment Cell Melanoma Res 2010; 23:404-18. [PMID: 20337985 DOI: 10.1111/j.1755-148x.2010.00697.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
POU3F2 is a POU-Homeodomain transcription factor expressed in neurons and melanoma cells. In melanoma lesions, cells expressing high levels of POU3F2 show enhanced invasive and metastatic capacity that can in part be explained by repression of Micropthalmia-associated Transcription Factor (MITF) expression via POU3F2 binding to its promoter. To identify other POU3F2 target genes that may be involved in modulating the properties of melanoma cells, we performed ChIP-chip experiments in 501Mel melanoma cells. 2108 binding loci located in the regulatory regions of 1700 potential target genes were identified. Bioinformatic and experimental assays showed the presence of known POU3F2-binding motifs, but also many AT-rich sequences with only partial similarity to the known motifs at the occupied loci. Functional analysis indicates that POU3F2 regulates the stem cell factor (Kit ligand, Kitl) promoter via a cluster of four closely spaced binding sites located in the proximal promoter. Our results suggest that POU3F2 may regulate the properties of melanoma cells via autocrine KIT ligand signalling.
Collapse
Affiliation(s)
- Dominique Kobi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch Cédex, France
| | | | | | | | | | | | | |
Collapse
|
316
|
Affiliation(s)
- Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
317
|
Sokolov MV, Panyutin IV, Onyshchenko MI, Panyutin IG, Neumann RD. Expression of pluripotency-associated genes in the surviving fraction of cultured human embryonic stem cells is not significantly affected by ionizing radiation. Gene 2010; 455:8-15. [PMID: 20123005 DOI: 10.1016/j.gene.2010.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/08/2010] [Accepted: 01/24/2010] [Indexed: 01/29/2023]
Abstract
Human embryonic stem cells (hESC) are capable to give rise to all cell types in the human body during the normal course of development. Therefore, these cells hold a great promise in regenerative cell replacement based therapeutical approaches. However, some controversy exists in literature concerning the ultimate fate of hESC after exposure to genotoxic agents, in particular, regarding the effect of DNA damaging insults on pluripotency of hESC. To comprehensively address this issue, we performed an analysis of the expression of marker genes, associated with pluripotent state of hESC, such as Oct-4, Nanog, Sox-2, SSEA-4, TERT, TRA-1-60 and TRA-1-81 up to 65h after exposure to ionizing radiation (IR) using flow cytometry, immunocytochemistry and quantitative real-time polymerase chain reaction techniques. We show that irradiation with relatively low doses of gamma-radiation (0.2Gy and 1Gy) does not lead to loss of expression of the pluripotency-associated markers in the surviving hESC. While changes in the levels of expression of some of the pluripotency markers were observed at different time points after IR exposure, these alterations were not persistent, and, in most cases, the expression of the pluripotency-associated markers remained significantly higher than that observed in fully differentiated human fibroblasts, and in hESCs differentiated into definitive endodermal lineage. Our data suggest that exposure of hESC to relatively low doses of IR as a model genotoxic agent does not significantly affect pluripotency of the surviving fraction of hESC.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
318
|
Aloia L, Parisi S, Fusco L, Pastore L, Russo T. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J Biol Chem 2009; 285:7776-83. [PMID: 20042595 DOI: 10.1074/jbc.m109.077156] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent cells able to grow indefinitely in culture and to differentiate into all cell types of embryos upon specific stimuli. Molecular mechanisms controlling the unique characteristics of ESCs are still largely unknown. We identified Dies1 (Differentiation of ESCs 1), an unpublished gene, that encodes a type I membrane protein. ESCs stably transfected with Dies1 small hairpin RNAs failed to properly differentiate toward neural and cardiac cell fate upon appropriate stimuli and continued to express markers of undifferentiated cells, such as the membrane-associated alkaline phosphatase, and transcription factors, like Oct3/4 and Nanog, when grown under conditions promoting differentiation. Our results demonstrated that Dies1 is required for BMP4/Smad1 signaling cascade; in undifferentiated ESCs Dies1 knockdown did not affect the expression of leukemia inhibitory factor downstream targets, whereas it resulted in a strong decrease of BMP4 signaling, as demonstrated by the decrease of Id1, -2, and -3 mRNAs, the decreased activity of Id1 gene promoter, and the reduced phospho-Smad1 levels. Dies1 knockdown had no effect in murine ESCs when the expression of the BMP4 receptor Alk3 was suppressed. The phenotype induced by Dies1 suppression in ESCs is due to the indirect activation of the Nodal/Activin pathway, which is a consequence of the BMP4 pathway inhibition and is sufficient to support the mESC undifferentiated state in the absence of leukemia inhibitory factor.
