301
|
Takenaka MC, Robson S, Quintana FJ. Regulation of the T Cell Response by CD39. Trends Immunol 2016; 37:427-439. [PMID: 27236363 DOI: 10.1016/j.it.2016.04.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular ATP (eATP) and ADP (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates AMP, which is in turn used by the ecto-5'-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have a major impact on the dynamic equilibrium of proinflammatory eATP and ADP nucleotides versus immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. We review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections, and cancer.
Collapse
Affiliation(s)
- Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Robson
- Divisions of Gastroenterology, Hepatology, and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
302
|
Bremnes RM, Busund LT, Kilvær TL, Andersen S, Richardsen E, Paulsen EE, Hald S, Khanehkenari MR, Cooper WA, Kao SC, Dønnem T. The Role of Tumor-Infiltrating Lymphocytes in Development, Progression, and Prognosis of Non-Small Cell Lung Cancer. J Thorac Oncol 2016; 11:789-800. [PMID: 26845192 DOI: 10.1016/j.jtho.2016.01.015] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
A malignant tumor is not merely an accumulation of neoplastic cells, but constitutes a microenvironment containing endothelial cells, fibroblasts, structural components, and infiltrating immune cells that impact tumor development, invasion, metastasis, and outcome. Hence, the evolution of cancers reflects intricate cellular and molecular interactions between tumor cells and constituents of the tumor microenvironment. Recent studies have shed new light on this complex interaction between tumor and host immune cells and the resulting immune response. The composition of the immune microenvironment differs across patients as well as in cancers of the same type, including various populations of T cells, B cells, dendritic cells, natural killer cells, myeloid-derived suppressor cells, neutrophils, and macrophages. The type, density, location, and organization of immune cells within solid tumors define the immune contexture, which has proved to be a major determinant of tumor characteristics and patient outcome. Lung cancer consists mostly of non-small cell lung cancer (85%); it is our most deadly malignant disease, with the 5-year survival rate being merely 15%. This review focuses on the immune contexture; the tumor-suppressing roles of tumor-infiltrating lymphocytes; and the relevance of this immune contexture for cancer diagnostics, prognostication, and treatment allocation, with an emphasis on non-small cell lung cancer.
Collapse
Affiliation(s)
- Roy M Bremnes
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway.
| | - Lill-Tove Busund
- Institute of Medical Biology, The Arctic University of Norway, Tromsø, Norway; Department of Pathology, University Hospital of Northern Norway, Tromsø, Norway
| | - Thomas L Kilvær
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Sigve Andersen
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Elin Richardsen
- Institute of Medical Biology, The Arctic University of Norway, Tromsø, Norway; Department of Pathology, University Hospital of Northern Norway, Tromsø, Norway
| | - Erna Elise Paulsen
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Sigurd Hald
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | | | - Wendy A Cooper
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; School of Medicine, University of Western Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Steven C Kao
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia; Asbestos Diseases Research Institute, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia
| | - Tom Dønnem
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| |
Collapse
|
303
|
Quarleri JF, Oubiña JR. Hepatitis C virus strategies to evade the specific-T cell response: a possible mission favoring its persistence. Ann Hepatol 2016; 15:17-26. [PMID: 26626636 DOI: 10.5604/16652681.1184193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus. The number of HCV-infected individuals worldwide is estimated to be approximately 200 million. The vast majority of HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. The interaction between HCV and the host have a pivotal role in viral fitness, persistence, pathogenicity, and disease progression. The control of HCV infection requires both effective innate and adaptive immune responses. The HCV clearance during acute infection is associated with an early induction of the innate and a delayed initiation of the adaptive immune responses. However, in the vast majority of acute HCV infections, these responses are overcome and the virus persistence almost inexorably occurs. Recently, several host- and virus-related mechanisms responsible for the failure of both the innate and the adaptive immune responses have been recognized. Among the latter, the wide range of escape mutations to evade the specific-T-and B-cell responses as well as the T cell anergy and the CD8+ T cell exhaustion together with the interference with its function after prolonged virus exposure hold a pivotal role. Other HCV strategies include the modification or manipulation of molecules playing key roles in the induction of the interferon response and its induced effector proteins. In this review, we attempt to gain insights on the main T cell immune evasion strategies used by the virus in order to favor its persistence.
Collapse
Affiliation(s)
- Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Argentina
| | - José Raúl Oubiña
- Instituto de Microbiología y Parasitología Médica (IMPAM), Universidad de Buenos Aires-CONICET, Argentina
| |
Collapse
|