351
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
352
|
Peng W, Qian Y, Qi X. Efficacy of a novel glioma therapy based on ferroptosis induced by layered double hydroxide loaded with simvastatin. ENVIRONMENTAL RESEARCH 2023; 238:117112. [PMID: 37717807 DOI: 10.1016/j.envres.2023.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Glioma is the most common primary malignant tumor of the nervous system that starts in the glial cells. Its high invasiveness and recurrence pose major challenges to its effective treatment. Ferroptosis is a new type of programmed cell death characterized by intracellular iron overload and accumulation of lipid peroxides. Existing studies have demonstrated the efficacy of targeted ferroptosis therapy in the treatment of glioma. In this study, folic acid (FA)-modified layered double hydroxide loaded with simvastatin (SIM), a ferroptosis drug, was used to prepare a novel ferroptosis nanodrug (FA-LDH@SIM). The prepared nanodrug improved the therapeutic effect of SIM on glioma. Compared with free SIM, FA-LDH@SIM showed greater cytotoxicity, significantly inhibited glioma cell proliferation, and significantly inhibited glioma invasion and migration ability. Furthermore, SIM could induce changes in certain ferroptosis indicators, including increased intracellular LPO, ROS and MDA level, decreased GSH production, increased divalent iron level, and changes in mitochondrial morphology. Further experiments revealed that SIM induced ferroptosis in tumor cells by down-regulating HMGCR expression and inhibiting the mevalonate pathway to down-regulate GPX4 expression. In addition, the FA-LDH@SIM group significantly inhibited tumor growth after treatment in the animal glioma model. These results indicate that the FA-LDH@SIM nanodrug delivery system exhibits excellent anti-tumor effects both in vitro and in vivo, and is an effective method for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568, Zhongxing Road, Shaoxing, 312000, Zhejiang, China.
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568, Zhongxing Road, Shaoxing 312000, Zhejiang, China.
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Shangcheng District, Hangzhou 310000, Zhejiang, China; Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568, Zhongxing Road, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
353
|
Pang F, Zhang L, Li M, Yi X, Wang Y, Yang P, Wen B, Jiang J, Teng Y, Yang X, Chen L, Xu J, Wang L. Ribosomal S6 protein kinase 4 promotes resistance to EZH2 inhibitors in glioblastoma. Cancer Gene Ther 2023; 30:1636-1648. [PMID: 37726387 DOI: 10.1038/s41417-023-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Glioblastoma (GBM) is a highly malignant type of brain tumor with limited treatment options. Recent research has focused on epigenetic regulatory factors, such as Enhancer of Zeste Homolog 2 (EZH2), which plays a role in gene expression through epigenetic modifications. EZH2 inhibitors have been developed as potential therapeutic agents for GBM, but resistance to these inhibitors remains a considerable challenge. This study aimed to investigate the role of ribosomal S6 protein kinase 4 (RSK4) in GBM and its association with resistance to EZH2 inhibitors. We first induced drug resistance in primary GBM cell lines by treatment with an EZH2 inhibitor and observed increases in the expression of stemness markers associated with glioblastoma stem cells (GSCs) in the drug-resistant cells. We also found high expression of RSK4 in GBM patient samples and identified the correlation of high RSK4 expression with poor prognosis and GSC marker expression. Further experiments showed that knocking down RSK4 in drug-resistant GBM cells restored their sensitivity to EZH2 inhibitors and decreased the expression of GSC markers, thus reducing their self-renewal capacity. From a mechanistic perspective, we discovered that RSK4 directly phosphorylates EZH2, activating the EZH2/STAT3 pathway and promoting resistance to EZH2 inhibitors in GBM. We also found that combining EZH2 inhibitors with an RSK4 inhibitor called BI-D1870 had better inhibitory effects on GBM occurrence and progression in both in vitro and in vivo experiments. In conclusion, this study demonstrates that RSK4 enhances cancer stemness and mediates resistance to EZH2 inhibitors in GBM. Combination treatment with EZH2 inhibitors and RSK4 inhibitors is a promising potential therapeutic strategy for GBM. Collectively, our results strongly demonstrate that RSK4 regulates the EZH2/STAT3 pathway to promote GSC maintenance and EZH2i resistance in a PRC2-independent manner, indicating that RSK4 is a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Fangning Pang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xicai Yi
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peng Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bin Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jinquan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunpeng Teng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
354
|
Chang CT, Chen HH, Chuang CC, Chang SH, Hsiao NW. Ganciclovir as a potential treatment for glioma: a systematic review and meta-analysis. J Neurooncol 2023; 165:399-411. [PMID: 38066255 DOI: 10.1007/s11060-023-04503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Glioma is a challenging malignant tumor with a low survival rate and no effective treatment. Recently, ganciclovir, an antiviral drug, combined with gene therapy and its own antiviral ability, has been proposed as a potential treatment for glioma. However, there are differences in the results of various clinical trials. In this study, we conducted a systematic review and meta-analysis to evaluate the efficacy of ganciclovir in treating glioma. METHODS We searched databases such as PubMed, EMBASE, and Cochrane Library before March 30, 2023. The search terms included glioma, ganciclovir, valganciclovir and treatment. Calculated 1, 2 and 4-year survival rate by risk difference (RD), and overall survival (OS) by odds ratio (OR). RESULTS Five randomized controlled trials (RCTs) with a total of 606 high-grade glioma patients were included. The results showed that ganciclovir can improve 2-yeaer (RD = 0.179, 95% CI 0.012-0.346, P = 0.036) and 4-year survival rate (RD = 0.185, 95% CI 0.069-0.3, P = 0.002) and OS (OR 2.393, 95% CI 1.212-4.728, P = 0.012) compared with the control group. CONCLUSIONS This meta-analysis showed that ganciclovir significantly improved the prognosis of glioma patients. Therefore, we suggest that more cases of ganciclovir as a glioma treatment can be conducted, or a large clinical trial can be designed.