Collapse
Affiliation(s)
- Luigi Aloia
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy
| | | | | | | | | |
Collapse
|
319
|
Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington's disease. Proc Natl Acad Sci U S A 2009; 106:21900-5. [PMID: 19955426 DOI: 10.1073/pnas.0912171106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pathogenesis of Huntington's disease (HD) remains elusive. The identification of increasingly early pathophysiological abnormalities in HD suggests the possibility that impairments of striatal medium spiny neuron (MSN) specification and maturation may underlie the etiology of HD. In fact, we demonstrate that HD knock-in (Hdh-Q111) mice exhibited delayed acquisition of early striatal cytoarchitecture with aberrant expression of progressive markers of MSN neurogenesis (Islet1, DARPP-32, mGluR1, and NeuN). Hdh-Q111 striatal progenitors also displayed delayed cell cycle exit between E13.5-15.5 (BrdU birth-dating) and an enhanced fraction of abnormal cycling cells in association with expansion of the pool of intermediate progenitors and over expression of the core pluripotency (PP) factor, Sox2. Clonal analysis further revealed that Hdh-Q111 neural stem cells (NSCs) displayed: impaired lineage restriction, reduced proliferative potential, enhanced late-stage self-renewal, and deregulated MSN subtype specification. Further, our analysis revealed that in addition to Sox2, the core PP factor, Nanog is expressed within the striatal generative and mantle regions, and in Hdh-Q111 embryos the fraction of Nanog-expressing MSN precursors was substantially increased. Moreover, compared to Hdh-Q18 embryos, the Hdh-Q111 striatal anlagen exhibited significantly higher levels of the essential PP cofactor, Stat3. These findings suggest that Sox2 and Nanog may play roles during a selective window of embryonic brain maturation, and alterations of these factors may, in part, be responsible for mediating the aberrant program of Hdh-Q111 striatal MSN specification and maturation. We propose that these HD-associated developmental abnormalities might compromise neuronal homeostasis and subsequently render MSNs more vulnerable to late life stressors.
Collapse
|
320
|
Barrand S, Collas P. Chromatin states of core pluripotency-associated genes in pluripotent, multipotent and differentiated cells. Biochem Biophys Res Commun 2009; 391:762-7. [PMID: 19944068 DOI: 10.1016/j.bbrc.2009.11.134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 12/19/2022]
Abstract
Oct4, Nanog and Sox2 constitute a core of transcription factors controlling pluripotency. Differentiation and reprogramming studies have unraveled a few epigenetic modifications associated in relation to the expression state of OCT4, NANOG and SOX2. There is, however, no comprehensive map of chromatin states on these genes in human primary cells at different stages of differentiation. We report here a profile of DNA methylation and of 10 histone modifications on regulatory regions of OCT4, NANOG and SOX2 in embryonal carcinoma cells, mesenchymal stem cells and fibroblasts. Bisulfite sequencing reveals correlation between promoter CpG methylation and repression of OCT4, but not NANOG or SOX2, suggesting distinct repression mechanisms. Whereas none of these genes, even when inactive, harbor repressive trimethylated H3K9, CpG hypomethylated NANOG and SOX2, but not CpG methylated OCT4, are enriched in repressive H3K27me3. H3K79me1 and H3K79me3 tend to parallel each other and are linked to repression. Moreover, we highlight an inverse relationship between H3K27me3 occupancy on promoters and H3K36me3 occupancy on coding regions of OCT4, NANOG and SOX2, suggesting a cross-talk between K27 and K36 methylation. Establishment of distinct repression mechanisms for pluripotency-associated genes may constitute a safeguard system to prevent promiscuous reactivation during development or differentiation.
Collapse
Affiliation(s)
- Sanna Barrand
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
321
|
|
322
|
Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 2009; 8:3274-84. [PMID: 19770585 DOI: 10.4161/cc.8.20.9701] [Citation(s) in RCA: 579] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glioblastomas are highly lethal cancers that contain cellular hierarchies with self-renewing cancer stem cells that can propagate tumors in secondary transplant assays. The potential significance of cancer stem cells in cancer biology has been demonstrated by studies showing contributions to therapeutic resistance, angiogenesis and tumor dispersal. We recently reported that physiologic oxygen levels differentially induce hypoxia inducible factor-2alpha (HIF2alpha) levels in cancer stem cells. HIF1alpha functioned in proliferation and survival of all cancer cells but also was activated in normal neural progenitors suggesting a potentially restricted therapeutic index while HIF2alpha was essential in only in cancer stem cells and was not expressed by normal neural progenitors demonstrating HIF2alpha is a cancer stem cell specific target. We now extend these studies to examine the role of hypoxia in regulating tumor cell plasticity. We find that hypoxia promotes the self-renewal capability of the stem and non-stem population as well as promoting a more stem-like phenotype in the non-stem population with increased neurosphere formation as well as upregulation of important stem cell factors, such as OCT4, NANOG and c-MYC. The importance of HIF2alpha was further supported as forced expression of non-degradable HIF2alpha induced a cancer stem cell marker and augmented the tumorigenic potential of the non-stem population. This novel finding may indicate a specific role of HIF2alpha in promoting glioma tumorigenesis. The unexpected plasticity of the non-stem glioma population and the stem-like phenotype emphasizes the importance of developing therapeutic strategies targeting the microenvironmental influence on the tumor in addition to cancer stem cells.
Collapse
Affiliation(s)
- John M Heddleston
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|