351
|
Hammes J, Bischof GN, Bohn KP, Onur Ö, Schneider A, Fliessbach K, Hönig MC, Jessen F, Neumaier B, Drzezga A, van Eimeren T. One-Stop Shop: 18F-Flortaucipir PET Differentiates Amyloid-Positive and -Negative Forms of Neurodegenerative Diseases. J Nucl Med 2020; 62:240-246. [PMID: 32620704 DOI: 10.2967/jnumed.120.244061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tau protein aggregations are a hallmark of amyloid-associated Alzheimer disease and some forms of non-amyloid-associated frontotemporal lobar degeneration. In recent years, several tracers for in vivo tau imaging have been under evaluation. This study investigated the ability of 18F-flortaucipir PET not only to assess tau positivity but also to differentiate between amyloid-positive and -negative forms of neurodegeneration on the basis of different 18F-flortaucipir PET signatures. Methods: The 18F-flortaucipir PET data of 35 patients with amyloid-positive neurodegeneration, 19 patients with amyloid-negative neurodegeneration, and 17 healthy controls were included in a data-driven scaled subprofile model (SSM)/principal-component analysis (PCA) identifying spatial covariance patterns. SSM/PCA pattern expression strengths were tested for their ability to predict amyloid status in a receiver-operating-characteristic analysis and validated with a leave-one-out approach. Results: Pattern expression strengths predicted amyloid status with a sensitivity of 0.94 and a specificity of 0.83. A support vector machine classification based on pattern expression strengths in 2 different SSM/PCA components yielded a prediction accuracy of 98%. Anatomically, prediction performance was driven by parietooccipital gray matter in amyloid-positive patients versus predominant white matter binding in amyloid-negative patients. Conclusion: SSM/PCA-derived binding patterns of 18F-flortaucipir differentiate between amyloid-positive and -negative neurodegenerative diseases with high accuracy. 18F-flortaucipir PET alone may convey additional information equivalent to that from amyloid PET. Together with a perfusion-weighted early-phase acquisition (18F-FDG PET-equivalent), a single scan potentially contains comprehensive information on amyloid (A), tau (T), and neurodegeneration (N) status as required by recent biomarker classification algorithms (A/T/N).
Collapse
Affiliation(s)
- Jochen Hammes
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany .,Radiologische Allianz, Hamburg, Germany
| | - Gérard N Bischof
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Karl P Bohn
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Department of Nuclear Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Özgür Onur
- Department of Neurology, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Merle C Hönig
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Psychiatry, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany; and
| | - Bernd Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany, and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Department of Neurology, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany
| |
Collapse
|
352
|
Matthews TE, Witek MA, Lund T, Vuust P, Penhune VB. The sensation of groove engages motor and reward networks. Neuroimage 2020; 214:116768. [DOI: 10.1016/j.neuroimage.2020.116768] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023] Open
|
353
|
Tambirajoo K, Furlanetti L, Hasegawa H, Raslan A, Gimeno H, Lin JP, Selway R, Ashkan K. Deep Brain Stimulation of the Internal Pallidum in Lesch-Nyhan Syndrome: Clinical Outcomes and Connectivity Analysis. Neuromodulation 2020; 24:380-391. [PMID: 32573906 DOI: 10.1111/ner.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lesch-Nyhan syndrome (LNS) is a rare genetic disorder characterized by a deficiency of hypoxanthine-guanine phosphoribosyltransferase enzyme. It manifests during infancy with compulsive self-mutilation behavior associated with disabling generalized dystonia and dyskinesia. Clinical management of these patients poses an enormous challenge for medical teams and carers. OBJECTIVES We report our experience with bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the management of this complex disorder. MATERIALS AND METHODS Preoperative and postoperative functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team, including imaging, neuropsychology, and neurophysiology evaluations were analyzed with regards to motor and behavioral control, goal achievement, and patient and caregivers' expectations. RESULTS Four male patients (mean age 13 years) underwent DBS implantation between 2011 and 2018. Three patients received double bilateral DBS electrodes within the posteroventral GPi and the anteromedial GPi, whereas one patient had bilateral electrodes placed in the posteroventral GPi only. Median follow-up was 47.5 months (range 22-98 months). Functional improvement was observed in all patients and discussed in relation to previous reports. Analysis of structural connectivity revealed significant correlation between the involvement of specific cortical regions and clinical outcome. CONCLUSION Combined bilateral stimulation of the anteromedial and posteroventral GPi may be considered as an option for managing refractory dystonia and self-harm behavior in LNS patients. A multidisciplinary team-based approach is essential for patient selection and management, to support children and families, to achieve functional improvement and alleviate the overall disease burden for patients and caregivers.
Collapse
Affiliation(s)
- Kantharuby Tambirajoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Ahmed Raslan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Hortensia Gimeno
- King's Health Partners Academic Health Sciences Centre, London, UK.,Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- King's Health Partners Academic Health Sciences Centre, London, UK.,Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| |
Collapse
|
354
|
Horn A, Wenzel G, Irmen F, Huebl J, Li N, Neumann WJ, Krause P, Bohner G, Scheel M, Kühn AA. Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease. Brain 2020; 142:3129-3143. [PMID: 31412106 DOI: 10.1093/brain/awz239] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/12/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroimaging has seen a paradigm shift away from a formal description of local activity patterns towards studying distributed brain networks. The recently defined framework of the 'human connectome' enables global analysis of parts of the brain and their interconnections. Deep brain stimulation (DBS) is an invasive therapy for patients with severe movement disorders aiming to retune abnormal brain network activity by local high frequency stimulation of the basal ganglia. Beyond clinical utility, DBS represents a powerful research platform to study functional connectomics and the modulation of distributed brain networks in the human brain. We acquired resting-state functional MRI in 20 patients with Parkinson's disease with subthalamic DBS switched on and off. An age-matched control cohort of 15 subjects was acquired from an open data repository. DBS lead placement in the subthalamic nucleus was localized using a state-of-the art pipeline that involved brain shift correction, multispectral image registration and use of a precise subcortical atlas. Based on a realistic 3D model of the electrode and surrounding anatomy, the amount of local impact of DBS was estimated using a finite element method approach. On a global level, average connectivity increases and decreases throughout the brain were estimated by contrasting on and off DBS scans on a voxel-wise graph comprising eight thousand nodes. Local impact of DBS on the motor subthalamic nucleus explained half the variance in global connectivity increases within the motor network (R = 0.711, P < 0.001). Moreover, local impact of DBS on the motor subthalamic nucleus could explain the degree to how much voxel-wise average brain connectivity normalized towards healthy controls (R = 0.713, P < 0.001). Finally, a network-based statistics analysis revealed that DBS attenuated specific couplings known to be pathological in Parkinson's disease. Namely, coupling between motor thalamus and motor cortex was increased while striatal coupling with cerebellum, external pallidum and subthalamic nucleus was decreased by DBS. Our results show that resting state functional MRI may be acquired in DBS on and off conditions on clinical MRI hardware and that data are useful to gain additional insight into how DBS modulates the functional connectome of the human brain. We demonstrate that effective DBS increases overall connectivity in the motor network, normalizes the network profile towards healthy controls and specifically strengthens thalamo-cortical connectivity while reducing striatal control over basal ganglia and cerebellar structures.