Collapse
Affiliation(s)
- Chun-Tao Chang
- Department of Biology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Hsing-Hui Chen
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Chun-Chao Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, South Dist., Taichung City, 402306, Taiwan
| | - Shao-Hsun Chang
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Nai-Wan Hsiao
- Department of Biology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan.
| |
Collapse
|
355
|
Liu Z, Wang S, Yu K, Chen K, Zhao L, Zhang J, Dai K, Zhao P. The promoting effect and mechanism of MAD2L2 on stemness maintenance and malignant progression in glioma. J Transl Med 2023; 21:863. [PMID: 38017538 PMCID: PMC10685699 DOI: 10.1186/s12967-023-04740-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Glioblastoma, the most common primary malignant tumor of the brain, is associated with poor prognosis. Glioblastoma cells exhibit high proliferative and invasive properties, and glioblastoma stem cells (GSCs) have been shown to play a crucial role in the malignant behavior of glioblastoma cells. This study aims to investigate the molecular mechanisms involved in GSCs maintenance and malignant progression. METHODS Bioinformatics analysis was performed based on data from public databases to explore the expression profile of Mitotic arrest deficient 2 like 2 (MAD2L2) and its potential function in glioma. The impact of MAD2L2 on glioblastoma cell behaviors was assessed through cell viability assays (CCK8), colony formation assays, 5-Ethynyl-2'-deoxyuridine (EDU) incorporation assays, scratch assays, and transwell migration/invasion assays. The findings from in vitro experiments were further validated in vivo using xenograft tumor model. GSCs were isolated from the U87 and LN229 cell lines through flow cytometry and the stemness characteristics were verified by immunofluorescence staining. The sphere-forming ability of GSCs was examined using the stem cell sphere formation assay. Bioinformatics methods were conducted to identified the potential downstream target genes of MAD2L2, followed by in vitro experimental validation. Furthermore, potential upstream transcription factors that regulate MAD2L2 expression were confirmed through chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS The MAD2L2 exhibited high expression in glioblastoma samples and showed significant correlation with patient prognosis. In vitro and in vivo experiments confirmed that silencing of MAD2L2 led to decreased proliferation, invasion, and migration capabilities of glioblastoma cells, while decreasing stemness characteristics of glioblastoma stem cells. Conversely, overexpression of MAD2L2 enhanced these malignant behaviors. Further investigation revealed that MYC proto-oncogene (c-MYC) mediated the functional role of MAD2L2 in glioblastoma, which was further validated through a rescue experiment. Moreover, using dual-luciferase reporter gene assays and ChIP assays determined that the upstream transcription factor E2F-1 regulated the expression of MAD2L2. CONCLUSION Our study elucidated the role of MAD2L2 in maintaining glioblastoma stemness and promoting malignant behaviors through the regulation of c-MYC, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Songtao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
- Putuo People's Hospital, Tongji University, Shanghai, 200060, China
| | - Kuo Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Kaile Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Liang Zhao
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Kexiang Dai
- Department of Neurosugery, Emergency General Hospital, Beijing, 100028, China
| | - Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
356
|
Li YL, Yan LJ, Chen HX, Ruan BK, Dao P, Du ZY, Dong CZ, Meunier B. Design, synthesis and evaluation of novel pyrimidinylaminothiophene derivatives as FGFR1 inhibitors against human glioblastoma multiforme. Eur J Med Chem 2023; 260:115764. [PMID: 37651879 DOI: 10.1016/j.ejmech.2023.115764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Vascular endothelial growth factor receptors (VEGFRs) have emerged as the most promising anti-angiogenic therapeutic targets for the treatment of recurrent glioblastomas (GBM). However, anti-VEGF treatments led to the high proportion of non-responder patients or non lasting clinical response and the tumor progression to the greater malignant stage. To overcome these problems, there is an utmost need to develop innovative anti-angiogenic therapies. In this study, we report the development of a series of new FGFR1 inhibitors. Among them, compound 4i was able to potently inhibit FGFR1 kinase activities both in vitro and in vivo. This compound displayed strong anti-angiogenic activity in HUVECs and anti-tumor growth and anti-invasion effects in U-87MG cell line. These results emphasize the importance of FGFR1-mediated signaling pathways in GBM and reveal that pharmacological inhibition of FGFR1 can enhance the anti-tumoral, anti-angiogenic and anti-metastatic efficiency against GBM. These data support targeting of FGFR1 as a novel anti-angiogenic strategy and highlight the potential of compound 4i as a promising anti-angiogenic and anti-metastatic candidate for GBM therapy.
Collapse
Affiliation(s)
- Yong-Liang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Long-Jia Yan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Hui-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270, Paris, Cedex 06, France.
| | - Ban-Kang Ruan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Pascal Dao
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, France
| | - Zhi-Yun Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China.
| | - Chang-Zhi Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Université Paris Cité, ITODYS, UMR 7086 CNRS, 75013, Paris, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse, Cedex, France
| |
Collapse
|
357
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
358
|
Suero Molina E, Black D, Walke A, Azemi G, D’Alessandro F, König S, Stummer W. Unraveling the blue shift in porphyrin fluorescence in glioma: The 620 nm peak and its potential significance in tumor biology. Front Neurosci 2023; 17:1261679. [PMID: 38027504 PMCID: PMC10657867 DOI: 10.3389/fnins.2023.1261679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
In glioma surgery, the low-density infiltration zone of tumors is difficult to detect by any means. While, for instance, 5-aminolevulinic acid (5-ALA)-induced fluorescence is a well-established surgical procedure for maximizing resection of malignant gliomas, a cell density in tumor tissue of 20-30% is needed to observe visual fluorescence. Hyperspectral imaging is a powerful technique for the optical characterization of brain tissue, which accommodates the complex spectral properties of gliomas. Thereby, knowledge about the signal source is essential to generate specific separation (unmixing) procedures for the different spectral characteristics of analytes and estimate compound abundances. It was stated that protoporphyrin IX (PpIX) fluorescence consists mainly of emission peaks at 634 nm (PpIX634) and 620 nm (PpIX620). However, other members of the substance group of porphyrins fluoresce similarly to PpIX due to their common tetrapyrrole core structure. While the PpIX634 signal has reliably been assigned to PpIX, it has not yet been analyzed if PpIX620 might result from a different porphyrin rather than being a second photo state of PpIX. We thus reviewed more than 200,000 spectra from various tumors measured in almost 600 biopsies of 130 patients. Insufficient consideration of autofluorescence led to artificial inflation of the PpIX620 peak in the past. Recently, five basis spectra (PpIX634, PpIX620, flavin, lipofuscin, and NADH) were described and incorporated into the analysis algorithm, which allowed more accurate unmixing of spectral abundances. We used the improved algorithm to investigate the PpIX620 signal more precisely and investigated coproporphyrin III (CpIII) fluorescence phantoms for spectral unmixing. Our findings show that the PpIX634 peak was the primary source of the 5-ALA-induced fluorescence. CpIII had a similar spectral characteristic to PpIX620. The supplementation of 5-ALA may trigger the increased production of porphyrins other than PpIX within the heme biosynthesis pathway, including that of CpIII. It is essential to correctly separate autofluorescence from the main PpIX634 peak to analyze the fluorescence signal. This article highlights the need for a comprehensive understanding of the spectral complexity in gliomas and suggests less significance of the 620 nm fluorescence peak for PpIX analysis and visualization.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David Black
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fabio D’Alessandro
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
359
|
