301
|
Bains GK, Kim SH, Sorin EJ, Narayanaswami V. The extent of pyrene excimer fluorescence emission is a reflector of distance and flexibility: analysis of the segment linking the LDL receptor-binding and tetramerization domains of apolipoprotein E3. Biochemistry 2012; 51:6207-19. [PMID: 22779734 DOI: 10.1021/bi3005285] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrene is a spatially sensitive probe that displays an ensemble of monomeric fluorescence emission peaks (375-405 nm) and an additional band (called excimer) at ~460 nm when two fluorophores are spatially proximal. We examined if there is a correlation between distance between two pyrenes on an α-helical structure and excimer/monomer (e/m) ratio. Using structure-guided design, pyrene maleimide was attached to pairs of Cys residues separated by ~5 Å increments on helix 2 of the N-terminal domain of apolipoprotein E3 (apoE3). Fluorescence spectral analysis revealed an intense excimer band when the probes were ~5 Å from each other with an e/m ratio of ~3.0, which decreased to ~1.0 at 20 Å. An inverse correlation between e/m ratio and the distance between pyrenes was observed, with the probe and helix flexibility also contributing to the extent of excimer formation. We verified this approach by estimating the distance between T57C and C112 (located on helices 2 and 3, respectively) to be 5.2 Å (4.9 Å from NMR and 5.7 Å from the X-ray structure). Excimer formation was also noted to a significant extent with probes located in the linker segment, suggesting spatial proximity (10-15 Å) to corresponding sites on neighboring molecules in the tetrameric configuration of apoE. We infer that oligomerization via the C-terminal domain juxtaposes the linker segments from neighboring apoE molecules. This study offers new insights into the conformation of tetrameric apoE and presents the use of pyrene as a powerful probe for studying protein spatial organization.
Collapse
Affiliation(s)
- Gursharan K Bains
- Department of Chemistry and Biochemistry, 1250 Bellflower Boulevard, California State University Long Beach, Long Beach, CA 90840, USA
| | | | | | | |
Collapse
|
302
|
Sousa da Silva AW, Vranken WF. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 2012; 5:367. [PMID: 22824207 PMCID: PMC3461484 DOI: 10.1186/1756-0500-5-367] [Citation(s) in RCA: 1865] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background ACPYPE (or AnteChamber PYthon Parser interfacE) is a wrapper script around the ANTECHAMBER software that simplifies the generation of small molecule topologies and parameters for a variety of molecular dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3, and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at http://webapps.ccpn.ac.uk/acpype. Findings We verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB; and by recalculating the structures for 5 protein–ligand complexes from the PDB. Conclusions ACPYPE is a tool that simplifies the automatic generation of topology and parameters in different formats for different molecular mechanics programmes, including calculation of partial charges, while being object oriented for integration with other applications.
Collapse
Affiliation(s)
- Alan W Sousa da Silva
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
303
|
Wolf MG, Groenhof G. Evaluating nonpolarizable nucleic acid force fields: A systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients. J Comput Chem 2012; 33:2225-32. [DOI: 10.1002/jcc.23055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 02/01/2023]
|
304
|
Götze JP, Greco C, Mitrić R, Bonačić-Koutecký V, Saalfrank P. BLUF hydrogen network dynamics and UV/Vis spectra: a combined molecular dynamics and quantum chemical study. J Comput Chem 2012; 33:2233-42. [PMID: 22764067 DOI: 10.1002/jcc.23056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 11/10/2022]
Abstract
Blue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations ("W(in)"/"W(out)"), structure determination (X-ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in W(in) position. Using snapshots from MD and time-dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein under ambient conditions. In accord with experiment, it is found that the UV/vis spectra of BLUF bound flavin are red-shifted and thermally broadened for all calculated π → π* transitions, relative to gas phase flavin at T = 0 K. However, differences in the spectra between the various BLUF configurations cannot be resolved with the present approach.
Collapse
Affiliation(s)
- Jan P Götze
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
305
|
Jas GS, Kuczera K. Computer simulations of helix folding in homo- and heteropeptides. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2012.671941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
306
|
Foley BL, Tessier MB, Woods RJ. Carbohydrate force fields. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2012; 2:652-697. [PMID: 25530813 PMCID: PMC4270206 DOI: 10.1002/wcms.89] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion.
Collapse
Affiliation(s)
- B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
307
|
Li D, Liu MS, Ji B, Hwang KC, Huang Y. Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease. Chem Biol Drug Des 2012; 80:440-54. [PMID: 22621379 DOI: 10.1111/j.1747-0285.2012.01417.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human immunodeficiency virus type 1 protease (HIV-1 PR) is one of the primary inhibition targets for chemotherapy of AIDS because of its critical role in the replication cycle of the HIV. In this work, a combinatory coarse-grained and atomistic simulation method was developed for dissecting molecular mechanisms and binding process of inhibitors to the active site of HIV-1 PR, in which 35 typical inhibitors were trialed. We found that the molecular size and stiffness of the inhibitors and the binding energy between the inhibitors and PR play important roles in regulating the binding process. Comparatively, the smaller and more flexible inhibitors have larger binding energy and higher binding rates; they even bind into PR without opening the flaps. In contrast, the larger and stiffer inhibitors have lower binding energy and lower binding rate, and their binding is subjected to the opening and gating of the PR flaps. Furthermore, the components of binding free energy were quantified and analyzed by their dependence on the molecular size, structures, and hydrogen bond networks of inhibitors. Our results also deduce significant dynamics descriptors for determining the quantitative structure and property relationship in potent drug ligands for HIV-1 PR inhibition.
Collapse
Affiliation(s)
- Dechang Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, China
| | | | | | | | | |
Collapse
|
308
|
Cino EA, Choy WY, Karttunen M. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. J Chem Theory Comput 2012; 8:2725-2740. [PMID: 22904695 PMCID: PMC3419458 DOI: 10.1021/ct300323g] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 12/13/2022]
Abstract
We have compared molecular dynamics (MD) simulations of a β-hairpin forming peptide derived from the protein Nrf2 with 10 biomolecular force fields using trajectories of at least 1 μs. The total simulation time was 37.2 μs. Previous studies have shown that different force fields, water models, simulation methods, and parameters can affect simulation outcomes. The MD simulations were done in explicit solvent with a 16-mer Nrf2 β-hairpin forming peptide using Amber ff99SB-ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, GROMOS96 43a1p, GROMOS96 53a6, CHARMM27, and OPLS-AA/L force fields. The effects of charge-groups, terminal capping, and phosphorylation on the peptide folding were also examined. Despite using identical starting structures and simulation parameters, we observed clear differences among the various force fields and even between replicates using the same force field. Our simulations show that the uncapped peptide folds into a native-like β-hairpin structure at 310 K when Amber ff99SB-ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, GROMOS96 43a1p, or GROMOS96 53a6 were used. The CHARMM27 simulations were able to form native hairpins in some of the elevated temperature simulations, while the OPLS-AA/L simulations did not yield native hairpin structures at any temperatures tested. Simulations that used charge-groups or peptide capping groups were not largely different from their uncapped counterparts with single atom charge-groups. On the other hand, phosphorylation of the threonine residue located at the β-turn significantly affected the hairpin formation. To our knowledge, this is the first study comparing such a large set of force fields with respect to β-hairpin folding. Such a comprehensive comparison will offer useful guidance to others conducting similar types of simulations.