Collapse
Affiliation(s)
- Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Gregor Wenzel
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Friederike Irmen
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julius Huebl
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany.,Department of Neuroradiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Patricia Krause
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
355
|
Schmidt ME, Janssens L, Moechars D, Rombouts FJR, Timmers M, Barret O, Constantinescu CC, Madonia J, Russell DS, Sandiego CM, Kolb H. Clinical evaluation of [ 18F] JNJ-64326067, a novel candidate PET tracer for the detection of tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:3176-3185. [PMID: 32535652 PMCID: PMC7680304 DOI: 10.1007/s00259-020-04880-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The accumulation of misfolded tau is a common feature of several neurodegenerative disorders, with Alzheimer's disease (AD) being the most common. Earlier we identified JNJ-64326067, a novel isoquinoline derivative with high affinity and selectivity for tau aggregates from human AD brain. We report the dosimetry of [18F] JNJ-64326067 and results of a proof-of-concept study comparing subjects with probable Alzheimer's disease to age-matched healthy controls. METHODS [18F] JNJ-64326067 PET scans were acquired for 90 min and then from 120 to 180 min in 5 participants with [18F]-florbetapir PET amyloid positive probable AD (73 ± 9 years) and 5 [18F]-florbetapir PET amyloid negative healthy controls (71 ± 7 years). Whole-body [18F] JNJ-64326067 PET CT scans were acquired in six healthy subjects for 5.5 h in 3 scanning sessions. Brain PET scans were visually reviewed. Regional quantification included kinetic analysis of distribution volume ration (DVR) estimated by Logan graphical analysis over the entire scan and static analysis of SUVr in late frames. Both methods used ventral cerebellar cortex as a reference region. RESULTS One of the healthy controls had focal areas of PET signal in occipital and parietal cortex underlying the site of a gunshot injury as an adolescent; the other four healthy subjects had no tau brain signal. Four of the 5 AD participants had visually apparent retention of [18F] JNJ-64326067 in relevant cortical regions. One of the AD subjects was visually negative. Cortical signal in visually positive subjects approached steady state by 120 min. Temporal and frontal cortical SUVr/DVR values in visually positive AD subjects ranged from 1.21 to 3.09/1.2 to 2.18 and from 0.92 to 1.28/0.91 to 1.16 in healthy controls. Whole-body effective dose was estimated to be 0.0257 mSv/MBq for females and 0.0254 mSv/MBq for males. CONCLUSIONS [18F] JNJ-64326067 could be useful for detection and quantitation of tau aggregates.
Collapse
Affiliation(s)
- Mark E Schmidt
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Luc Janssens
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Diederik Moechars
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Maarten Timmers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Olivier Barret
- Invicro, a Konica Minolta company, New Haven, CT, USA.,Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, French Atomic Energy Commission, Fontenay-aux-roses, France
| | | | - Jennifer Madonia
- Invicro, a Konica Minolta company, New Haven, CT, USA.,Biohaven Pharmaceuticals, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
356
|
Maia PD, Pandya S, Freeze B, Torok J, Gupta A, Zeighami Y, Raj A. Origins of atrophy in Parkinson linked to early onset and local transcription patterns. Brain Commun 2020; 2:fcaa065. [PMID: 32954322 PMCID: PMC7472895 DOI: 10.1093/braincomms/fcaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
There is enormous clinical value in inferring the brain regions initially atrophied in Parkinson disease for individual patients and understanding its relationship with clinical and genetic risk factors. The aim of this study is to leverage a new seed-inference algorithm demonstrated for Alzheimer's disease to the Parkinsonian context and to cluster patients in meaningful subgroups based on these incipient atrophy patterns. Instead of testing brain regions separately as the likely initiation site for each patient, we solve an L1-penalized optimization problem that can return a more predictive heterogeneous, multi-locus seed patterns. A cluster analysis of the individual seed patterns reveals two distinct subgroups (S1 versus S2). The S1 subgroup is characterized by the involvement of the brainstem and ventral nuclei, and S2 by cortex and striatum. Post hoc analysis in features not included in the clustering shows significant differences between subgroups regarding age of onset and local transcriptional patterns of Parkinson-related genes. Top genes associated with regional microglial abundance are strongly associated with subgroup S1 but not with S2. Our results suggest two distinct aetiological mechanisms operative in Parkinson disease. The interplay between immune-related genes, lysosomal genes, microglial abundance and atrophy initiation sites may explain why the age of onset for patients in S1 is on average 4.5 years later than for those in S2. We highlight and compare the most prominently affected brain regions for both subgroups. Altogether, our findings may improve current screening strategies for early Parkinson onsetters.
Collapse
Affiliation(s)
- Pedro D Maia
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Benjamin Freeze
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Justin Torok
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Yashar Zeighami
- Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
357
|
Meier IB, Lao PJ, Gietl A, Vorburger RS, Gutierrez J, Holland CM, Guttmann CR, Meier DS, Buck A, Nitsch RM, Hock C, Unschuld PG, Brickman AM. Brain areas with normatively greater cerebral perfusion in early life may be more susceptible to beta amyloid deposition in late life. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2020; 1:100001. [PMID: 34368788 PMCID: PMC8340623 DOI: 10.1016/j.cccb.2020.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/03/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The amyloid cascade hypothesis characterizes the stereotyped progression of pathological changes in Alzheimer's disease (AD) beginning with beta amyloid deposition, but does not address the reasons for amyloid deposition. Brain areas with relatively higher neuronal activity, metabolic demand, and production of reactive oxygen species in earlier life may have higher beta amyloid deposition in later life. The aim of this study was to investigate early life patterns of perfusion and late life patterns of amyloid deposition to determine the extent to which normative cerebral perfusion predisposes specific regions to future beta amyloid deposition. MATERIALS AND METHODS One hundred twenty-eight healthy, older human subjects (age: 56-87 years old; 44% women) underwent positron emission tomography (PET) imaging with [11C]PiB for measures of amyloid burden. Cerebral perfusion maps derived from 47 healthy younger adults (age: 22-49; 47%) who had undergone single photon emission computed tomography (SPECT) imaging, were averaged to create a normative template, representative of young, healthy adults. Perfusion and amyloid measures were investigated in 31 cortical regions from the Hammers atlas. We examined the spatial relationship between normative perfusion patterns and amyloid pathophysiology. RESULTS The pattern of increasing perfusion (temporal lobe < parietal lobe < frontal lobe < insula/cingulate gyrus < occipital lobe; F(4,26) = 7.8, p = 0.0003) in young, healthy adults was not exactly identical to but approximated the pattern of increasing amyloid burden (temporal lobe < occipital lobe < frontal lobe < parietal lobe < insula/cingulate gyrus; F(4,26) = 5.0, p = 0.004) in older adults. However, investigating subregions within cortical lobes provided consistent agreement between ranked normative perfusion patterns and expected Thal staging of amyloid progression in AD (Spearman r = 0.39, p = 0.03). CONCLUSION Our findings suggest that brain areas with normatively greater perfusion may be more susceptible to amyloid deposition in later life, possibly due to higher metabolic demand, and associated levels of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Irene B. Meier
- Institute for Regenerative Medicine IREM, University of Zurich, 8952 Zurich, Switzerland
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Patrick J. Lao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anton Gietl
- Institute for Regenerative Medicine IREM, University of Zurich, 8952 Zurich, Switzerland
| | - Robert S. Vorburger
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - José Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Charles R.G. Guttmann
- Center for Neurological Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02215, USA
| | - Dominik S. Meier
- Center for Neurological Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02215, USA
| | - Alfred Buck
- University Hospital Zurich, Clinic for Nuclear Medicine, Zurich, 8091, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine IREM, University of Zurich, 8952 Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine IREM, University of Zurich, 8952 Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Paul G. Unschuld
- Institute for Regenerative Medicine IREM, University of Zurich, 8952 Zurich, Switzerland
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
358
|