Yang Y, Wang F, Teng H, Zhang C, Zhang Y, Chen P, Li Q, Kan X, Chen Z, Wang Z, Yu Y. Integrative analysis of multi-omics data reveals a pseudouridine-related lncRNA signature for prediction of glioma prognosis and chemoradiotherapy sensitivity. Comput Biol Med 2023; 166:107428. [PMID: 37748218 DOI: 10.1016/j.compbiomed.2023.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Glioblastoma is the most common type of glioma with a high incidence and poor prognosis, and effective medical treatment remains challenging. Pseudouridine (Ψ) is the first post-transcriptional modification discovered and one of the most abundant modifications to RNA. However, the prognostic value of Ψ-related lncRNAs (ΨrLs) for glioma patients has never been systematically evaluated. This study aims to construct a risk model based on ΨrLs signature and to validate the predictive efficiency of the model. METHOD Transcriptomic data, genomic data, and relevant clinical data of glioma patients were extracted from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). ΨrLs with significant correlation with Ψ-related genes were identified, and univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression were used to further select biomarkers and construct a ΨrLs signature risk model. Then, the expression of lncRNAs of ΨrLs signature in multiple glioma cell lines was detected by qPCR. Further, ROC analysis, stratification analysis, correlation analysis, survival analysis, nomogram, enrichment analysis, immune infiltration analysis, chemoradiotherapy sensitivity analysis, somatic mutation, and recurrent copy number variation (CNV) analysis were used to validate the predictive efficiency of ΨrLs signature in TCGA and CGGA datasets. RESULTS A four-lncRNA ΨrLs signature (DNAJC27-AS1, GDNF-AS1, ZBTB20-AS4, and DNMBP-AS1) risk model was constructed. By ROC analysis, stratified analysis, correlation analysis, survival analysis, and nomogram, the signature showed satisfactory predictive efficiency. Functional enrichment analysis revealed the differences in immune-related biological processes between high- and low-risk groups. Immune infiltration analysis showed that the high-risk group had lower tumor purity and higher stromal, immune and ESTIMATE scores. Mitoxantrone was identified as effective drug for low-risk group of glioma patients. Key genes in glioma development, including IDH1, EGFR, PTEN, etc., were differentially mutated between risk groups. The main recurrent CNVs in low-risk groups were 19q13.42 deletion and 7q34 amplification; 10q23.31 deletion and 12q14.1 in the high-risk group. CONCLUSIONS Our study identified a four-lncRNA ΨrLs signature that effectively predicts the prognosis of glioma patients and may serve as a diagnostic tool. Risk scores of glioma patients generated by the signature is associated with immune-related biological processes and chemoradiotherapy sensitivity. These findings may inform the development of more targeted and effective therapies for glioma patients.
Collapse
Affiliation(s)
- Yanbo Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215400, China; Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215127, China.
| | - Haiying Teng
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215400, China.
| | - Chuanpeng Zhang
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China.
| | - Pengyu Chen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| | - Quan Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215400, China; Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215127, China.
| | - Xiuji Kan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215400, China; Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215127, China.
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215400, China.
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215400, China.
| | - Yanbing Yu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
360
|
Chen X, Zhao Y, Huang Y, Zhu K, Zeng F, Zhao J, Zhang H, Zhu X, Kettenmann H, Xiang X. TREM2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages. Glia 2023; 71:2679-2695. [PMID: 37641212 DOI: 10.1002/glia.24456] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.
Collapse
Affiliation(s)
- Xuezhen Chen
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kaichuan Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhou Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xianyuan Xiang
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
361
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
362
|
Bartolo M, Intiso D, Zucchella C. Neurorehabilitation in brain tumours: evidences and suggestions for spreading of knowledge and research implementation. Curr Opin Oncol 2023; 35:543-549. [PMID: 37820089 DOI: 10.1097/cco.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW The last few decades have seen an increase in life expectancy in brain tumour patients; however, many patients report sensory-motor and cognitive disabilities due to the tumour itself, but also to the effect of anticancer treatments (surgery, radiotherapy, chemotherapy), supportive treatments, as well as individual patient factors. This review outlines the principles on which to base neurorehabilitation treatments, with the aim of stimulating an early rehabilitative management, in order to reduce disability and functional limitation and improve the quality of life of the persons affected by brain tumour. RECENT FINDINGS Although not definitive, evidences suggest that an early neurorehabilitative evaluation, performed with a multidisciplinary approach, may identify the different functional impairments that can affect people with brain tumour. Furthermore, identifying and classifying the person's level of functioning is useful for designing achievable recovery goals, through the implementation of tailored multidisciplinary rehabilitation programs. The involvement of different professional figures allows to treat all the components (physical, cognitive, psychological and participation) of the person, and to redesign one's life project, lastly improving the quality of life. SUMMARY Overall, the evidences suggest a critical need for the development of this clinical area by spreading the concept of rehabilitation among neuro-oncologists and producing high quality research.
Collapse
Affiliation(s)
- Michelangelo Bartolo
- Department of Rehabilitation, Neurorehabilitation Unit, HABILITA Zingonia, Ciserano (BG)
| | - Domenico Intiso
- Unit of Neurorehabilitation and Rehabilitation Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG
| | - Chiara Zucchella
- Neurology Unit, Department of Neurosciences, Verona University Hospital, Verona, Italy
| |
Collapse
|
363
|
Yang Y, Hu F, Wu S, Huang Z, Wei K, Ma Y, Ou-Yang Q. Blood-based biomarkers: diagnostic value in brain tumors (focus on gliomas). Front Neurol 2023; 14:1297835. [PMID: 37936915 PMCID: PMC10626008 DOI: 10.3389/fneur.2023.1297835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Background Brain tumors, especially gliomas, are known for high lethality. It is currently understood that the correlations of tumors with coagulation and inflammation have been gradually revealed. Objective This study aimed to explore the potential value of several reported peripheral blood parameters as comprehensively as possible, with preoperative diagnosis and identification of brain tumors (focus on gliomas). Methods Patients with central nervous system tumors (craniopharyngioma, ependymoma, spinal meningioma, acoustic neuroma, brain metastases, meningioma, and glioma) or primary trigeminal neuralgia admitted to our hospital were retrospectively analyzed. The results of the routine coagulation factor test, serum albumin test, and blood cell test in peripheral blood were recorded for each group of patients on admission. Neutrophil-lymphocyte ratio (NLR), derived NLR (dNLR), platelet-lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), prognostic nutritional index (PNI), the systemic immune-inflammation index (SII), pan-immune-inflammation value (PIV), and their pairings were calculated. Their ability to identify brain tumors and their correlation with glioma grade were analyzed. Results A total of 698 patients were included in this retrospective case-control study. Glioma patients had higher NLR, SII, and PIV but lower LMR. The NLR in the brain metastasis group was lower than that in the control, meningioma, and acoustic neuroma groups, but the SII and PIV were higher than those in the ependymoma group. Fibrinogen, white blood cell count, neutrophil count, NLR, SII, and PIV in the GBM group were higher than those in the control group. In all comparisons, NLR and NLR + dNLR showed the greatest accuracy, with areas under the curve (AUCs) of 0.7490 (0.6482-0.8498) and 0.7481 (0.6457-0.8505), respectively. PIV, dNLR + PIV, and LMR + PIV ranked second, with AUCs of 0.7200 (0.6551-0.7849), 0.7200 (0.6526-0.7874), 0.7204 (0.6530-0.7878) and 0.7206 (0.6536-0.7875), respectively. Conclusion NLR, PIV, and their combinations show high sensitivity and specificity in the diagnosis of brain tumors, especially gliomas. Overall, our results provide evidence for these convenient and reliable peripheral blood markers.