Collapse
|
309
|
Jas GS, Hegefeld W, Májek P, Kuczera K, Elber R. Experiments and comprehensive simulations of the formation of a helical turn. J Phys Chem B 2012; 116:6598-610. [PMID: 22335541 PMCID: PMC3361543 DOI: 10.1021/jp211645s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigate the kinetics and thermodynamics of a helical turn formation in the peptide Ac-WAAAH-NH(2). NMR measurements indicate that this peptide has significant tendency to form a structure of a helical turn, while temperature dependent CD establishes the helix fraction at different temperatures. Molecular dynamics and milestoning simulations agree with experimental observables and suggest an atomically detailed picture for the turn formation. Using a network representation, two alternative mechanisms of folding are identified: (i) a direct co-operative mechanism from the unfolded to the folded state without intermediate formation of hydrogen bonds and (ii) an indirect mechanism with structural intermediates with two residues in a helical conformation. This picture is consistent with kinetic measurements that reveal two experimental time scales of sub-nanosecond and several nanoseconds.
Collapse
Affiliation(s)
- Gouri S. Jas
- Department of Chemistry, Biochemistry, and Institute of Biomedical Studies, Baylor University, Waco, TX 76706
| | - Wendy Hegefeld
- Department of Chemistry, Biochemistry, and Institute of Biomedical Studies, Baylor University, Waco, TX 76706
| | - Peter Májek
- Institute of Computational Engineering and Sciences (ICES), University of Texas at Austin, Austin, TX 78712
| | - Krzysztof Kuczera
- Departments of Chemistry and Molecular Biosciences, The University of Kansas, Lawrence, KS 66045
| | - Ron Elber
- Institute of Computational Engineering and Sciences (ICES), University of Texas at Austin, Austin, TX 78712
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
310
|
Mechanism of enhanced mechanical stability of a minimal RNA kissing complex elucidated by nonequilibrium molecular dynamics simulations. Proc Natl Acad Sci U S A 2012; 109:E1530-9. [PMID: 22623526 DOI: 10.1073/pnas.1119552109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
An RNA kissing loop from the Moloney murine leukemia virus (MMLV) exhibits unusual mechanical stability despite having only two intermolecular base pairs. Mutations at this junction have been shown to destabilize genome dimerization, with concomitant reductions in viral packaging efficiency and infectivity. Optical tweezers experiments have shown that it requires as much force to break the MMLV kissing-loop complex as is required to unfold an 11-bp RNA hairpin [Li PTX, Bustamante C, Tinoco I (2006) Proc Natl Acad Sci USA 103:15847-15852]. Using nonequilibrium all-atom molecular dynamics simulations, we have developed a detailed model for the kinetic intermediates of the force-induced dissociation of the MMLV dimerization initiation site kissing loop. Two hundred and eight dissociation events were simulated (approximately 16 μs total simulation time) under conditions of constant applied external force, which we use to construct a Markov state model for kissing-loop dissociation. We find that the complex undergoes a conformational rearrangement, which allows for equal distribution of the applied force among all of the intermolecular hydrogen bonds, which is intrinsically more stable than the sequential unzipping of an ordinary hairpin. Stacking interactions with adjacent, unpaired loop adenines further stabilize the complex by increasing the repair rate of partially broken H-bonds. These stacking interactions are prominently featured in the transition state, which requires additional coordinates orthogonal to the end-to-end extension to be uniquely identified. We propose that these stabilizing features explain the unusual stability of other retroviral kissing-loop complexes such as the HIV dimerization site.
Collapse
|
311
|
Folding helical proteins in explicit solvent using dihedral-biased tempering. Proc Natl Acad Sci U S A 2012; 109:8139-44. [PMID: 22573819 DOI: 10.1073/pnas.1112143109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a single-trajectory-based tempering method with a high-temperature dihedral bias, we repeatedly folded four helical proteins [α(3)D (PDB ID: 2A3D, 73 residues), α(3)W (1LQ7, 67 residues), Fap1-NR(α) (2KUB, 81 residues) and S-836 (2JUA, 102 residues)] and some of the mutants in explicit solvent within several microseconds. The lowest root-mean-square deviations of backbone atoms from the experimentally determined structures were 1.9, 1.4, 1.0, and 2.1 Å, respectively. Cluster analyses of folding trajectories showed the native conformation usually occupied the most populated cluster. The simulation protocol can be applied to large-scale simulations of other helical proteins on commonly accessible computing platforms.
Collapse
|
312
|
Abstract
Protein molecules have evolved to adopt distinctive and well-defined functional and soluble states under physiological conditions. In some circumstances, however, proteins can self-assemble into fibrillar aggregates designated as amyloid fibrils. In vivo these processes are normally associated with severe pathological conditions but can sometimes have functional relevance. One such example is the hydrophobins, whose aggregation at air-water interfaces serves to create robust protein coats that help fungal spores to resist wetting and thus facilitate their dispersal in the air. We have performed multiscale simulations to address the molecular determinants governing the formation of functional amyloids by the class I fungal hydrophobin EAS. Extensive samplings of full-atom replica-exchange molecular dynamics and coarse-grained simulations have allowed us to identify factors that distinguish aggregation-prone from highly soluble states of EAS. As a result of unfavourable entropic terms, highly dynamical regions are shown to exert a crucial influence on the propensity of the protein to aggregate under different conditions. More generally, our findings suggest a key role that specific flexible structural elements can play to ensure the existence of soluble and functional states of proteins under physiological conditions.
Collapse
|
313
|
Pandey PR, Roy S. Distinctions in early stage unwinding mechanisms of zwitterionic, capped, and neutral forms of different α-helical homopolymeric peptides. J Phys Chem B 2012; 116:4731-40. [PMID: 22448707 DOI: 10.1021/jp301556x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations of α-helical polyalanine, polyleucine, polylysine, and poly(glutamic acid) with different forms of terminal groups in water at 300 K showed sharp distinctions in their unwinding mechanisms. Zwitterionic, capped, and neutral forms of polyalanine, polyleucine, and polylysine have been explored to elucidate their unwinding mechanism at very early stage, e.g., initial time window. Role of water in the unwinding mechanisms of the various helices has been envisaged. Also, it is evident from our calculations that the short- and long-range nonbonded interactions among the side chains is an important factor determining the unwinding mechanisms of the various homopolymeric α-helices. These findings can be helpful in constructing predictive models for understanding of the unwinding of α-helical proteins and peptides.