Bach P, Frischknecht U, Klinkowski S, Bungert M, Karl D, Vollmert C, Vollstädt-Klein S, Lis S, Kiefer F, Hermann D. Higher Social Rejection Sensitivity in Opioid-Dependent Patients Is Related to Smaller Insula Gray Matter Volume: A Voxel-Based Morphometric Study. Soc Cogn Affect Neurosci 2020; 14:1187-1195. [PMID: 31820807 PMCID: PMC7057285 DOI: 10.1093/scan/nsz094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/05/2022] Open
Abstract
Opioid-dependent patients are highly sensitized to negative social feedback, and increased social rejection sensitivity was linked to adverse treatment outcome, but its neurobiological underpinnings have not been understood yet. The present study investigated gray matter (GM) volume differences between 19 opioid maintenance treatment (OMT) patients and 20 healthy controls using magnetic resonance imaging and voxel-based morphometry. Associations of GM volumes with subjective feelings of exclusion and inclusion during a social ostracism (Cyberball) paradigm, with rejection sensitivity, social interaction anxiety and social phobia were explored. OMT patients displayed smaller GM volume in the bilateral insula and inferior frontal gyri. Psychometric and task data showed that patients reported significantly higher rejection sensitivity, social anxiety and social phobia scores and felt more excluded and less included during the social ostracism paradigm. Smaller GM volume in the insula was associated with higher subjective exclusion, lower subjective inclusion and higher rejection sensitivity, social anxiety and social phobia scores. Findings indicate that structural deficits in emotion- and anxiety-processing brain regions in OMT patients are associated with increased social rejection sensitivity. As social rejection is a potential trigger for relapse, patients might benefit from therapeutic strategies that promote social integration.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Ulrich Frischknecht
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Svenja Klinkowski
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Melanie Bungert
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Damian Karl
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Christian Vollmert
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Stefanie Lis
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany
| |
Collapse
|
359
|
Visser D, Wolters EE, Verfaillie SCJ, Coomans EM, Timmers T, Tuncel H, Reimand J, Boellaard R, Windhorst AD, Scheltens P, van der Flier WM, Ossenkoppele R, van Berckel BNM. Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:3165-3175. [PMID: 32462397 PMCID: PMC7680306 DOI: 10.1007/s00259-020-04831-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Purpose We aimed to investigate associations between tau pathology and relative cerebral blood flow (rCBF), and their relationship with cognition in Alzheimer’s disease (AD), by using a single dynamic [18F]flortaucipir positron emission tomography (PET) scan. Methods Seventy-one subjects with AD (66 ± 8 years, mini-mental state examination (MMSE) 23 ± 4) underwent a dynamic 130-min [18F]flortaucipir PET scan. Cognitive assessment consisted of composite scores of four cognitive domains. For tau pathology and rCBF, receptor parametric mapping (cerebellar gray matter reference region) was used to create uncorrected and partial volume-corrected parametric images of non-displaceable binding potential (BPND) and R1, respectively. (Voxel-wise) linear regressions were used to investigate associations between BPND and/or R1 and cognition. Results Higher [18F]flortaucipir BPND was associated with lower R1 in the lateral temporal, parietal and occipital regions. Higher medial temporal BPND was associated with worse memory, and higher lateral temporal BPND with worse executive functioning and language. Higher parietal BPND was associated with worse executive functioning, language and attention, and higher occipital BPND with lower cognitive scores across all domains. Higher frontal BPND was associated with worse executive function and attention. For [18F]flortaucipir R1, lower values in the lateral temporal and parietal ROIs were associated with worse executive functioning, language and attention, and lower occipital R1 with lower language and attention scores. When [18F]flortaucipir BPND and R1 were modelled simultaneously, associations between lower R1 in the lateral temporal ROI and worse attention remained, as well as for lower parietal R1 and worse executive functioning and attention. Conclusion Tau pathology was associated with locally reduced rCBF. Tau pathology and low rCBF were both independently associated with worse cognitive performance. For tau pathology, these associations spanned widespread neocortex, while for rCBF, independent associations were restricted to lateral temporal and parietal regions and the executive functioning and attention domains. These findings indicate that each biomarker may independently contribute to cognitive impairment in AD. Electronic supplementary material The online version of this article (10.1007/s00259-020-04831-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Visser
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Emma E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma M Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hayel Tuncel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juhan Reimand
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
360
|
Nielsen RB, Parbo P, Ismail R, Dalby R, Tietze A, Brændgaard H, Gottrup H, Brooks DJ, Østergaard L, Eskildsen SF. Impaired perfusion and capillary dysfunction in prodromal Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12032. [PMID: 32490139 PMCID: PMC7241262 DOI: 10.1002/dad2.12032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular disease increases the risk of developing Alzheimer's disease (AD), and growing evidence suggests an involvement of cerebrovascular pathology in AD. Capillary dysfunction, a condition in which capillary flow disturbances rather than arterial blood supply limit brain oxygen extraction, could represent an overlooked vascular contributor to neurodegeneration. We examined whether cortical capillary transit-time heterogeneity (CTH), an index of capillary dysfunction, is elevated in amyloid-positive patients with mild cognitive impairment (prodromal AD [pAD]). METHODS We performed structural and perfusion weighted MRI in 22 pAD patients and 21 healthy controls. RESULTS We found hypoperfusion, reduced blood volume, and elevated CTH in the parietal and frontal cortices of pAD-patients compared to controls, while only the precuneus showed focal cortical atrophy. DISCUSSION We propose that microvascular flow disturbances antedate cortical atrophy and may limit local tissue oxygenation in pAD. We speculate that capillary dysfunction contributes to the development of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rune B. Nielsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rikke Dalby
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of NeuroradiologyAarhus University HospitalAarhusDenmark
| | - Anna Tietze
- Charité, UniversitätsmedizinInstitute of NeuroradiologyBerlinGermany
| | - Hans Brændgaard
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - Hanne Gottrup
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - David J. Brooks
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
- Division of NeuroscienceDepartment of MedicineImperial College LondonLondonUK
- Division of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Leif Østergaard
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
361
|
White matter hyperintensities are associated with subthreshold amyloid accumulation. Neuroimage 2020; 218:116944. [PMID: 32445880 DOI: 10.1016/j.neuroimage.2020.116944] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022] Open
Abstract
The association between white matter hyperintensities (WMH) and amyloid accumulation over time in cognitively normal, amyloid-negative elderly people remains largely unexplored. In order to study whether baseline WMH were associated with longitudinal subthreshold amyloid accumulation, 159 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative who were amyloid-negative at baseline were examined. All the participants underwent a T1 and a Fluid-Attenuated Inversion Recovery MRI scan at baseline. Amyloid PET imaging was performed at baseline and follow-up visits in 2-year intervals for up to 8 years. Partial volume correction was applied for quantifying cortical Standardised Uptake Value Ratios (SUVR). The associations between global and regional WMH burden and amyloid accumulation were assessed using linear mixed models adjusted by demographic characteristics and baseline SUVR. Partial volume correction increased the measured annual rate of change (+2.4%) compared to that obtained from non-corrected data (+0.5%). There were no significant correlations between baseline WMHs and baseline subthreshold cortical amyloid uptake. In a longitudinal analysis, increased baseline cortical SUVR and increased baseline burden of global (p = 0.006), frontal (p = 0.006), and parietal WMH (p = 0.003) were associated with faster amyloid accumulation. WMH-related amyloid accumulation occurred in parietal, frontal, and, to a lesser extent, cingulate cortices. These results remained unchanged after a sensitivity analysis excluding participants with the highest cortical SUVRs. This is the first study to identify a specific spatial distribution of WMH which is associated with future amyloid accumulation in cognitively normal elderly subjects without PET-detectable amyloid pathology. These findings may have important implications in prevention trials for the early identification of amyloid accumulation.