Collapse
Affiliation(s)
- Yuting Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fei Hu
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Song Wu
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhangliang Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kun Wei
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yuan Ma
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qing Ou-Yang
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
364
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
365
|
Zhu L, Wang X, Ding M, Yu N, Zhang Y, Wu H, Zhang Q, Liu J, Li J. Prodrug-loaded semiconducting polymer hydrogels for deep-tissue sono-immunotherapy of orthotopic glioblastoma. Biomater Sci 2023; 11:6823-6833. [PMID: 37623749 DOI: 10.1039/d3bm00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Although immunotherapy has achieved great success in the treatment of a variety of tumors, its efficacy for glioblastoma (GBM) is still limited. Both the immunosuppressive tumor microenvironment (TME) and poor penetration of immunotherapeutic agents into tumors contributed to the poor anti-glioma immunity. Herein, we develop an injectable prodrug-loaded hydrogel delivery system with sono-activatable properties for sonodynamic therapy (SDT)-triggered immunomodulation for GBM treatment. The prodrug alginate hydrogels (APN), which contain semiconducting polymer nanoparticles (SPNs) and the NLG919 prodrug linked by singlet oxygen (1O2)-cleavable linkers, are in situ formed via coordination of alginate solution with Ca2+ in the TME. SPNs serve as sonosensitizers to produce 1O2 upon ultrasound (US) irradiation for SDT. The generated 1O2 not only induce immunogenic cell death, but also break 1O2-cleavable linkers to precisely activate the NLG919 prodrug. Antitumor immunity is significantly amplified due to the reversal of immunosuppression mediated by indolamine 2,3-dioxygenase-dependent tryptophan metabolism. This smart prodrug hydrogel platform potently inhibits tumor growth in orthotopic glioma-bearing mice. Collectively, this work provides a sono-activatable hydrogel platform for precise sono-immunotherapy against GBM.
Collapse
Affiliation(s)
- Liyun Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Jiansheng Liu
- Department of Neurology, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200032, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
366
|
Li Z, Wang B, Liang H, Li Y, Zhang Z, Han L. A three-stage eccDNA based molecular profiling significantly improves the identification, prognosis assessment and recurrence prediction accuracy in patients with glioma. Cancer Lett 2023; 574:216369. [PMID: 37640198 DOI: 10.1016/j.canlet.2023.216369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) progression is influenced by intratumoral heterogeneity. Emerging evidence has emphasized the pivotal role of extrachromosomal circular DNA (eccDNA) in accelerating tumor heterogeneity, particularly in GBM. However, the eccDNA landscape of GBM has not yet been elucidated. In this study, we first identified the eccDNA profiles in GBM and adjacent tissues using circle- and RNA-sequencing data from the same samples. A three-stage model was established based on eccDNA-carried genes that exhibited consistent upregulation and downregulation trends at the mRNA level. Combinations of machine learning algorithms and stacked ensemble models were used to improve the performance and robustness of the three-stage model. In stage 1, a total of 113 combinations of machine learning algorithms were constructed and validated in multiple external cohorts to accurately distinguish between low-grade glioma (LGG) and GBM in patients with glioma. The model with the highest area under the curve (AUC) across all cohorts was selected for interpretability analysis. In stage 2, a total of 101 combinations of machine learning algorithms were established and validated for prognostic prediction in patients with glioma. This prognostic model performed well in multiple glioma cohorts. Recurrent GBM is invariably associated with aggressive and refractory disease. Therefore, accurate prediction of recurrence risk is crucial for developing individualized treatment strategies, monitoring patient status, and improving clinical management. In stage 3, a large-scale GBM cohort (including primary and recurrent GBM samples) was used to fit the GBM recurrence prediction model. Multiple machine learning and stacked ensemble models were fitted to select the model with the best performance. Finally, a web tool was developed to facilitate the clinical application of the three-stage model.
Collapse
Affiliation(s)
- Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 480082, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
367
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
368
|
Wang HY, Xie Y, Du H, Luo B, Li Z. High LYRM4-AS1 predicts poor prognosis in patients with glioma and correlates with immune infiltration. PeerJ 2023; 11:e16104. [PMID: 37810780 PMCID: PMC10557942 DOI: 10.7717/peerj.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Background Many researches proved that non-coding RNAs are important in glioma development. We screened the differentially expressed genes through The Cancer Genome Atlas (TCGA) database and identified the molecule LYRM4-AS1 associated with prognosis. As a lncRNA, the expression level and role of LYRM4-AS1 in glioma are inconclusive. Therefore, we attempted to assess the clinical significance, expression and related mechanisms of LYRM4-AS1 in glioma by employing cell experiments and an integrative in silico methodology. Methods RNA-seq data were obtained from UCSC XENA and TCGA datasets. The Gene Expression Omnibus (GEO) database was used to download glioma-related expression profile data. The LYRM4-AS1 expression level was evaluated. Survival curves were constructed by the Kaplan-Meier method. Cox regression analysis was used to analyze independent variables. Patients were divided into high and low expression group base on the median LYRM4-AS1 expression value in glioma tissues. The DESeq2 R package was used to identify differentially expressed genes (DEGs) between two different expression LYRM4-AS1 groups. Gene set enrichment analysis (GSEA) was conducted. Next, the single-sample Gene Set Enrichment Analysis (ssGSEA) was done to quantify the immune infiltration of immune cells in glioma tissues. Gene expression profiles for glioma tumor tissues were used to quantify the relative enrichment score for each immune cell. Spearman correlation analysis was used to analyze the correlation between LYRM4-AS1 and biomarkers of immune cells as well as immune checkpoints in glioma. Finally, assays for cell apoptosis, cell viability and wound healing were conducted to evaluate the function on U87 MG and U251 cells after knocking down LYRM4-AS1. Results We found that LYRM4-AS1 was upregulated and related to the grade and malignancy of glioma. Survival analyses showed that high expression LYRM4-AS1 patients had poor clinical outcomes (P < 0.01). Cox regression analyses demonstrated that LYRM4-AS1 was an independent risk factor for overall survival (OS) in glioma (HR: 274 1.836; CI [1.278-2.639]; P = 0.001). Enrichment and immune infiltration analysis showed interferon signaling and cytokine-cytokine receptor interaction enriched in the LYRM4-AS1 high-expression phenotype, and LYRM4-AS1 showed significantly positively related to immune infiltration as well as immune checkpoints (P < 0.01). The knockdown of LYRM4-AS1 in U87 MG and U251 cells can inhibit migration and proliferation of cells (P < 0.05). Conclusions These findings indicated that the increased LYRM4-AS1 may be useful for the diagnosis and prognosis of glioma and might participate in the immune infiltration.