Collapse
Affiliation(s)
- Prithvi Raj Pandey
- Physical Chemistry Division, National Chemical Laboratory , Pune 411008, India
| | | |
Collapse
|
314
|
Bagchi S, Boxer SG, Fayer MD. Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy. J Phys Chem B 2012; 116:4034-42. [PMID: 22417088 PMCID: PMC3354990 DOI: 10.1021/jp2122856] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
315
|
Kröner D, Götze JP. Modeling of a violaxanthin-chlorophyll b chromophore pair in its LHCII environment using CAM-B3LYP. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2012; 109:12-9. [PMID: 22306026 DOI: 10.1016/j.jphotobiol.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/25/2011] [Accepted: 12/18/2011] [Indexed: 02/04/2023]
Abstract
Collecting energy for photosystem II is facilitated by several pigments, xanthophylls and chlorophylls, embedded in the light harvesting complex II (LHCII). One xanthophyll, violaxanthin (Vio), is loosely bound at a site close to a chlorophyll b (Chl). No final answer has yet been found for the role of this specific xanthophyll. We study the electronic structure of Vio in the presence of Chl and under the influence of the LHCII environment, represented by a point charge field (PCF). We compare the capability of the long range corrected density functional theory (DFT) functional CAM-B3LYP to B3LYP for the modeling of the UV/vis spectrum of the Vio+Chl pair. CAM-B3LYP was reported to allow for a very realistic reproduction of bond length alternation of linear polyenes, which has considerable impact on the carotenoid structure and spectrum. To account for the influence of the LHCII environment, the chromophore geometries are optimized using an ONIOM(DFT/6-31G(d):PM6) scheme. Our calculations show that the energies of the locally excited states are almost unaffected by the presence of the partner chromophore or the PCF. There are, however, indications for excitonic coupling of the Chl Soret band and Vio. We propose that Vio may accept energy from blue-light excited Chl.
Collapse
Affiliation(s)
- Dominik Kröner
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | | |
Collapse
|
316
|
Gront D, Kmiecik S, Blaszczyk M, Ekonomiuk D, Koliński A. Optimization of protein models. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dominik Gront
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maciej Blaszczyk
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Dariusz Ekonomiuk
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Koliński
- Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
317
|
Kolář M, Hobza P. On Extension of the Current Biomolecular Empirical Force Field for the Description of Halogen Bonds. J Chem Theory Comput 2012; 8:1325-33. [PMID: 26596748 DOI: 10.1021/ct2008389] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Until recently, the description of halogen bonding by standard molecular mechanics has been poor, owing to the lack of the so-called σ hole localized at the halogen. This region of positive electrostatic potential located on top of a halogen atom explains the counterintuitive attraction of halogenated compounds interacting with Lewis bases. In molecular mechanics, the σ hole is modeled by a massless point charge attached to the halogen atom and referred to as an explicit σ hole (ESH). Here, we introduce and compare three methods of ESH construction, which differ in the complexity of the input needed. The molecular mechanical dissociation curves of three model complexes containing bromine are compared with accurate CCSD(T)/CBS data. Furthermore, the performance of the Amber force field enhanced by the ESH on geometry characteristics is tested on the casein kinase 2 protein complex with seven brominated inhibitors. It is shown how various schemes depend on the selection of the ESH parameters and to what extent the energies and geometries are reliable. The charge of 0.2e placed 1.5 Å from the bromine atomic center is suggested as a universal model for the ESH.
Collapse
Affiliation(s)
- Michal Kolář
- Institute of Organic Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic , Flemingovo nam. 2, 166 10 Prague 6, The Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague , Albertov 6, 128 43 Prague 2, The Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic , Flemingovo nam. 2, 166 10 Prague 6, The Czech Republic.,Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University , Olomouc, 771 46 Olomouc, The Czech Republic.,Department of Chemistry, Pohang University of Science and Technology , San 31, Hyojadong, Namgu, Pohang 790-784, Republic of Korea
| |
Collapse
|
318
|
Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The Influence of Charge Distribution on Self-Association and Viscosity Behavior of Monoclonal Antibody Solutions. Mol Pharm 2012; 9:791-802. [DOI: 10.1021/mp200566k] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandeep Yadav
- Late Stage
Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, California
94080, United States
| | - Thomas M. Laue
- Department
of Molecular, Cellular
and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Devendra S. Kalonia
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06268,
United States
| | - Shubhadra N. Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06268,
United States
| | - Steven J. Shire
- Late Stage
Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, California
94080, United States
| |
Collapse
|
319
|
Zhang H, Ge C, van der Spoel D, Feng W, Tan T. Insight into the Structural Deformations of Beta-Cyclodextrin Caused by Alcohol Cosolvents and Guest Molecules. J Phys Chem B 2012; 116:3880-9. [DOI: 10.1021/jp300674d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haiyang Zhang
- Beijing Key
Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53,
100029 Beijing, China
- Department of Cell
and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Chunling Ge
- Beijing Key
Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53,
100029 Beijing, China
| | - David van der Spoel
- Department of Cell
and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Wei Feng
- Beijing Key
Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53,
100029 Beijing, China
| | - Tianwei Tan
- Beijing Key
Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53,
100029 Beijing, China
| |
Collapse
|
320
|
Sharma S, Bhaumik P, Schmitz W, Venkatesan R, Hiltunen JK, Conzelmann E, Juffer AH, Wierenga RK. The Enolization Chemistry of a Thioester-Dependent Racemase: The 1.4 Å Crystal Structure of a Reaction Intermediate Complex Characterized by Detailed QM/MM Calculations. J Phys Chem B 2012; 116:3619-29. [DOI: 10.1021/jp210185m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Satyan Sharma
- Biocenter Oulu and Department
of Biochemistry, University of Oulu, P.O.
Box 3000, Oulu, FI-90014, Finland
| | - Prasenjit Bhaumik
- Protein Structure Section, Macromolecular
Crystallography Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Werner Schmitz
- Theodor-Boveri-Institut für
Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg,
Germany
| | - Rajaram Venkatesan
- Biocenter Oulu and Department
of Biochemistry, University of Oulu, P.O.
Box 3000, Oulu, FI-90014, Finland
| | - J. Kalervo Hiltunen
- Biocenter Oulu and Department
of Biochemistry, University of Oulu, P.O.