Collapse
|
362
|
First-Person Virtual Embodiment Modulates the Cortical Network that Encodes the Bodily Self and Its Surrounding Space during the Experience of Domestic Violence. eNeuro 2020; 7:ENEURO.0263-19.2019. [PMID: 32312823 PMCID: PMC7240289 DOI: 10.1523/eneuro.0263-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/16/2019] [Accepted: 12/17/2019] [Indexed: 11/24/2022] Open
Abstract
Social aggression, such as domestic violence, has been associated with a reduced ability to take on others’ perspectives. In this naturalistic imaging study, we investigated whether training human participants to take on a first-person embodied perspective during the experience of domestic violence enhances the identification with the victim and elicits brain activity associated with the monitoring of the body and surrounding space and the experience of threat. We combined fMRI measurements with preceding virtual reality exposure from either first-person perspective (1PP) or third-person perspective (3PP) to manipulate whether the domestic abuse stimulus was perceived as directed to oneself or another. We found that 1PP exposure increased body ownership and identification with the virtual victim. Furthermore, when the stimulus was perceived as directed toward oneself, the brain network that encodes the bodily self and its surrounding space was more strongly synchronized across participants and connectivity increased from premotor cortex (PM) and intraparietal sulcus towards superior parietal lobe. Additionally, when the stimulus came near the body, brain activity in the amygdala (AMG) strongly synchronized across participants. Exposure to 3PP reduced synchronization of brain activity in the personal space network, increased modulation of visual areas and strengthened functional connectivity between PM, supramarginal gyrus and primary visual cortex. In conclusion, our results suggest that 1PP embodiment training enhances experience from the viewpoint of the virtual victim, which is accompanied by synchronization in the fronto-parietal network to predict actions toward the body and in the AMG to signal the proximity of the stimulus.
Collapse
|
363
|
Prediction of Cognitive Decline in Temporal Lobe Epilepsy and Mild Cognitive Impairment by EEG, MRI, and Neuropsychology. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2020; 2020:8915961. [PMID: 32549888 PMCID: PMC7256687 DOI: 10.1155/2020/8915961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Cognitive decline is a severe concern of patients with mild cognitive impairment. Also, in patients with temporal lobe epilepsy, memory problems are a frequently encountered problem with potential progression. On the background of a unifying hypothesis for cognitive decline, we merged knowledge from dementia and epilepsy research in order to identify biomarkers with a high predictive value for cognitive decline across and beyond these groups that can be fed into intelligent systems. We prospectively assessed patients with temporal lobe epilepsy (N = 9), mild cognitive impairment (N = 19), and subjective cognitive complaints (N = 4) and healthy controls (N = 18). All had structural cerebral MRI, EEG at rest and during declarative verbal memory performance, and a neuropsychological assessment which was repeated after 18 months. Cognitive decline was defined as significant change on neuropsychological subscales. We extracted volumetric and shape features from MRI and brain network measures from EEG and fed these features alongside a baseline testing in neuropsychology into a machine learning framework with feature subset selection and 5-fold cross validation. Out of 50 patients, 27 had a decline over time in executive functions, 23 in visual-verbal memory, 23 in divided attention, and 7 patients had an increase in depression scores. The best sensitivity/specificity for decline was 72%/82% for executive functions based on a feature combination from MRI volumetry and EEG partial coherence during recall of memories; 95%/74% for visual-verbal memory by combination of MRI-wavelet features and neuropsychology; 84%/76% for divided attention by combination of MRI-wavelet features and neuropsychology; and 81%/90% for increase of depression by combination of EEG partial directed coherence factor at rest and neuropsychology. Combining information from EEG, MRI, and neuropsychology in order to predict neuropsychological changes in a heterogeneous population could create a more general model of cognitive performance decline.
Collapse
|
364
|
Irace Z, Mérida I, Redouté J, Fonteneau C, Suaud-Chagny MF, Brunelin J, Vidal B, Zimmer L, Reilhac A, Costes N. Bayesian Estimation of the ntPET Model in Single-Scan Competition PET Studies. Front Physiol 2020; 11:498. [PMID: 32508679 PMCID: PMC7248280 DOI: 10.3389/fphys.2020.00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
This paper proposes an innovative method, named b-ntPET, for solving a competition model in PET. The model is built upon the state-of-the-art method called lp-ntPET. It consists in identifying the parameters of the PET kinetic model relative to a reference region that rule the steady state exchanges, together with the identification of four additional parameters defining a displacement curve caused by an endogenous neurotransmitter discharge, or by a competing injected drug targeting the same receptors as the PET tracer. The resolution process of lp-ntPET is however suboptimal due to the use of discretized basis functions, and is very sensitive to noise, limiting its sensitivity and accuracy. Contrary to the original method, our proposed resolution approach first estimates the probability distribution of the unknown parameters using Markov-Chain Monte-Carlo sampling, distributions from which the estimates are then inferred. In addition, and for increased robustness, the noise level is jointly estimated with the parameters of the model. Finally, the resolution is formulated in a Bayesian framework, allowing the introduction of prior knowledge on the parameters to guide the estimation process toward realistic solutions. The performance of our method was first assessed and compared head-to-head with the reference method lp-ntPET using well-controlled realistic simulated data. The results showed that the b-ntPET method is substantially more robust to noise and much more sensitive and accurate than lp-ntPET. We then applied the model to experimental animal data acquired in pharmacological challenge studies and human data with endogenous releases induced by transcranial direct current stimulation. In the drug challenge experiment on cats using [18F]MPPF, a serotoninergic 1A antagonist radioligand, b-ntPET measured a dose response associated with the amount of the challenged injected concurrent 5-HT1A agonist, where lp-ntPET failed. In human [11C]raclopride experiment, contrary to lp-ntPET, b-ntPET successfully detected significant endogenous dopamine releases induced by the stimulation. In conclusion, our results showed that the proposed method b-ntPET has similar performance to lp-ntPET for detecting displacements, but with higher resistance to noise and better robustness to various experimental contexts. These improvements lead to the possibility of detecting and characterizing dynamic drug occupancy from a single PET scan more efficiently.
Collapse
Affiliation(s)
- Zacharie Irace
- CERMEP-Life Imaging, Lyon, France.,SIEMENS Healthcare SAS, Saint Denis, France
| | | | | | - Clara Fonteneau
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, France
| | - Marie-Françoise Suaud-Chagny
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, France
| | - Jérôme Brunelin
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, France
| | | | - Luc Zimmer
- CERMEP-Life Imaging, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
365
|
van Aalst J, Ceccarini J, Schramm G, Van Weehaeghe D, Rezaei A, Demyttenaere K, Sunaert S, Van Laere K. Long-term Ashtanga yoga practice decreases medial temporal and brainstem glucose metabolism in relation to years of experience. EJNMMI Res 2020; 10:50. [PMID: 32410000 PMCID: PMC7225240 DOI: 10.1186/s13550-020-00636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Yoga is increasingly popular worldwide with several physical and mental benefits, but the underlying neurobiology remains unclear. Whereas many studies have focused on pure meditational aspects, the triad of yoga includes meditation, postures, and breathing. We conducted a cross-sectional study comparing experienced yoga practitioners to yoga-naive healthy subjects using a multiparametric 2 × 2 design with simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging. Methods 18F-FDG PET, morphometric and diffusion tensor imaging, resting state fMRI, and MR spectroscopy were acquired in 10 experienced (4.8 ± 2.3 years of regular yoga experience) yoga practitioners and 15 matched controls in rest and after a single practice (yoga practice and physical exercise, respectively). Results In rest, decreased regional glucose metabolism in the medial temporal cortex, striatum, and brainstem was observed in yoga practitioners compared to controls (p < 0.0001), with a significant inverse correlation of resting parahippocampal and brainstem metabolism with years of regular yoga practice (ρ < − 0.63, p < 0.05). A single yoga practice resulted in significant hypermetabolism in the cerebellum (p < 0.0001). None of the MR measures differed, both at rest and after intervention. Conclusions Experienced yoga practitioners show regional long-term decreases in glucose metabolism related to years of practice. To elucidate a potential causality, a prospective longitudinal study in yoga-naive individuals is warranted.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Koen Demyttenaere
- Research Group Psychiatry, Neurosciences, University Psychiatric Center KU Leuven, Leuven, Belgium.,Adult Psychiatry, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Imaging and Pathology, KU Leuven, Leuven, Belgium.,Radiology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
366
|
Kim MJ, Lee JH, Juarez Anaya F, Hong J, Miller W, Telu S, Singh P, Cortes MY, Henry K, Tye GL, Frankland MP, Montero Santamaria JA, Liow JS, Zoghbi SS, Fujita M, Pike VW, Innis RB. First-in-human evaluation of [ 11C]PS13, a novel PET radioligand, to quantify cyclooxygenase-1 in the brain. Eur J Nucl Med Mol Imaging 2020; 47:3143-3151. [PMID: 32399622 DOI: 10.1007/s00259-020-04855-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE This study assessed whether the newly developed PET radioligand [11C]PS13, which has shown excellent in vivo selectivity in previous animal studies, could be used to quantify constitutive levels of cyclooxygenase-1 (COX-1) in healthy human brain. METHODS Brain test-retest scans with concurrent arterial blood samples were obtained in 10 healthy individuals. The one- and unconstrained two-tissue compartment models, as well as the Logan graphical analysis were compared, and test-retest reliability and time-stability of total distribution volume (VT) were assessed. Correlation analyses were conducted between brain regional VT and COX-1 transcript levels provided in the Allen Human Brain Atlas. RESULTS In the brain, [11C]PS13 showed highest uptake in the hippocampus and occipital cortex. The pericentral cortex also showed relatively higher uptake compared with adjacent neocortices. The two-tissue compartment model showed the best fit in all the brain regions, and the results from the Logan graphical analysis were consistent with those from the two-tissue compartment model. VT values showed excellent test-retest variability (range 6.0-8.5%) and good reliability (intraclass correlation coefficient range 0.74-0.87). VT values also showed excellent time-stability in all brain regions, confirming that there was no radiometabolite accumulation and that shorter scans were still able to reliably measure VT. Significant correlation was observed between VT and COX-1 transcript levels (r = 0.82, P = 0.007), indicating that [11C]PS13 binding reflects actual COX-1 density in the human brain. CONCLUSIONS These results from the first-in-human evaluation of the ability of [11C]PS13 to image COX-1 in the brain justifies extending the study to disease populations with neuroinflammation. CLINICAL TRIAL REGISTRATION NCT03324646 at https://clinicaltrials.gov/ . Registered October 30, 2017. Retrospectively registered.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA.