Collapse
Affiliation(s)
- Hai yue Wang
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Ying Xie
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Hongzhen Du
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Bin Luo
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Zengning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| |
Collapse
|
369
|
Qiu J, Li Q, Li J, Zhou F, Sang P, Xia Z, Wang W, Wang L, Yu Y, Jiang J. Complementary roles of EP2 and EP4 receptors in malignant glioma. Br J Pharmacol 2023; 180:2623-2640. [PMID: 37232020 PMCID: PMC10524591 DOI: 10.1111/bph.16148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM) is the most aggressive brain tumour in the central nervous system, but the current treatment is very limited and unsatisfactory. PGE2 -initiated cAMP signalling via EP2 and EP4 receptors is involved in the tumourigenesis of multiple cancer types. However, whether or how EP2 and EP4 receptors contribute to GBM growth largely remains elusive. EXPERIMENTAL APPROACH We performed comprehensive data analysis of gene expression in human GBM samples and determined their expression correlations through multiple bioinformatics approaches. A time-resolved fluorescence energy transfer (TR-FRET) assay was utilized to characterize PGE2 -mediated cAMP signalling via EP2 and EP4 receptors in human glioblastoma cells. Using recently reported potent and selective small-molecule antagonists, we determined the effects of inhibition of EP2 and EP4 receptors on GBM growth in subcutaneous and intracranial tumour models. KEY RESULTS The expression of both EP2 and EP4 receptors was upregulated and highly correlated with a variety of tumour-promoting cytokines, chemokines, and growth factors in human gliomas. Further, they were heterogeneously expressed in human GBM cells, where they compensated for each other to mediate PGE2 -initiated cAMP signalling and to promote colony formation, cell invasion and migration. Inhibition of EP2 and EP4 receptors revealed that these receptors might mediate GBM growth, angiogenesis, and immune evasion in a compensatory manner. CONCLUSION AND IMPLICATIONS The compensatory roles of EP2 and EP4 receptors in GBM development and growth suggest that concurrently targeting these two PGE2 receptors might represent a more effective strategy than inhibiting either alone for GBM treatment.
Collapse
Affiliation(s)
- Jiange Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Junqi Li
- Medical Research Center, Institute of Neuroscience, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Fengmei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Peng Sang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zhongkun Xia
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
370
|
Chen H, Ji J, Zhang L, Chen T, Zhang Y, Zhang F, Wang J, Ke Y. Inflammatory responsive neutrophil-like membrane-based drug delivery system for post-surgical glioblastoma therapy. J Control Release 2023; 362:479-488. [PMID: 37579976 DOI: 10.1016/j.jconrel.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Surgical resection of glioblastoma (GBM) causes brain inflammation that activates and recruits neutrophils (NEs) to residual GBM tissues. NE-based drug delivery using inflammatory chemotaxis is promising for the post-surgical treatment of residual GBM, but its clinical application is limited by the short life span of NEs and lack of in vitro propagation methods. HL60 cells are a type of infinitely multiplying tumor cells that can be induced to differentiate into NE-like cells. We developed a novel NE-like membrane system (NM-PD) by coating NE-like membranes on the surface of poly (lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG)-based doxorubicin (DOX)-loaded core (PLGA-PEG-DOX, PD) for post-surgical residual GBM treatment. Cell adhesion proteins were detected on NE-like membranes and endowed NM-PDs with inflammatory chemotaxis similar to mature NEs. The resulting NM-PD shows excellent inflamed in vitro blood-brain barrier (BBB) permeability and anti-proliferative effects on GBM cells. In our intracranial GBM resection model, NM-PD exhibited superior inflammatory chemotaxis and targeted residual GBM cells, thus remarkably improving antitumor capability and prolonging the survival time of the mice. These data suggest that NM-PD, which has sufficient sources and is easy to prepare, can efficiently suppress post-surgical residual GBM and holds potential for clinical transformation in GBM post-surgical adjuvant therapy.
Collapse
Affiliation(s)
- Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jingsen Ji
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fabing Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
371
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
372
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
373
|
Zhang L, Bordey A. Advances in glioma models using in vivo electroporation to highjack neurodevelopmental processes. Biochim Biophys Acta Rev Cancer 2023; 1878:188951. [PMID: 37433417 DOI: 10.1016/j.bbcan.2023.188951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Glioma is the most prevalent type of neurological malignancies. Despite decades of efforts in neurosurgery, chemotherapy and radiation therapy, glioma remains one of the most treatment-resistant brain tumors with unfavorable outcomes. Recent progresses in genomic and epigenetic profiling have revealed new concepts of genetic events involved in the etiology of gliomas in humans, meanwhile, revolutionary technologies in gene editing and delivery allows to code these genetic "events" in animals to genetically engineer glioma models. This approach models the initiation and progression of gliomas in a natural microenvironment with an intact immune system and facilitates probing therapeutic strategies. In this review, we focus on recent advances in in vivo electroporation-based glioma modeling and outline the established genetically engineered glioma models (GEGMs).
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery, Changde hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China; Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA.
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| |
Collapse
|
374
|
Street JS, Lignani G. A Salt in the Buffer Zone: Potassium Dysregulation Drives Glioma Growth? Epilepsy Curr 2023; 23:309-311. [PMID: 37901777 PMCID: PMC10601028 DOI: 10.1177/15357597231193318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Glioma Epileptiform Activity and Progression Are Driven by IGSF3-Mediated Potassium Dysregulation Curry RN, Aiba I, Meyer J, Lozzi B, Ko Y, McDonald MF, Rosenbaum A, Cervantes A, Huang-Hobbs E, Cocito C, Greenfield JP, Jalali A, Gavvala J, Mohila C, Harmanci AS, Noebels J, Rao G, Deneen B. Neuron. 2023;111(5): 682-695. doi:10.1016/j.neuron.2023.01.013 Seizures are a frequent pathophysiological feature of malignant glioma. Recent studies implicate peritumoral synaptic dysregulation as a driver of brain hyperactivity and tumor progression; however, the molecular mechanisms that govern these phenomena remain elusive. Using scRNA-seq and intraoperative patient ECoG recordings, we show that tumors from seizure patients are enriched for gene signatures regulating synapse formation. Employing a human-to-mouse in vivo functionalization pipeline to screen these genes, we identify IGSF3 as a mediator of glioma progression and dysregulated neural circuitry that manifests as spreading depolarization (SD). Mechanistically, we discover that IGSF3 interacts with Kir4.1 to suppress potassium buffering and found that seizure patients exhibit reduced expression of potassium handlers in proliferating tumor cells. In vivo imaging reveals that dysregulated synaptic activity emanates from the tumor-neuron interface, which we confirm in patients. Our studies reveal that tumor progression and seizures are enabled by ion dyshomeostasis and identify SD as a driver of disease.