Box 3000, Oulu, FI-90014, Finland
| | - Ernst Conzelmann
- Theodor-Boveri-Institut für
Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg,
Germany
| | - André H. Juffer
- Biocenter Oulu and Department
of Biochemistry, University of Oulu, P.O.
Box 3000, Oulu, FI-90014, Finland
| | - Rik K. Wierenga
- Biocenter Oulu and Department
of Biochemistry, University of Oulu, P.O.
Box 3000, Oulu, FI-90014, Finland
| |
Collapse
|
321
|
Cordomí A, Caltabiano G, Pardo L. Membrane Protein Simulations Using AMBER Force Field and Berger Lipid Parameters. J Chem Theory Comput 2012; 8:948-58. [PMID: 26593357 DOI: 10.1021/ct200491c] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AMBER force fields are among the most commonly used in molecular dynamics (MD) simulations of proteins. Unfortunately, they lack a specific set of lipid parameters, thus limiting its use in membrane protein simulations. In order to overcome this limitation we assessed whether the widely used united-atom lipid parameters described by Berger and co-workers could be used in conjunction with AMBER force fields in simulations of membrane proteins. Thus, free energies of solvation in water and in cyclohexane, and free energies of water to cyclohexane transfer, were computed by thermodynamic integration procedures for neutral amino acid side-chains employing AMBER99, AMBER03, and OPLS-AA amino acid force fields. In addition, MD simulations of three membrane proteins in a POPC lipid bilayer, the β2 adrenergic G protein-coupled receptor, Aquaporin-1, and the outer membrane protein Omp32, were performed with the aim of comparing the AMBER99SB/Berger combination of force fields with the OPLS-AA/Berger combination. We have shown that AMBER99SB and Berger force fields are compatible, they provide reliable free energy estimations relative to experimental values, and their combination properly describes both membrane and protein structural properties. We then suggest that the AMBER99SB/Berger combination is a reliable choice for the simulation of membrane proteins, which links the easiness of ligand parametrization and the ability to reproduce secondary structure of AMBER99SB force field with the largely validated Berger lipid parameters.
Collapse
Affiliation(s)
- Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Gianluigi Caltabiano
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| |
Collapse
|
322
|
Solomentsev GY, English NJ, Mooney DA. Effects of external electromagnetic fields on the conformational sampling of a short alanine peptide. J Comput Chem 2012; 33:917-23. [DOI: 10.1002/jcc.22912] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/11/2023]
|
323
|
Piggot TJ, Sessions RB, Burston SG. Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation. Biochemistry 2012; 51:1707-18. [PMID: 22289022 DOI: 10.1021/bi201237a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL. Despite numerous previous studies, the precise mechanisms of allosteric communication and the associated structural changes remain elusive. In this paper, we describe a series of all-atom, unbiased, molecular dynamics simulations over relatively long (50-100 ns) time scales of a single, isolated GroEL subunit and also a heptameric GroEL ring, in the presence and absence of ATP. Combined with results from a distance restraint-biased simulation of the single ring, the atomistic details of the earliest stages of ATP-driven structural changes within this complex molecule are illuminated. Our results are in broad agreement with previous modeling studies of isolated subunits and with a coarse-grained, forcing simulation of the single ring. These are the first reported all-atom simulations of the GroEL single-ring complex and provide a unique insight into the role of charged residues K80, K277, R284, R285, and E388 at the subunit interface in transmission of the allosteric signal. These simulations also demonstrate the feasibility of performing all-atom simulations of very large systems on sufficiently long time scales on typical high performance computing facilities to show the origins of the earliest events in biologically relevant processes.
Collapse
Affiliation(s)
- Thomas J Piggot
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
324
|
Baud MGJ, Leiser T, Haus P, Samlal S, Wong AC, Wood RJ, Petrucci V, Gunaratnam M, Hughes SM, Buluwela L, Turlais F, Neidle S, Meyer-Almes FJ, White AJP, Fuchter MJ. Defining the Mechanism of Action and Enzymatic Selectivity of Psammaplin A against Its Epigenetic Targets. J Med Chem 2012; 55:1731-50. [DOI: 10.1021/jm2016182] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Matthias G. J. Baud
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| | - Thomas Leiser
- Department of Chemical Engineering
and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | - Patricia Haus
- Department of Chemical Engineering
and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | - Sharon Samlal
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Ai Ching Wong
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Robert J. Wood
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Vanessa Petrucci
- Cancer Research UK Biomolecular Structure
Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mekala Gunaratnam
- Cancer Research UK Biomolecular Structure
Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Siobhan M. Hughes
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN,
United Kingdom
| | - Lakjaya Buluwela
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN,
United Kingdom
| | - Fabrice Turlais
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure
Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering
and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | - Andrew J. P. White
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
325
|
Hempel S, Sadowski G. Water activity coefficients in aqueous amino acid solutions by molecular dynamics simulation: 1. Force field development. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.608670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
326
|
Krishnamani V, Hegde BG, Langen R, Lanyi JK. Secondary and Tertiary Structure of Bacteriorhodopsin in the SDS Denatured State. Biochemistry 2012; 51:1051-60. [DOI: 10.1021/bi201769z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Venkatramanan Krishnamani
- Department
of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| | - Balachandra G. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
90033, United States
| | - Janos K. Lanyi
- Department
of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
327
|
Bikos V, Darzentas N, Hadzidimitriou A, Davis Z, Hockley S, Traverse-Glehen A, Algara P, Santoro A, Gonzalez D, Mollejo M, Dagklis A, Gangemi F, Bosler DS, Bourikas G, Anagnostopoulos A, Tsaftaris A, Iannitto E, Ponzoni M, Felman P, Berger F, Belessi C, Ghia P, Papadaki T, Dogan A, Degano M, Matutes E, Piris MA, Oscier D, Stamatopoulos K. Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia 2012; 26:1638-46. [PMID: 22222599 DOI: 10.1038/leu.2012.3] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We performed an immunogenetic analysis of 345 IGHV-IGHD-IGHJ rearrangements from 337 cases with primary splenic small B-cell lymphomas of marginal-zone origin. Three immunoglobulin (IG) heavy variable (IGHV) genes accounted for 45.8% of the cases (IGHV1-2, 24.9%; IGHV4-34, 12.8%; IGHV3-23, 8.1%). Particularly for the IGHV1-2 gene, strong biases were evident regarding utilization of different alleles, with 79/86 rearrangements (92%) using allele (*)04. Among cases more stringently classified as splenic marginal-zone lymphoma (SMZL) thanks to the availability of splenic histopathological specimens, the frequency of IGHV1-2(*)04 peaked at 31%. The IGHV1-2(*)04 rearrangements carried significantly longer complementarity-determining region-3 (CDR3) than all other cases and showed biased IGHD gene usage, leading to CDR3s with common motifs. The great majority of analyzed rearrangements (299/345, 86.7%) carried IGHV genes with some impact of somatic hypermutation, from minimal to pronounced. Noticeably, 75/79 (95%) IGHV1-2(*)04 rearrangements were mutated; however, they mostly (56/75 cases; 74.6%) carried few mutations (97-99.9% germline identity) of conservative nature and restricted distribution. These distinctive features of the IG receptors indicate selection by (super)antigenic element(s) in the pathogenesis of SMZL. Furthermore, they raise the possibility that certain SMZL subtypes could derive from progenitor populations adapted to particular antigenic challenges through selection of VH domain specificities, in particular the IGHV1-2(*)04 allele.