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA.,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fernanda Juarez Anaya
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - William Miller
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Michelle Y Cortes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Katharine Henry
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Michael P Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm B1D43, Bethesda, MD, 20892-1026, USA
| |
Collapse
|
367
|
Leeuwis AE, Hooghiemstra AM, Bron EE, Kuipers S, Oudeman EA, Kalay T, Brunner-La Rocca HP, Kappelle LJ, van Oostenbrugge RJ, Greving JP, Niessen WJ, van Buchem MA, van Osch MJP, van Rossum AC, Prins ND, Biessels GJ, Barkhof F, van der Flier WM. Cerebral blood flow and cognitive functioning in patients with disorders along the heart-brain axis: Cerebral blood flow and the heart-brain axis. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12034. [PMID: 32995468 PMCID: PMC7507476 DOI: 10.1002/trc2.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We examined the role of hemodynamic dysfunction in cognition by relating cerebral blood flow (CBF), measured with arterial spin labeling (ASL), to cognitive functioning, in patients with heart failure (HF), carotid occlusive disease (COD), and patients with cognitive complaints and vascular brain injury on magnetic resonance imaging (MRI; ie, possible vascular cognitive impairment [VCI]). METHODS We included 439 participants (124 HF; 75 COD; 127 possible VCI; 113 reference participants) from the Dutch multi-center Heart-Brain Study. We used pseudo-continuous ASL to estimate whole-brain and regional partial volume-corrected CBF. Neuropsychological tests covered global cognition and four cognitive domains. RESULTS CBF values were lowest in COD, followed by VCI and HF, compared to reference participants. This did not explain cognitive impairment, as we did not find an association between CBF and cognitive functioning. DISCUSSION We found that reduced CBF is not the major explanatory factor underlying cognitive impairment in patients with hemodynamic dysfunction along the heart-brain axis.
Collapse
Affiliation(s)
- Anna E Leeuwis
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Astrid M Hooghiemstra
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
- Department of Medical Humanities Amsterdam UMC Amsterdam Public Health Research Institute VU University Medical Center Amsterdam the Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam Erasmus MC Departments of Medical Informatics and Radiology & Nuclear Medicine Rotterdam the Netherlands
| | - Sanne Kuipers
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Eline A Oudeman
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Tugba Kalay
- Department of Neurology Maastricht University Medical Center Maastricht the Netherlands
| | | | - L Jaap Kappelle
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | | | - Jacoba P Greving
- Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht the Netherlands
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam Erasmus MC Departments of Medical Informatics and Radiology & Nuclear Medicine Rotterdam the Netherlands
- Imaging Physics Applied Sciences Delft University of Technology Delft the Netherlands
| | - Mark A van Buchem
- Department of Radiology Leiden University Medical Center Leiden the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI Department of Radiology Leiden University Medical Center Leiden the Netherlands
| | - Albert C van Rossum
- Department of Cardiology Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Niels D Prins
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Geert-Jan Biessels
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Frederik Barkhof
- UCL Institutes of Neurology and Healthcare Engineering London United Kingdom
- Department of Radiology and Nuclear Medicine Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
- Department of Epidemiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam the Netherlands
| |
Collapse
|
368
|
Wakabayashi Y, Telu S, Dick RM, Fujita M, Ooms M, Morse CL, Liow JS, Hong JS, Gladding RL, Manly LS, Zoghbi SS, Mo X, D’Amato EC, Sindac JA, Nugent RA, Marron BE, Gurney ME, Innis RB, Pike VW. Discovery, Radiolabeling, and Evaluation of Subtype-Selective Inhibitors for Positron Emission Tomography Imaging of Brain Phosphodiesterase-4D. ACS Chem Neurosci 2020; 11:1311-1323. [PMID: 32212718 PMCID: PMC7444660 DOI: 10.1021/acschemneuro.0c00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to develop radioligands for PET imaging of brain phosphodiesterase subtype 4D (PDE4D), a potential target for developing cognition enhancing or antidepressive drugs. Exploration of several chemical series gave four leads with high PDE4D inhibitory potency and selectivity, optimal lipophilicity, and good brain uptake. These leads featured alkoxypyridinyl cores. They were successfully labeled with carbon-11 (t1/2 = 20.4 min) for evaluation with PET in monkey. Whereas two of these radioligands did not provide PDE4D-specific signal in monkey brain, two others, [11C]T1660 and [11C]T1650, provided sizable specific signal, as judged by pharmacological challenge using rolipram or a selective PDE4D inhibitor (BPN14770) and subsequent biomathematical analysis. Specific binding was highest in prefrontal cortex, temporal cortex, and hippocampus, regions that are important for cognitive function. [11C]T1650 was progressed to evaluation in humans with PET, but the output measure of brain enzyme density (VT) increased with scan duration. This instability over time suggests that radiometabolite(s) were accumulating in the brain. BPN14770 blocked PDE4D uptake in human brain after a single dose, but the percentage occupancy was difficult to estimate because of the unreliability of measuring VT. Overall, these results show that imaging of PDE4D in primate brain is feasible but that further radioligand refinement is needed, most likely to avoid problematic radiometabolites.