Collapse
Affiliation(s)
- James S Street
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology
| |
Collapse
|
375
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
376
|
Chen HC, Chang WC, Chuang JY, Chang KY, Liou JP, Hsu TI. The complex role of eicosanoids in the brain: Implications for brain tumor development and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188957. [PMID: 37488051 DOI: 10.1016/j.bbcan.2023.188957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Eicosanoids are a family of bioactive lipids that play diverse roles in the normal physiology of the brain, including neuronal signaling, synaptic plasticity, and regulation of cerebral blood flow. In the brain, eicosanoids are primarily derived from arachidonic acid, which is released from membrane phospholipids in response to various stimuli. Prostaglandins (PGs) and leukotrienes (LTs) are the major classes of eicosanoids produced in the brain, and they act through specific receptors to modulate various physiological and pathological processes. Dysregulation of eicosanoids has been implicated in the development and progression of brain tumors, including glioblastoma (GBM), meningioma, and medulloblastoma. Eicosanoids have been shown to promote tumor cell proliferation, migration, invasion, angiogenesis, and resistance to therapy. Particularly, PGE2 promotes GBM cell survival and resistance to chemotherapy. Understanding the role of eicosanoids in brain tumors can inform the development of diagnostic and prognostic biomarkers, as well as therapeutic strategies that target eicosanoid pathways. Cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) inhibitors have been shown to reduce the growth and invasiveness of GBM cells. Moreover, eicosanoids have immunomodulatory effects that can impact the immune response to brain tumors. Understanding the role of eicosanoids in the immune response to brain tumors can inform the development of immunotherapy approaches for these tumors. Overall, the complex role of eicosanoids in the brain underscores the importance of further research to elucidate their functions in normal physiology and disease, and highlights the potential for developing novel therapeutic approaches that target eicosanoid pathways in brain tumors.
Collapse
Affiliation(s)
- Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chang Chang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jian-Ying Chuang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Jing-Ping Liou
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
377
|
Ren X, Chang C, Qi T, Yang P, Wang Y, Zhou X, Guan F, Li X. Clusterin Is a Prognostic Biomarker of Lower-Grade Gliomas and Is Associated with Immune Cell Infiltration. Int J Mol Sci 2023; 24:13413. [PMID: 37686218 PMCID: PMC10487477 DOI: 10.3390/ijms241713413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Dysregulation of clusterin (CLU) has been demonstrated in many cancers and has been proposed as a regulator of carcinogenesis. However, the roles of CLU in gliomas remain unclear. The expression of CLU was assessed using TIMER2.0, GEPIA2, and R package 4.2.1 software, leveraging data from TCGA and/or GTEx databases. Survival analysis and Cox regression were employed to investigate the prognostic significance of CLU. Immune infiltration was evaluated utilizing TIMER2.0, ESTIMATE, and CIBERSORT. The findings reveal the dysregulated expression of CLU in many cancers, with a marked increase observed in glioblastoma and lower-grade glioma (LGG). High CLU expression indicated worse survival outcomes and was an independent risk factor for the prognosis in LGG patients. CLU was involved in immune status as evidenced by its strong correlations with immune and stromal scores and the infiltration levels of multiple immune cells. Additionally, CLU was co-expressed with multiple immune-related genes, and high CLU expression was associated with the activation of immune-related pathways, such as binding to the antigen/immunoglobulin receptor and aiding the cytokine and cytokine receptor interaction. In conclusion, CLU appears to play crucial roles in tumor immunity within gliomas, highlighting its potential as a biomarker or target in glioma immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Ren
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Chao Chang
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Teng Qi
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Pengyu Yang
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Yuanbo Wang
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Xiaorui Zhou
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Xiang Li
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
- College of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| |
Collapse
|
378
|
Nejo T, Krishna S, Jimenez C, Yamamichi A, Young JS, Lakshmanachetty S, Chen T, Phyu SSS, Ogino H, Watchmaker P, Diebold D, Choudhury A, Daniel AGS, Raleigh DR, Hervey-Jumper SL, Okada H. Glioma-neuronal circuit remodeling induces regional immunosuppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.548295. [PMID: 37577659 PMCID: PMC10418167 DOI: 10.1101/2023.08.04.548295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Neuronal activity-driven mechanisms impact glioblastoma cell proliferation and invasion 1-7 , and glioblastoma remodels neuronal circuits 8,9 . Distinct intratumoral regions maintain functional connectivity via a subpopulation of malignant cells that mediate tumor-intrinsic neuronal connectivity and synaptogenesis through their transcriptional programs 8 . However, the effects of tumor-intrinsic neuronal activity on other cells, such as immune cells, remain unknown. Here we show that regions within glioblastomas with elevated connectivity are characterized by regional immunosuppression. This was accompanied by different cell compositions and inflammatory status of tumor-associated macrophages (TAMs) in the tumor microenvironment. In preclinical intracerebral syngeneic glioblastoma models, CRISPR/Cas9 gene knockout of Thrombospondin-1 (TSP-1/ Thbs1 ), a synaptogenic factor critical for glioma-induced neuronal circuit remodeling, in glioblastoma cells suppressed synaptogenesis and glutamatergic neuronal hyperexcitability, while simultaneously restoring antigen-presentation and pro-inflammatory responses. Moreover, TSP-1 knockout prolonged survival of immunocompetent mice harboring intracerebral syngeneic glioblastoma, but not of immunocompromised mice, and promoted infiltrations of pro-inflammatory TAMs and CD8+ T-cells in the tumor microenvironment. Notably, pharmacological inhibition of glutamatergic excitatory signals redirected tumor-associated macrophages toward a less immunosuppressive phenotype, resulting in prolonged survival. Altogether, our results demonstrate previously unrecognized immunosuppression mechanisms resulting from glioma-neuronal circuit remodeling and suggest future strategies targeting glioma-neuron-immune crosstalk may open up new avenues for immunotherapy.