Collapse
Affiliation(s)
- V Bikos
- Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Brandman R, Brandman Y, Pande VS. A-site residues move independently from P-site residues in all-atom molecular dynamics simulations of the 70S bacterial ribosome. PLoS One 2012; 7:e29377. [PMID: 22235290 PMCID: PMC3250440 DOI: 10.1371/journal.pone.0029377] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022] Open
Abstract
The ribosome is a large macromolecular machine, and correlated motion between residues is necessary for coordinating function across multiple protein and RNA chains. We ran two all-atom, explicit solvent molecular dynamics simulations of the bacterial ribosome and calculated correlated motion between residue pairs by using mutual information. Because of the short timescales of our simulation (ns), we expect that dynamics are largely local fluctuations around the crystal structure. We hypothesize that residues that show coupled dynamics are functionally related, even on longer timescales. We validate our model by showing that crystallographic B-factors correlate well with the entropy calculated as part of our mutual information calculations. We reveal that A-site residues move relatively independently from P-site residues, effectively insulating A-site functions from P-site functions during translation.
Collapse
Affiliation(s)
- Relly Brandman
- Chemical and Systems Biology, Stanford University, Stanford, California, United States of America.
| | | | | |
Collapse
|
329
|
Vitalis A, Caflisch A. 50 Years of Lifson-Roig Models: Application to Molecular Simulation Data. J Chem Theory Comput 2011; 8:363-73. [PMID: 26592894 DOI: 10.1021/ct200744s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simple helix-coil transition theories have been indispensable tools in the analysis of data reporting on the reversible folding of α-helical polypeptides. They provide a transferable means to not only characterize different systems but to also compare different techniques, viz., experimental probes monitoring helix-coil transitions in vitro or biomolecular force fields in silico. This article addresses several issues with the application of Lifson-Roig theory to helix-coil transition data. We use computer simulation to generate two sets of ensembles for the temperature-controlled, reversible folding of the 21-residue, alanine-rich FS peptide. Ensembles differ in the rigidity of backbone bond angles and are analyzed using two distinct descriptors of helicity. The analysis unmasks an underlying phase diagram that is surprisingly complex. The complexities give rise to fitted nucleation and propagation parameters that are difficult to interpret and that are inconsistent with the distribution of isolated residues in the α-helical basin. We show that enthalpies of helix formation are more robustly determined using van't Hoff analysis of simple measures of helicity rather than fitted propagation parameters. To overcome some of these issues, we design a simple variant of the Lifson-Roig model that recovers physical interpretability of the obtained parameters by allowing bundle formation to be described in simple fashion. The relevance of our results is discussed in relation to the applicability of Lifson-Roig models to both in silico and in vitro data.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
330
|
Klimacek M, Brunsteiner M, Nidetzky B. Dynamic mechanism of proton transfer in mannitol 2-dehydrogenase from Pseudomonas fluorescens: mobile GLU292 controls proton relay through a water channel that connects the active site with bulk solvent. J Biol Chem 2011; 287:6655-67. [PMID: 22194597 PMCID: PMC3307286 DOI: 10.1074/jbc.m111.289223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active site of mannitol 2-dehydrogenase from Pseudomonas fluorescens (PfM2DH) is connected with bulk solvent through a narrow protein channel that shows structural resemblance to proton channels utilized by redox-driven proton pumps. A key element of the PfM2DH channel is the "mobile" Glu(292), which was seen crystallographically to adopt distinct positions up and down the channel. It was suggested that the "down → up" conformational change of Glu(292) could play a proton relay function in enzymatic catalysis, through direct proton shuttling by the Glu or because the channel is opened for water molecules forming a chain along which the protons flow. We report evidence from site-directed mutagenesis (Glu(292) → Ala) substantiated by data from molecular dynamics simulations that support a role for Glu(292) as a gate in a water chain (von Grotthuss-type) mechanism of proton translocation. Occupancy of the up and down position of Glu(292) is influenced by the bonding and charge state of the catalytic acid base Lys(295), suggesting that channel opening/closing motions of the Glu are synchronized to the reaction progress. Removal of gatekeeper control in the E292A mutant resulted in a selective, up to 120-fold slowing down of microscopic steps immediately preceding catalytic oxidation of mannitol, consistent with the notion that formation of the productive enzyme-NAD(+)-mannitol complex is promoted by a corresponding position change of Glu(292), which at physiological pH is associated with obligatory deprotonation of Lys(295) to solvent. These results underscore the important role of conformational dynamics in the proton transfer steps of alcohol dehydrogenase catalysis.
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | | | | |
Collapse
|
331
|
Seduraman A, Wu P, Klähn M. Extraction of tryptophan with ionic liquids studied with molecular dynamics simulations. J Phys Chem B 2011; 116:296-304. [PMID: 22136607 DOI: 10.1021/jp206748z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extraction of amino acids from aqueous solutions with ionic liquids (ILs) in biphasic systems is analyzed with molecular dynamics (MD) simulations. Extraction of tryptophan (TRP) with the imidazolium-based ILs [C(4)mim][PF(6)], [C(8)mim][PF(6)], and [C(8)mim][BF(4)] are considered as model cases. Solvation free energies of TRP are calculated with MD simulations and thermodynamic integration in combination with an empirical force field, whose parametrization is based on the liquid-phase charge distribution of the ILs. Calculated solvation free energies reproduce successfully all observed experimental trends according to the previously reported partition of TRP between water and IL phases. Water is present in ILs as a cosolvent, due to direct contact with the aqueous phase during extraction, and is found to play a major role in the extraction of TRP. Water improves solvation of cationic TRP by 7.8 and 5.1 kcal/mol in [C(4)mim][PF(6)] and [C(8)mim][PF(6)], respectively, which is in the case of [C(4)mim][PF(6)] sufficient to extract TRP. Extraction in [C(8)mim][PF(6)] is not feasible, since the hydrophobic octyl groups of the cations limit the water concentration in the IL. The solvation of cationic TRP is 2.4 kcal/mol less favorable in [C(8)mim][PF(6)] than in [C(4)mim][PF(6)]. Water improves the solvation of TRP in ILs mostly through dipole-dipole interactions with the polar backbone of TRP. Extraction is most efficient with [C(8)mim][BF(4)], where hydrophilic BF(4)(-) anions substantially increase the water concentration in the IL. Additionally, stronger direct electrostatic interactions of TRP with BF(4)(-) anions improve its solvation in the IL further. The solvation of cationic TRP in [C(8)mim][BF(4)] is 3.4 kcal/mol more favorable than in [C(8)mim][PF(6)]. Overall, the extractive power of the ILs correlates with the water saturation concentration of the IL phase, which in turn is determined by the hydrophilicity of the constituting ions. The results of this work identify relations between the extraction performance of ILs and the basic chemical properties of the ions, which provide guidelines that could contribute to the design of improved novel ILs for amino acid extraction.