Collapse
Affiliation(s)
| | - Sanjay Telu
- National Institute of Mental Health, Bethesda, MD, USA
| | | | | | - Maarten Ooms
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Jeih-San Liow
- National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Ismail R, Parbo P, Madsen LS, Hansen AK, Hansen KV, Schaldemose JL, Kjeldsen PL, Stokholm MG, Gottrup H, Eskildsen SF, Brooks DJ. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer's disease: a longitudinal PET study. J Neuroinflammation 2020; 17:151. [PMID: 32375809 PMCID: PMC7203856 DOI: 10.1186/s12974-020-01820-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of this longitudinal study was to assess with positron emission tomography (PET) the relationship between levels of inflammation and the loads of aggregated β-amyloid and tau at baseline and again after 2 years in prodromal Alzheimer's disease. METHODS Forty-three subjects with mild cognitive impairment (MCI) had serial 11C-PK11195 PET over 2 years to measure inflammation changes, and 11C-PiB PET to determine β-amyloid fibril load; 22 also had serial 18F-Flortaucipir PET to determine tau tangle load. Cortical surface statistical mapping was used to localise areas showing significant changes in tracer binding over time and to interrogate correlations between tracer binding of the tracers at baseline and after 2 years. RESULTS Those MCI subjects with high 11C-PiB uptake at baseline (classified as prodromal Alzheimer's disease) had raised inflammation levels which significantly declined across cortical regions over 2 years although their β-amyloid levels continued to rise. Those MCI cases who had low/normal 11C-PiB uptake at baseline but their levels then rose over 2 years were classified as prodromal AD with low Thal phase 1-2 amyloid deposition at baseline. They showed levels of cortical inflammation which correlated with their rising β-amyloid load. Those MCI cases with baseline low 11C-PiB uptake that remained stable were classified as non-AD, and they showed no correlated inflammation levels. Finally, MCI cases which showed both high 11C-PiB and 18F-Flortaucipir uptake at baseline (MCI due to AD) showed a further rise in their tau tangle load over 2 years with a correlated rise in levels of inflammation. CONCLUSIONS Our baseline and 2-year imaging findings are compatible with a biphasic trajectory of inflammation in Alzheimer's disease: MCI cases with low baseline but subsequently rising β-amyloid load show correlated levels of microglial activation which then later decline when the β-amyloid load approaches AD levels. Later, as tau tangles form in β-amyloid positive MCI cases with prodromal AD, the rising tau load is associated with higher levels of inflammation.
Collapse
Affiliation(s)
- Rola Ismail
- Department of Clinical Medicine, PET-Centre, Aarhus University, Aarhus, Denmark.
| | - Peter Parbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | | | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | - Jeppe L Schaldemose
- Department of Clinical Medicine, PET-Centre, Aarhus University, Aarhus, Denmark
| | - Pernille L Kjeldsen
- Department of Clinical Medicine, PET-Centre, Aarhus University, Aarhus, Denmark
| | - Morten G Stokholm
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | - Hanne Gottrup
- Dept. of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon F Eskildsen
- Centre of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Clinical Medicine, PET-Centre, Aarhus University, Aarhus, Denmark
- Institute of Neuroscience, University of Newcastle upon Tyne, Tyne, UK
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
370
|
Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, Mak E, Nicastro N, Bevan-Jones WR, Su L, Hong YT, Fryer TD, Aigbirhio FI, O’Brien JT, Rowe JB. Microglial activation and tau burden predict cognitive decline in Alzheimer's disease. Brain 2020; 143:1588-1602. [PMID: 32380523 PMCID: PMC7241955 DOI: 10.1093/brain/awaa088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 11/12/2022] Open
Abstract
Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer's disease. Understanding whether these features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neuroinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cognitive changes in patients with Alzheimer's disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer's dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assessment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 years using the revised Addenbrooke's Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer's disease pathology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate of annual decline in each participant. We regressed the individuals' estimated rate of cognitive decline on the neuroimaging components and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to identify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived atrophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptomatic Alzheimer's disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer's disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting tau and neuroinflammation in disease-modifying therapy against Alzheimer's disease.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milano, Italy
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Geneva University Hospitals, Switzerland
| | | | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| |
Collapse
|
371
|
Niñerola-Baizán A, Aguiar P, Cabrera-Martín M, Vigil C, Gómez-Grande A, Lorenzo C, Rubí S, Sopena P, Camacho V. Relevance of quantification in brain PET studies with 18F-FDG. Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
372
|
Alexander B, Georgiou‐Karistianis N, Beare R, Ahveninen LM, Lorenzetti V, Stout JC, Glikmann‐Johnston Y. Accuracy of automated amygdala MRI segmentation approaches in Huntington's disease in the IMAGE-HD cohort. Hum Brain Mapp 2020; 41:1875-1888. [PMID: 32034838 PMCID: PMC7268083 DOI: 10.1002/hbm.24918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022] Open
Abstract
Smaller manually-segmented amygdala volumes have been associated with poorer motor and cognitive function in Huntington's disease (HD). Manual segmentation is the gold standard in terms of accuracy; however, automated methods may be necessary in large samples. Automated segmentation accuracy has not been determined for the amygdala in HD. We aimed to determine which of three automated approaches would most accurately segment amygdalae in HD: FreeSurfer, FIRST, and ANTS nonlinear registration followed by FIRST segmentation. T1-weighted images for the IMAGE-HD cohort including 35 presymptomatic HD (pre-HD), 36 symptomatic HD (symp-HD), and 34 healthy controls were segmented using FreeSurfer and FIRST. For the third approach, images were nonlinearly registered to an MNI template using ANTS, then segmented using FIRST. All automated methods overestimated amygdala volumes compared with manual segmentation. Dice overlap scores, indicating segmentation accuracy, were not significantly different between automated approaches. Manually segmented volumes were most statistically differentiable between groups, followed by those segmented by FreeSurfer, then ANTS/FIRST. FIRST-segmented volumes did not differ between groups. All automated methods produced a bias where volume overestimation was more severe for smaller amygdalae. This bias was subtle for FreeSurfer, but marked for FIRST, and moderate for ANTS/FIRST. Further, FreeSurfer introduced a hemispheric bias not evident with manual segmentation, producing larger right amygdalae by 8%. To assist choice of segmentation approach, we provide sample size estimation graphs based on sample size and other factors. If automated segmentation is employed in samples of the current size, FreeSurfer may effectively distinguish amygdala volume between controls and HD.
Collapse
Affiliation(s)
- Bonnie Alexander
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Nellie Georgiou‐Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Richard Beare
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Lotta M. Ahveninen
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - Julie C. Stout
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Yifat Glikmann‐Johnston
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
373
|
Rullmann M, McLeod A, Grothe MJ, Sabri O, Barthel H. Reshaping the Amyloid Buildup Curve in Alzheimer Disease? Partial-Volume Effect Correction of Longitudinal Amyloid PET Data. J Nucl Med 2020; 61:1820-1824. [PMID: 32358089 DOI: 10.2967/jnumed.119.238477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/28/2020] [Indexed: 01/27/2023] Open
Abstract
It was hypothesized that the brain β-amyloid buildup curve plateaus at an early symptomatic stage of Alzheimer disease (AD). Atrophy-related partial-volume effects (PVEs) degrade signal in hot-spot imaging techniques such as amyloid PET. The current study, a longitudinal analysis of amyloid-sensitive PET data, investigated the effect on the shape of the β-amyloid curve in AD when PVE correction (PVEC) is applied. Methods: We analyzed baseline and 2-y follow-up data for 216 symptomatic individuals on the AD continuum (positive amyloid status) enrolled in the Alzheimer's Disease Neuroimaging Initiative (17 with AD dementia and 199 with mild cognitive impairment), including 18F-florbetapir PET, MRI, and Mini Mental State Examination scores. For PVEC, the modified Müller-Gärtner method was performed. Results: Compared with non-PVE-corrected data, PVE-corrected data yielded significantly higher changes in regional and composite SUV ratio (SUVR) over time (P = 0.0002 for composite SUVRs). Longitudinal SUVR changes in relation to Mini Mental State Examination decreases showed a significantly higher slope for the regression line in the PVE-corrected than in the non-PVE-corrected PET data (F 1 = 7.1, P = 0.008). Conclusion: These PVEC results indicate that the β-amyloid buildup curve does not plateau at an early symptomatic disease stage. A further evaluation of the impact of PVEC on the in vivo characterization of time-dependent AD pathology, including the reliable assessment and comparison of other amyloid tracers, is warranted.