Collapse
|
379
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
380
|
Wang AP. A Review of Glioblastoma and Other Primary Brain Malignancies. JAMA 2023; 330:188-189. [PMID: 37432436 DOI: 10.1001/jama.2023.8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Alick P Wang
- Division of Neurosurgery, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
381
|
Zhu Q, Zhou Y, Wang H, Cao T, Wang X, Liu R, Wu H, Lin B. Fucoxanthin triggers ferroptosis in glioblastoma cells by stabilizing the transferrin receptor. Med Oncol 2023; 40:230. [PMID: 37421513 DOI: 10.1007/s12032-023-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Glioblastoma (GBM) is the most common and lethal tumor in the world, possessing high stemness, aggressiveness and resistance. Fucoxanthin is a bio-active compound extracted from seaweeds that shows anti-tumor effects to different types of tumors. Here, we show that fucoxanthin inhibits the survival of GBM cells by triggering ferroptosis, a ferric ion and reactive oxygen species (ROS) dependent cell death and ferrostatin-1 could block it. Furthermore, we identified that fucoxanthin targets the transferrin receptor (TFRC). Fucoxanthin is able to block degradation and maintain high levels of TFRC, and similarly inhibits the growth of GBM xenografts in vivo, downregulates the expression of proliferating cell nuclear antigen (PCNA) and upregulates the levels of TFRC in tumor tissues. In conclusion, we demonstrate that fucoxanthin has a significant anti-GBM effect by triggering ferroptosis.
Collapse
Affiliation(s)
- Qin Zhu
- Experiment Center of Science and Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqing Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haixia Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinzhi Wang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Liu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Binyan Lin
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
382
|
Zhu H, Song X, Pan Y, Li M, Chen L, Xiao P, Du R, Dong Z, Yang CG. Design, synthesis, and biological evaluation of novel spirocyclic compounds as potential anti-glioblastoma agents. Eur J Med Chem 2023; 258:115595. [PMID: 37385078 DOI: 10.1016/j.ejmech.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with extremely limited clinical treatment options. Because of the blood-brain barrier (BBB), it is difficult for anti-GBM drug candidates to enter the brain to exert their therapeutic effects. The spirocyclic skeleton structure exhibits good lipophilicity and permeability, enabling small-molecule compounds to cross the BBB. Herein, we designed and synthesized novel 3-oxetanone-derived spirocyclic compounds containing a spiro[3.4]octane ring and determined their structure-activity relationship for antiproliferation in GBM cells. Among these, the chalcone-spirocycle hybrid 10m/ZS44 exhibited high antiproliferative activity in U251 cells and permeability in vitro. Furthermore, 10m/ZS44 activated the SIRT1/p53-mediated apoptosis pathway to inhibit proliferation in U251 cells, whereas it minimally impaired other cell-death pathways, such as pyroptosis or necroptosis. In a mouse xenograft model, 10m/ZS44 exhibited a substantial inhibitory effect on GBM tumor growth without showing obvious toxicity. Overall, 10m/ZS44 represents a promising spirocyclic compound for the treatment of GBM.
Collapse
Affiliation(s)
- Heping Zhu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihui Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
383
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
384
|
Dhungel L, Harris C, Romine L, Sarkaria J, Raucher D. Targeted c-Myc Inhibition and Systemic Temozolomide Therapy Extend Survival in Glioblastoma Xenografts. Bioengineering (Basel) 2023; 10:718. [PMID: 37370649 DOI: 10.3390/bioengineering10060718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma is a highly aggressive disease with poor patient outcomes despite current treatment options, which consist of surgery, radiation, and chemotherapy. However, these strategies present challenges such as resistance development, damage to healthy tissue, and complications due to the blood-brain barrier. There is therefore a critical need for new treatment modalities that can selectively target tumor cells, minimize resistance development, and improve patient survival. Temozolomide is the current standard chemotherapeutic agent for glioblastoma, yet its use is hindered by drug resistance and severe side effects. Combination therapy using multiple drugs acting synergistically to kill cancer cells and with multiple targets can provide increased efficacy at lower drug concentrations and reduce side effects. In our previous work, we designed a therapeutic peptide (Bac-ELP1-H1) targeting the c-myc oncogene and demonstrated its ability to reduce tumor size, delay neurological deficits, and improve survival in a rat glioblastoma model. In this study, we expanded our research to the U87 glioblastoma cell line and investigated the efficacy of Bac-ELP1-H1/hyperthermia treatment, as well as the combination treatment of temozolomide and Bac-ELP1-H1, in suppressing tumor growth and extending survival in athymic mice. Our experiments revealed that the combination treatment of Bac-ELP1-H1 and temozolomide acted synergistically to enhance survival in mice and was more effective in reducing tumor progression than the single components. Additionally, our study demonstrated the effectiveness of hyperthermia in facilitating the accumulation of the Bac-ELP1-H1 protein at the tumor site. Our findings suggest that the combination of targeted c-myc inhibitory biopolymer with systemic temozolomide therapy may represent a promising alternative treatment option for glioblastoma patients.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Cayla Harris
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Lauren Romine
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Jan Sarkaria
- Division of Radiation Oncology, Mayo Clinic and Foundation, 200 First Street, SW, Rochester, MN 55905, USA
| | - Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
385
|
Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules 2023; 28:4643. [PMID: 37375197 DOI: 10.3390/molecules28124643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 μM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yumei Li
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
386
|
Nakhle J, Khattar K, Özkan T, Boughlita A, Abba Moussa D, Darlix A, Lorcy F, Rigau V, Bauchet L, Gerbal-Chaloin S, Daujat-Chavanieu M, Bellvert F, Turchi L, Virolle T, Hugnot JP, Buisine N, Galloni M, Dardalhon V, Rodriguez AM, Vignais ML. Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring. CANCER RESEARCH COMMUNICATIONS 2023; 3:1041-1056. [PMID: 37377608 PMCID: PMC10266428 DOI: 10.1158/2767-9764.crc-23-0144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jean Nakhle
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institute of Molecular Genetics of Montpellier, University of Montpellier, CNRS, Montpellier, France
- RESTORE Research Center, University of Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Khattar Khattar
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Tülin Özkan
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Faculty of Medicine, Department of Medical Biology, University of Ankara, Ankara, Turkey
| | - Adel Boughlita
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Daouda Abba Moussa
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Amélie Darlix
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Frédérique Lorcy
- Department of Pathology and Oncobiology, Hôpital Gui de Chauliac, Montpellier, France
- The Center of the Biological Resource Center of University Hospital Center of Montpellier (BRC), Montpellier, France
| | - Valérie Rigau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Pathology and Oncobiology, Hôpital Gui de Chauliac, Montpellier, France
- The Center of the Biological Resource Center of University Hospital Center of Montpellier (BRC), Montpellier, France
| | - Luc Bauchet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Hopital Gui de Chauliac, Montpellier, France