Collapse
Affiliation(s)
- Abirami Seduraman
- Institute of High Performance Computing, Singapore, Republic of Singapore
| | | | | |
Collapse
|
332
|
TSAI YILEN, CHEN HWUNGWEN, LIN TOPP, WANG WEIZHOU, SUN YINGCHIEH. MOLECULAR DYNAMICS SIMULATION OF FOLDING OF A SHORT HELICAL TOXIN PEPTIDE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633607002964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A molecular dynamics simulation of the folding of a short helical toxin peptide was carried out. The simulation gave a folding time of ~10 ns, which is longer than typical time of ~1 ns for the formation of 1–2 helical turns. The simulation demonstrates that a helical peptide with disulfide bonds, which may encounter extra steric hindrance compared with the peptide without disulfide bonds, can fold in nanosecond timescale. An analysis shows that this folding time should correspond to the folding time in weak denaturation condition in experiment. Interactions and factors affecting folding pathways are analyzed and discussed.
Collapse
Affiliation(s)
- YI-LEN TSAI
- Department of Chemistry, National Taiwan Normal University, 88, TingChow Road Section 4, Taipei 116, Taiwan
| | - HWUNG-WEN CHEN
- Department of Chemistry, National Taiwan Normal University, 88, TingChow Road Section 4, Taipei 116, Taiwan
| | - TOPP LIN
- Department of Chemistry, National Taiwan Normal University, 88, TingChow Road Section 4, Taipei 116, Taiwan
| | - WEI-ZHOU WANG
- Department of Chemistry, National Taiwan Normal University, 88, TingChow Road Section 4, Taipei 116, Taiwan
| | - YING-CHIEH SUN
- Department of Chemistry, National Taiwan Normal University, 88, TingChow Road Section 4, Taipei 116, Taiwan
| |
Collapse
|
333
|
Long D, Brüschweiler R. Atomistic Kinetic Model for Population Shift and Allostery in Biomolecules. J Am Chem Soc 2011; 133:18999-9005. [DOI: 10.1021/ja208813t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Long
- Department of Chemistry and Biochemistry and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
334
|
Smiatek J, Chen C, Liu D, Heuer A. Stable conformations of a single stranded deprotonated DNA i-motif. J Phys Chem B 2011; 115:13788-95. [PMID: 21995652 DOI: 10.1021/jp208640a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present molecular dynamics simulations of a single stranded deprotonated DNA i-motif in explicit solvent. Our results indicate that hairpin structures are stable equilibrium conformations at 300 K. The entropic preference of these configurations is explained by strong water ordering effects due to the present number of hydrogen bonds. We observe a full unfolding at higher temperatures in good agreement with experimental results.
Collapse
Affiliation(s)
- Jens Smiatek
- Institut für Physikalische Chemie, Universität Münster, D-48149 Münster, Germany.
| | | | | | | |
Collapse
|
335
|
Shan M, Bujotzek A, Abendroth F, Wellner A, Gust R, Seitz O, Weber M, Haag R. Conformational Analysis of Bivalent Estrogen Receptor Ligands: From Intramolecular to Intermolecular Binding. Chembiochem 2011; 12:2587-98. [DOI: 10.1002/cbic.201100529] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Indexed: 11/07/2022]
|
336
|
Baumketner A, Nesmelov Y. Early stages of the recovery stroke in myosin II studied by molecular dynamics simulations. Protein Sci 2011; 20:2013-22. [PMID: 21922589 DOI: 10.1002/pro.737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/04/2011] [Accepted: 08/31/2011] [Indexed: 11/09/2022]
Abstract
The recovery stroke is a key step in the functional cycle of muscle motor protein myosin, during which pre-recovery conformation of the protein is changed into the active post-recovery conformation, ready to exersice force. We study the microscopic details of this transition using molecular dynamics simulations of atomistic models in implicit and explicit solvent. In more than 2 μs of aggregate simulation time, we uncover evidence that the recovery stroke is a two-step process consisting of two stages separated by a time delay. In our simulations, we directly observe the first stage at which switch II loop closes in the presence of adenosine triphosphate at the nucleotide binding site. The resulting configuration of the nucleotide binding site is identical to that detected experimentally. Distribution of inter-residue distances measured in the force generating region of myosin is in good agreement with the experimental data. The second stage of the recovery stroke structural transition, rotation of the converter domain, was not observed in our simulations. Apparently it occurs on a longer time scale. We suggest that the two parts of the recovery stroke need to be studied using separate computational models.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, North Carolina 28262, USA.
| | | |
Collapse
|
337
|
Qi W, Song B, Lei X, Wang C, Fang H. DNA base pair hybridization and water-mediated metastable structures studied by molecular dynamics simulations. Biochemistry 2011; 50:9628-32. [PMID: 21980999 DOI: 10.1021/bi2002778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The base pair hybridization of a DNA segment was studied using molecular dynamics simulation. The results show the obvious correlation between the probability of successful hybridization and the accessible surface area to water of two successive base pairs, including the unpaired base pair adjacent to paired base pair and this adjacent paired base pair. Importantly, two metastable structures in an A-T base pair were discovered by the analysis of the free energy landscape. Both structures involved addition of a water molecule to the linkage between the two nucleobases in one base pair. The existence of the metastable structures provide potential barriers to the Watson-Crick base pair, and numerical simulations show that those potential barriers can be surmounted by thermal fluctuations at higher temperatures. These studies contribute an important step toward the understanding of the mechanism in DNA hybridization, particularly the effect of temperature on DNA hybridization and polymerase chain reaction. These observations are expected to be helpful for facilitating experimental bio/nanotechnology designs involving fast hybridization.