Collapse
Affiliation(s)
- Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Anke McLeod
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | | |
Collapse
|
374
|
Desmond JE, Rice LC, Cheng DT, Hua J, Qin Q, Rilee JJ, Faulkner ML, Sheu YS, Mathena JR, Wand GS, McCaul ME. Changes in Hemodynamic Response Function Resulting From Chronic Alcohol Consumption. Alcohol Clin Exp Res 2020; 44:1099-1111. [PMID: 32339317 DOI: 10.1111/acer.14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Functional MRI (fMRI) task-related analyses rely on an estimate of the brain's hemodynamic response function (HRF) to model the brain's response to events. Although changes in the HRF have been found after acute alcohol administration, the effects of heavy chronic alcohol consumption on the HRF have not been explored, and the potential benefits or pitfalls of estimating each individual's HRF on fMRI analyses of chronic alcohol use disorder (AUD) are not known. METHODS Participants with AUD and controls (CTL) received structural, functional, and vascular scans. During fMRI, participants were cued to tap their fingers, and averaged responses were extracted from the motor cortex. Curve fitting on these HRFs modeled them as a difference between 2 gamma distributions, and the temporal occurrence of the main peak and undershoot of the HRF was computed from the mean of the first and second gamma distributions, respectively. RESULTS ANOVA and regression analyses found that the timing of the HRF undershoot increased significantly as a function of total lifetime drinking. Although gray matter volume in the motor cortex decreased with lifetime drinking, this was not sufficient to explain undershoot timing shifts, and vascular factors measured in the motor cortex did not differ among groups. Comparison of random-effects analyses using custom-fitted and canonical HRFs for CTL and AUD groups showed better results throughout the brain for custom-fitted versus canonical HRFs for CTL subjects. For AUD subjects, the same was true except for the basal ganglia. CONCLUSIONS These findings suggest that excessive alcohol consumption is associated with changes in the HRF undershoot. HRF changes could provide a possible biomarker for the effects of lifetime drinking on brain function. Changes in HRF topography affect fMRI activation measures, and subject-specific HRFs generally improve fMRI activation results.
Collapse
Affiliation(s)
- John E Desmond
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura C Rice
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dominic T Cheng
- Johns Hopkins University School of Medicine, Baltimore, Maryland.,Auburn University, Auburn, Alabama
| | - Jun Hua
- Johns Hopkins University School of Medicine, Baltimore, Maryland.,Kennedy Krieger Institute, Baltimore, Maryland
| | - Qin Qin
- Johns Hopkins University School of Medicine, Baltimore, Maryland.,Kennedy Krieger Institute, Baltimore, Maryland
| | - Jessica J Rilee
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Yi-Shin Sheu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joanna R Mathena
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gary S Wand
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary E McCaul
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
375
|
Niñerola-Baizán A, Aguiar P, Cabrera-Martín MN, Vigil C, Gómez-Grande A, Lorenzo C, Rubí S, Sopena P, Camacho V. Relevance of quantification in brain PET studies with 18F-FDG. Rev Esp Med Nucl Imagen Mol 2020; 39:184-192. [PMID: 32345572 DOI: 10.1016/j.remn.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The inclusion of 18F-FDG PET as a biomarker in the diagnostic criteria of neurodegenerative diseases and its indication in the presurgical assessment for drug-resistant epilepsies allow to improve specificity of these diagnosis. The traditional interpretation of neurological PET studies has been performed qualitatively, although in the last decade, several quantitative evaluation methods have emerged. This technical development has become relevant in clinical practice, improving specificity, reproducibility and reducing the interrater reliability derived from visual analysis. In this article we update/review the main imaging processing techniques currently used. This may allow the Nuclear Medicine physician to know their advantages and disadvantages when including these procedures in daily clinical practice.
Collapse
Affiliation(s)
- A Niñerola-Baizán
- Servicio de Medicina Nuclear, Hospital Clínic, Barcelona, España; Grupo de Imagen Biomédica, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, España
| | - P Aguiar
- Grupo de Imaxe Molecular e Física Médica, Departamento de Radioloxía, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, España; Servicio de Medicina Nuclear, Hospital Clínico de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, España
| | - M N Cabrera-Martín
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Madrid, España
| | - C Vigil
- Servicio Medicina Nuclear, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, España.
| | - A Gómez-Grande
- Servicio de Medicina Nuclear, Hospital Universitario 12 de Octubre, Madrid, España
| | - C Lorenzo
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España
| | - S Rubí
- Servicio de Medicina Nuclear, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, España
| | - P Sopena
- Servicio de Medicina Nuclear, Hospital Vithas-Nisa 9 de Octubre, Valencia, España; Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - V Camacho
- Servicio de Medicina Nuclear, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, España
| |
Collapse
|
376
|
Early-phase [ 18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur J Nucl Med Mol Imaging 2020; 47:2911-2922. [PMID: 32318783 PMCID: PMC7567714 DOI: 10.1007/s00259-020-04788-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022]
Abstract
Purpose Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several β-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). Methods Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer’s disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson’s disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0–60 min p.i.) and static [18F]FDG-PET (30–50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. Results Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5–2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. Conclusion Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury. Electronic supplementary material The online version of this article (10.1007/s00259-020-04788-w) contains supplementary material, which is available to authorized users.
Collapse
|
377
|
Physiological arousal and visuocortical connectivity predict subsequent vividness of negative memories. Neuroreport 2020; 30:800-804. [PMID: 31283709 DOI: 10.1097/wnr.0000000000001274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Relative to neutral memories, negative and positive memories both exhibit an increase in memory longevity, subjective memory re-experiencing and amygdala activation. These memory enhancements are often attributed to shared influences of arousal on memory. Yet, prior work suggests the intriguing possibility that arousal affects memory networks in valence-specific ways. Psychophysics work has shown that arousal-related heart rate deceleration (HRD) responses are related to enhanced amygdala-visual functional connectivity (AVFC) and visual perception of negative stimuli. However, in the memory realm, it is not known whether the effect of AVFC influences subsequent negative memory outcomes as a function of the magnitude of physiological arousal during encoding. Using psycho-autonomic interaction analyses and trial-level measures of HRD as an objective measure of arousal during encoding of emotional stimuli, our findings suggest that the magnitude of the HRD modulates the effect of AVFC on subsequent negative memory vividness. Specifically, AVFC effects in early visual regions predicted negative memory vividness, not neutral or positive vividness, but only in the presence of heightened physiological arousal. This novel approach was grounded in a replication of prior working showing enhanced HRD effects in the insula for negative stimuli. These findings demonstrate that the effect of arousal on emotional memory networks depends on valence and provide further evidence that negative valence may enhance the incorporation of visuo-sensory regions into emotional memory networks.
Collapse
|
378
|
Rodda J, Okello A, Edison P, Dannhauser T, Brooks D, Walker Z. 11C-PIB PET in subjective cognitive impairment. Eur Psychiatry 2020; 25:123-5. [DOI: 10.1016/j.eurpsy.2009.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 11/28/2022] Open
Abstract
AbstractPeople with Subjective Cognitive Impairment (SCI) may be at increased risk of dementia. In this study we examined amyloid load in 5 SCI subjects and 14 controls using PIB PET scanning. One SCI subject had significantly increased PIB retention in the cortical areas of interest. Larger, longitudinal studies are indicated.