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, University of Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Laurent Turchi
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM, “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Nice, France
| | - Thierry Virolle
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM, “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Nice, France
| | - Jean-Philippe Hugnot
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Mireille Galloni
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Valérie Dardalhon
- Institute of Molecular Genetics of Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Anne-Marie Rodriguez
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Marie-Luce Vignais
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
387
|
Altendorfer-Kroath T, Asslaber M, Hummer J, Boulgaropoulos B, Prietl B, Pieber TR, Bernhart E, Birngruber T. Atraumatic Access to Human Glioblastoma in a Xenograft Animal Model by Cerebral Open Flow Microperfusion. J Neurosci Methods 2023; 393:109893. [PMID: 37217139 DOI: 10.1016/j.jneumeth.2023.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Orthotopic xenograft studies promote the development of targeted/personalized therapies to improve the still poor life expectancy of glioblastoma patients. NEW METHOD We implemented an atraumatic access to glioblastoma with cerebral Open Flow Microperfusion (cOFM) by implantation of xenograft cells in rat brain with intact blood brain barrier (BBB) and subsequent development of a xenograft glioblastoma at the interface between the cOFM probe and surrounding brain tissue. Human glioma U87MG cells were implanted at a well-defined position into immunodeficient Rowett nude rat´s brain via cOFM (cOFM group) and syringe (control group). Characteristics of the mature tumors from both groups were assessed. RESULTS For the first time xenograft cells were successfully introduced into rat brain with intact BBB using cOFM, and the tumor tissue developing around the cOFM probe was unaffected by the presence of the probe. Thereby an atraumatic access to the tumor was created. The success rate of glioblastoma development in the cOFM group was high (>70%). The mature cOFM-induced tumors (20-23 days after cell-implantation) resembled the syringe-induced ones and showed typical features of human glioblastoma. COMPARISON WITH EXISTING METHOD Examining xenograft tumor microenvironment with currently available methods inevitably causes trauma that could affect the reliability of obtained data. CONCLUSION This novel atraumatic access to human glioblastoma in rat brain provides the possibility to collect interstitial fluid from functional tumor tissue in vivo without trauma generation. Thereby, reliable data can be generated promoting drug research, biomarker identification, and enabling investigation of the BBB of an intact tumor. DATA AVAILABILITY STATEMENT Original data are available upon request from the corresponding author.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria.
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Joanna Hummer
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Barbara Prietl
- CBmed GmbH Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Thomas R Pieber
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; CBmed GmbH Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Eva Bernhart
- Gottfried Schatz Research Center for Cellular Signal Transduction, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Thomas Birngruber
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
388
|
Olivier T, Migliorini D. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma: What happened to the evidence? Rev Neurol (Paris) 2023; 179:502-505. [PMID: 37012085 DOI: 10.1016/j.neurol.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In patients with glioblastoma, the "DCVax-L" trial reported a survival benefit with the addition of autologous tumor lysate-loaded denditric cell vaccination to the standard-of-care (SoC) in patients with glioblastoma. The trial presented as a phase 3 externally controlled trial is showing an improvement in overall survival (OS) in patients receiving the vaccine therapy as compared to externally controlled patients, both in the newly diagnosed setting (median OS = 19.3 months versus 16.5 months; HR = 0.80; 98% CI, 0.00-0.94; P = 0.002) and in the recurrent setting (median OS = 13.2 months versus 7.8 months; HR = 0.58; 98% CI, 0.00-0.76; P < 0.001). Interestingly, the original endpoint, progression-free survival (PFS), was not improved by the experimental therapy. While we praise efforts to improve outcomes in a population representing a true unmet need, the trial's design, methods and report raise several issues undermining the ability to derive meaningful conclusion. These limitations are mainly driven by multiple changes occurring years after the trial ended. External controls were used in a trial originally randomizing patients, the primary endpoint was modified (OS instead of PFS), a new study population (recurrent glioblastoma) was added, and unplanned analyses were conducted, among several other changes. Additionally, due to inclusion criteria, the external controls likely selected patients with less favorable outcome as compared with patients enrolled in the trial, potentially biasing the reported survival benefit. In the absence of data sharing, these shortcomings will not be clarified. Dendritic cell vaccination remains a promising approach for GBM. It is therefore disappointing that due to key methodological limitations, the DCVax-L trial ultimately failed to provide sound conclusions about the potential efficacy of such approach for patients with glioblastoma.
Collapse
|
389
|
Wang J, Zhang H, Dang X, Rui W, Cheng H, Wang J, Zhang Y, Qiu T, Yao Z, Liu H, Pang H, Ren Y. Multi-b-value diffusion stretched-exponential model parameters correlate with MIB-1 and CD34 expression in Glioma patients, an intraoperative MR-navigated, biopsy-based histopathologic study. Front Oncol 2023; 13:1104610. [PMID: 37182187 PMCID: PMC10171458 DOI: 10.3389/fonc.2023.1104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Background To understand the pathological correlations of multi-b-value diffusion-weighted imaging (MDWI) stretched-exponential model (SEM) parameters of α and diffusion distribution index (DDC) in patients with glioma. SEM parameters, as promising biomarkers, played an important role in histologically grading gliomas. Methods Biopsy specimens were grouped as high-grade glioma (HGG) or low-grade glioma (LGG). MDWI-SEM parametric mapping of DDC1500, α1500 fitted by 15 b-values (0-1,500 sec/mm2)and DDC5000 and α5000 fitted by 22 b-values (0-5,000 sec/mm2) were matched with pathological samples (stained by MIB-1 and CD34) by coregistered localized biopsies, and all SEM parameters were correlated with these pathological indices pMIB-1(percentage of MIB-1 expression positive rate) and CD34-MVD (CD34 expression positive microvascular density for each specimen). The two-tailed Spearman's correlation was calculated for pathological indexes and SEM parameters, as well as WHO grades and SEM parameters. Results MDWI-derived α1500 negatively correlated with CD34-MVD in both LGG (6 specimens) and HGG (26 specimens) (r=-0.437, P =0.012). MDWI-derived DDC1500 and DDC5000 negatively correlated with MIB-1 expression in all glioma patients (P<0.05). WHO grades negatively correlated with α1500(r=-0.485; P=0.005) and α5000(r=-0.395; P=0.025). Conclusions SEM-derived DDC and α are significant in histologically grading gliomas, DDC may indicate the proliferative ability, and CD34 stained microvascular perfusion may be an important determinant of water diffusion inhomogeneity α in glioma.
Collapse
Affiliation(s)
- Junlong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Magnetic Resonance Research, General Electric Healthcare, Shanghai, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hanqiu Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| | - Haopeng Pang
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| |
Collapse
|