Collapse
Affiliation(s)
- Wenpeng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | |
Collapse
|
338
|
How to simulate affinities for host–guest systems lacking binding mode information: application to the liquid chromatographic separation of hexabromocyclododecane stereoisomers. J Mol Model 2011; 18:2399-408. [DOI: 10.1007/s00894-011-1239-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/07/2011] [Indexed: 11/28/2022]
|
339
|
Zhang Z, Sanbonmatsu KY, Voth GA. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. J Am Chem Soc 2011; 133:16828-38. [PMID: 21910449 DOI: 10.1021/ja2028487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ribosome is a very large complex that consists of many RNA and protein molecules and plays a central role in protein biosynthesis in all organisms. Extensive interactions between different molecules are critical to ribosomal functional dynamics. In this work, intermolecular interactions in the Escherichia coli 70S ribosome are investigated by coarse-grained (CG) analysis. CG models are defined to preserve dynamic domains in RNAs and proteins and to capture functional motions in the ribosome, and then the CG sites are connected by harmonic springs, and spring constants are obtained by matching the computed fluctuations to those of an all-atom molecular dynamics (MD) simulation. Those spring constants indicate how strong the interactions are between the ribosomal components, and they are in good agreement with various experimental data. Nearly all the bridges between the small and large ribosomal subunits are indicated by CG interactions with large spring constants. The head of the small subunit is very mobile because it has minimal CG interactions with the rest of the subunit; however, a large number of small subunit proteins bind to maintain the internal structure of the head. The results show a clear connection between the intermolecular interactions and the structural and functional properties of the ribosome because of the reduced complexity in domain-based CG models. The present approach also provides a useful strategy to map interactions between molecules within large biomolecular complexes since it is not straightforward to investigate these by either atomistic MD simulations or residue-based elastic network models.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Chemistry, James Franck Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
340
|
Pandey PR, Roy S. Early stages of unwinding of zwitterionic α-helical homopolymeric peptides. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
341
|
Xu W, Zhang C, Derreumaux P, Gräslund A, Morozova-Roche L, Mu Y. Intrinsic determinants of Aβ(12-24) pH-dependent self-assembly revealed by combined computational and experimental studies. PLoS One 2011; 6:e24329. [PMID: 21957446 PMCID: PMC3177821 DOI: 10.1371/journal.pone.0024329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022] Open
Abstract
The propensity of amyloid- (A) peptide to self-assemble into highly ordered amyloid structures lies at the core of their accumulation in the brain during Alzheimer's disease. By using all-atom explicit solvent replica exchange molecular dynamics simulations, we elucidated at the atomic level the intrinsic determinants of the pH-dependent dimerization of the central hydrophobic segment A and related these with the propensity to form amyloid fibrils measured by experimental tools such as atomic force microscopy and fluorescence. The process of A dimerization was evaluated in terms of free energy landscape, side-chain two-dimensional contact probability maps, -sheet registries, potential mean force as a function of inter-chain distances, secondary structure development and radial solvation distributions. We showed that dimerization is a key event in A amyloid formation; it is highly prompted in the order of pH 5.02.98.4 and determines further amyloid growth. The dimerization is governed by a dynamic interplay of hydrophobic, electrostatic and solvation interactions permitting some variability of -sheets at each pH. These results provide atomistic insight into the complex process of molecular recognition detrimental for amyloid growth and pave the way for better understanding of the molecular basis of amyloid diseases.
Collapse
Affiliation(s)
- Weixin Xu
- State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ce Zhang
- Departments of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR9080 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | - Astrid Gräslund
- Department of Biophysics, Stockholm University, Stockholm, Sweden
| | - Ludmilla Morozova-Roche
- Departments of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail: (LM); (YM)
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (LM); (YM)
| |
Collapse
|
342
|
Ploetz EA, Smith PE. A Kirkwood-Buff force field for the aromatic amino acids. Phys Chem Chem Phys 2011; 13:18154-67. [PMID: 21931889 DOI: 10.1039/c1cp21883b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a continuation of our efforts to develop a united atom non-polarizable protein force field based upon the solution theory of Kirkwood and Buff i.e., the Kirkwood-Buff Force Field (KBFF) approach, we present KBFF models for the side chains of phenylalanine, tyrosine, tryptophan, and histidine, including both tautomers of neutral histidine and doubly-protonated histidine. The force fields were specifically designed to reproduce the thermodynamic properties of mixtures over the full composition range in an attempt to provide an improved description of intermolecular interactions. The models were developed by careful parameterization of the solution phase partial charges to reproduce the experimental Kirkwood-Buff integrals for mixtures of solutes representative of the amino acid sidechains in solution. The KBFF parameters and simulated thermodynamic and structural properties are presented for the following eleven binary mixtures: benzene + methanol, benzene + toluene, toluene + methanol, toluene + phenol, toluene + p-cresol, pyrrole + methanol, indole + methanol, pyridine + methanol, pyridine + water, histidine + water, and histidine hydrochloride + water. It is argued that the present approach and models provide a reasonable description of intermolecular interactions which ensures that the required balance between solute-solute, solute-solvent, and solvent-solvent distributions is obtained.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506-0401, USA
| | | |
Collapse
|
343
|
Linse P, Palenčár P, Bleha T. A New Two-State Polymer Folding Model and Its Application to α-Helical Polyalanine. J Phys Chem B 2011; 115:11448-54. [DOI: 10.1021/jp2019395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Per Linse
- Physical Chemistry, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Peter Palenčár
- Polymer Institute, Slovak Academy of Science, 845 41 Bratislava, Slovakia
| | - Tomáš Bleha
- Polymer Institute, Slovak Academy of Science, 845 41 Bratislava, Slovakia
| |
Collapse
|
344
|
Xu L, Cohen AE, Boxer SG. Electrostatic fields near the active site of human aldose reductase: 2. New inhibitors and complications caused by hydrogen bonds. Biochemistry 2011; 50:8311-22. [PMID: 21859105 DOI: 10.1021/bi200930f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the X-ray structure of its complex, along with cofactor NADP(+), with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in the proximity of T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen-bonded and non-hydrogen-bonded population by comparison with the T113A mutant, in which a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peak distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed.
Collapse
Affiliation(s)
- Lin Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | | |
Collapse
|
345
|
Observation of two families of folding pathways of BBL. Biophys J 2011; 100:2457-65. [PMID: 21575580 DOI: 10.1016/j.bpj.2011.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/11/2011] [Accepted: 03/21/2011] [Indexed: 11/23/2022] Open
Abstract
BBL is an independent folding domain of a large multienzyme complex, 2-oxoglutarate dehydrogenase. The folding mechanism of BBL is under debate between the views of noncooperative downhill-type and classical two-state. Extensive replica exchange molecular dynamics simulations of BBL in explicit solvent have shown some non-two-state behaviors despite no definitive evidence of downhill folding. In this work, we postprocess the replica exchange data using our roadmap-based MaxFlux reaction path algorithm to reveal atomically detailed folding pathways. A connected graph is used to organize and visualize the folding pathways initiated from random coils. High structural and transition heterogeneity is seen in the early stage of folding. Two main parallel folding pathways emerge in the later stage; one path shows that tertiary contact and helix formation develop at different stages of folding, whereas the other path exhibits concurrence of secondary and tertiary structure formation to some extent. Because the native state of BBL is sensitive to experimental conditions, we speculate that the relative predominance of the two pathways may vary with the protein construct and solvent conditions, possibly leading to the seeming discrepancy of experimental results. Our roadmap-based reaction path algorithm is a general tool to extract path information from replica exchange.
Collapse
|
346
|
Kotsakis SD, Tzouvelekis LS, Petinaki E, Tzelepi E, Miriagou V. Effects of the Val211Gly substitution on molecular dynamics of the CMY-2 cephalosporinase: implications on hydrolysis of expanded-spectrum cephalosporins. Proteins 2011; 79:3180-92. [PMID: 21989938 DOI: 10.1002/prot.23150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/04/2011] [Accepted: 07/14/2011] [Indexed: 11/05/2022]
Abstract
CMY-30, a naturally occurring class C β-lactamase differing from the Citrobacter freundii-derived CMY-2 by a Val211Gly substitution in the Ω-loop, exhibits increased hydrolytic efficiency against ceftazidime and cefotaxime. Kinetic constants of CMY-2 and CMY-30 against the latter substrates suggested that the improved efficiency of the Gly211 variant was due to an increase in k(cat). The structural basis of the increased turn-over rates of oxyimino-cephalosporins caused by Val211Gly was studied using 5 ns molecular dynamics simulations of CMY-2 and CMY-30 in their free forms and in covalent complexes with ceftazidime (acyl-enzyme) as well as a boronic acid analogue of ceftazidime (deacylation transition state). Analysis of thermal factors indicated that Val211Gly increased the flexibility of the Ω-loop/H7-helix and the Q120-loop formed by amino acids 112-125, and also altered the vibrations of the H10-helix/R2-loop. Structural elements containing the catalytic residues remained relatively rigid except Tyr150 in acyl-enzyme species. Regions exhibiting altered flexibility due to the substitution appear to move in a concerted manner in both enzymes. This movement was more intense in CMY-30 and also at directions different to those observed for CMY-2. Additionally, it appeared that the Val211Gly increased the available space for the accommodation of the R1 side chain of ceftazidime. These findings are likely associated with the significantly increased vibrations of the bound compounds observed in CMY-30 complexes. Therefore, the extended spectrum properties of CMY-30 seem to arise through a complex process implicating changes in protein movement and in the mode of substrate accommodation.
Collapse
Affiliation(s)
- Stathis D Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | |
Collapse
|
347
|
Role of hydration in collagen recognition by bacterial adhesins. Biophys J 2011; 100:2253-61. [PMID: 21539794 DOI: 10.1016/j.bpj.2011.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022] Open
Abstract
Protein-protein recognition regulates the vast majority of physiological or pathological processes. We investigated the role of hydration in collagen recognition by bacterial adhesin CNA by means of first principle molecular-dynamics samplings. Our characterization of the hydration properties of the isolated partners highlights dewetting-prone areas on the surface of CNA that closely match the key regions involved in hydrophobic intermolecular interactions upon complex formation, suggesting that the hydration state of the ligand-free CNA predisposes the protein to the collagen recognition. Moreover, hydration maps of the CNA-collagen complex reveal the presence of a number of structured water molecules that mediate intermolecular interactions at the interface between the two proteins. These hydration sites feature long residence times, significant binding free energies, and a geometrical distribution that closely resembles the hydration pattern of the isolated collagen triple helix. These findings are striking evidence that CNA recognizes the collagen triple helix as a hydrated molecule. For this structural motif, the exposure of several unsatisfied backbone carbonyl groups results in a strong interplay with the solvent, which is shown to also play a role in collagen recognition.
Collapse
|
348
|
Janzsó G, Bogár F, Hudoba L, Penke B, Rákhely G, Leitgeb B. Exploring and characterizing the folding processes of Lys- and Arg-containing Ala-based peptides: A molecular dynamics study. Comput Biol Chem 2011; 35:240-50. [DOI: 10.1016/j.compbiolchem.2011.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
|
349
|
Kalia M, Kukol A. Structure and dynamics of the kinase IKK-β--A key regulator of the NF-kappa B transcription factor. J Struct Biol 2011; 176:133-42. [PMID: 21820058 DOI: 10.1016/j.jsb.2011.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/29/2022]
Abstract
The inhibitor κB kinase-β (IKK-β) phosphorylates the NF-κB inhibitor protein IκB leading to the translocation of the transcription factor NF-κB to the nucleus. The transcription factor NF-κB and consequently IKK-β are central to signal transduction pathways of mammalian cells. The purpose of this research was to develop a 3D structural model of the IKK-β kinase domain with its ATP cofactor and investigate its dynamics and ligand binding potential. Through a combination of comparative modelling and simulated heating/annealing molecular dynamics (SAMD) simulation in explicit water the model accuracy could be substantially improved compared to comparative modelling on its own as shown by model validation measures. The structure revealed the details of ATP/Mg(2+) binding indicating hydrophobic interactions with the adenine base and a significant contribution of Mg(2+) as a bridge between ATP phosphate groups and negatively charged side chains. The molecular dynamics trajectories of the ATP-bound and free enzyme showed two conformations in each case, which contributed to the majority of the trajectory. The ATP-free enzyme revealed a novel binding site distant from the ATP binding site that was not encountered in the ATP bound enzyme. Based on the overall structural flexibility, it is suggested that a truncated version of the kinase domain from Ala14 to Leu265 should be subjected to crystallisation trials. The 3D structure of this enzyme will enable rational design of new ligands and analysis of protein-protein interactions. Furthermore, our results may provide a new impetus for wet-lab based structural investigation focussing on a truncated kinase domain.
Collapse
Affiliation(s)
- Munishikha Kalia
- School of Life Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | | |
Collapse
|
350
|
Rationally designed turn promoting mutation in the amyloid-β peptide sequence stabilizes oligomers in solution. PLoS One 2011; 6:e21776. [PMID: 21799748 PMCID: PMC3142112 DOI: 10.1371/journal.pone.0021776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 06/12/2011] [Indexed: 11/20/2022] Open
Abstract
Enhanced production of a 42-residue beta amyloid peptide (Aβ42) in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD). The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs) in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the Aβ42 peptide (Aβ42Nle35p37) that appear to organize Aβ42 into stable oligomers. 2D NMR on the Aβ42Nle35p37 peptide revealed the occurrence of two β-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Aβ21–43Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.
Collapse
|