Collapse
|
379
|
Wolters EE, Ossenkoppele R, Verfaillie SCJ, Coomans EM, Timmers T, Visser D, Tuncel H, Golla SSV, Windhorst AD, Boellaard R, van der Flier WM, Teunissen CE, Scheltens P, van Berckel BNM. Regional [ 18F]flortaucipir PET is more closely associated with disease severity than CSF p-tau in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:2866-2878. [PMID: 32291510 PMCID: PMC7567681 DOI: 10.1007/s00259-020-04758-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Purpose In vivo Alzheimer’s disease (AD) biomarkers for tau pathology are cerebrospinal fluid (CSF) phosphorylated tau (p-tau) and [18F]flortaucipir positron emission tomography (PET). Our aim was to assess associations between CSF p-tau with [18F]flortaucipir PET and the associations of both tau biomarkers with cognition and atrophy. Methods We included 78 amyloid positive cognitively impaired patients (clinical diagnoses mild cognitive impairment (MCI, n = 8) and AD dementia (n = 45) and 25 cognitively normal subjects with subjective cognitive decline (SCD) (40% amyloid-positive)). Dynamic 130 min [18F]flortaucipir PET scans were acquired to generate binding potential (BPND) images using receptor parametric mapping and standardized uptake values ratios of 80–100 min (SUVr80-100min) post injection. We obtained regional BPND and SUVr from entorhinal, limbic, and neocortical regions-of-interest (ROIs), closely aligning to the neuropathological tau staging schemes. Cognition was assessed using MMSE and composite scores of four cognitive domains, and atrophy was measured using gray matter volume covering the major brain lobes. First, we used linear regressions to investigate associations between CSF p-tau (independent variable) and tau PET (dependent variable). Second, we used linear regressions to investigate associations between CSF p-tau, tau PET (separate independent variables, model 1), and cognition (dependent variable). We then assessed the independent effects of CSF p-tau and tau PET on cognition by simultaneously adding the other tau biomarker as a predictor (model 2). Finally, we performed the same procedure for model 1 and 2, but replaced cognition with atrophy. Models were adjusted for age, sex, time lag between assessments, education (cognition only), and total intracranial volume (atrophy only). Results Higher [18F]flortaucipir BPND was associated with higher CSF p-tau (range of standardized betas (sβ) across ROIs, 0.43–0.46; all p < 0.01). [18F]flortaucipir BPND was more strongly associated with cognition and atrophy than CSF p-tau. When [18F]flortaucipir BPND and CSF p-tau were entered simultaneously, [18F]flortaucipir BPND (range sβ = − 0.20 to – 0.57, all p < 0.05) was strongly associated with multiple cognitive domains and atrophy regions. SUVr showed comparable results to BPND. Conclusion Regional [18F]flortaucipir BPND correlated stronger with cognition and neurodegeneration than CSF p-tau, suggesting that tau PET more accurately reflects disease severity in AD. Electronic supplementary material The online version of this article (10.1007/s00259-020-04758-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma E Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma M Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
380
|
Visual and Quantitative Evaluation of Amyloid Brain PET Image Synthesis with Generative Adversarial Network. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional data augmentation (DA) techniques, which have been used to improve the performance of predictive models with a lack of balanced training data sets, entail an effort to define the proper repeating operation (e.g., rotation and mirroring) according to the target class distribution. Although DA using generative adversarial network (GAN) has the potential to overcome the disadvantages of conventional DA, there are not enough cases where this technique has been applied to medical images, and in particular, not enough cases where quantitative evaluation was used to determine whether the generated images had enough realism and diversity to be used for DA. In this study, we synthesized 18F-Florbetaben (FBB) images using CGAN. The generated images were evaluated using various measures, and we presented the state of the images and the similarity value of quantitative measurement that can be expected to successfully augment data from generated images for DA. The method includes (1) conditional WGAN-GP to learn the axial image distribution extracted from pre-processed 3D FBB images, (2) pre-trained DenseNet121 and model-agnostic metrics for visual and quantitative measurements of generated image distribution, and (3) a machine learning model for observing improvement in generalization performance by generated dataset. The Visual Turing test showed similarity in the descriptions of typical patterns of amyloid deposition for each of the generated images. However, differences in similarity and classification performance per axial level were observed, which did not agree with the visual evaluation. Experimental results demonstrated that quantitative measurements were able to detect the similarity between two distributions and observe mode collapse better than the Visual Turing test and t-SNE.
Collapse
|
381
|
van Duin EDA, Ceccarini J, Booij J, Kasanova Z, Vingerhoets C, van Huijstee J, Heinzel A, Mohammadkhani-Shali S, Winz O, Mottaghy F, Myin-Germeys I, van Amelsvoort T. Lower [ 18F]fallypride binding to dopamine D 2/3 receptors in frontal brain areas in adults with 22q11.2 deletion syndrome: a positron emission tomography study. Psychol Med 2020; 50:799-807. [PMID: 30935427 PMCID: PMC7168654 DOI: 10.1017/s003329171900062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11DS) is caused by a deletion on chromosome 22 locus q11.2. This copy number variant results in haplo-insufficiency of the catechol-O-methyltransferase (COMT) gene, and is associated with a significant increase in the risk for developing cognitive impairments and psychosis. The COMT gene encodes an enzyme that primarily modulates clearance of dopamine (DA) from the synaptic cleft, especially in the prefrontal cortical areas. Consequently, extracellular DA levels may be increased in prefrontal brain areas in 22q11DS, which may underlie the well-documented susceptibility for cognitive impairments and psychosis in affected individuals. This study aims to examine DA D2/3 receptor binding in frontal brain regions in adults with 22q11DS, as a proxy of frontal DA levels. METHODS The study was performed in 14 non-psychotic, relatively high functioning adults with 22q11DS and 16 age- and gender-matched healthy controls (HCs), who underwent DA D2/3 receptor [18F]fallypride PET imaging. Frontal binding potential (BPND) was used as the main outcome measure. RESULTS BPND was significantly lower in adults with 22q11DS compared with HCs in the prefrontal cortex and the anterior cingulate gyrus. After Bonferroni correction significance remained for the anterior cingulate gyrus. There were no between-group differences in BPND in the orbitofrontal cortex and anterior cingulate cortex. CONCLUSIONS This study is the first to demonstrate lower frontal D2/3 receptor binding in adults with 22q11DS. It suggests that a 22q11.2 deletion affects frontal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Esther D. A. van Duin
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, University Hospital Leuven, KU Leuven, Belgium
| | - Jan Booij
- Academic Medical Center, Amsterdam, The Netherlands
| | - Zuzana Kasanova
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Academic Medical Center, Amsterdam, The Netherlands
| | - Jytte van Huijstee
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | | | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherland
| | - Inez Myin-Germeys
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
382
|
Lee JH, Liow JS, Paul S, Morse CL, Haskali MB, Manly L, Shcherbinin S, Ruble JC, Kant N, Collins EC, Nuthall HN, Zanotti-Fregonara P, Zoghbi SS, Pike VW, Innis RB. PET quantification of brain O-GlcNAcase with [ 18F]LSN3316612 in healthy human volunteers. EJNMMI Res 2020; 10:20. [PMID: 32172476 PMCID: PMC7072082 DOI: 10.1186/s13550-020-0616-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies found that [18F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [18F]LSN3316612 for human clinical research. Methods Kinetic evaluation of [18F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs. Total distribution volume (VT) estimates were compared for the one- and two-tissue compartment models with the arterial input function. Test-retest variability and reliability were evaluated via mean difference and intraclass correlation coefficient (ICC). The time stability of VT was assessed down to a 30-min scan time. An alternative quantification method for [18F]LSN3316612 binding without blood was also investigated to assess the possibility of eliminating arterial sampling. Results Brain uptake was generally high and could be quantified as VT with excellent identifiability using the two-tissue compartment model. [18F]LSN3316612 exhibited good absolute test-retest variability (12.5%), but the arithmetic test-retest variability was far from 0 (11.3%), reflecting a near-uniform increase of VT on the retest scan in nine of 10 volunteers. VT values were stable after 110 min in all brain regions, suggesting that no radiometabolites accumulated in the brain. Measurements obtained using only brain activity (i.e., area under the curve (AUC) from 150–180 min) correlated strongly with regional VT values during test-retest conditions (R2 = 0.84), exhibiting similar reliability to VT (ICC = 0.68 vs. 0.64). Estimated radiation exposure for [18F]LSN3316612 PET was 20.5 ± 2.1 μSv/MBq, comparable to other 18F-labeled radioligands for brain imaging. Conclusions [18F]LSN3316612 is an excellent PET radioligand for imaging O-GlcNAcase in the human brain. Alternative quantification without blood is possible, at least for within-subject repeat studies. However, the unexplained increase of VT under retest conditions requires further investigation.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA. .,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Soumen Paul
- Molecular Imaging Core, University of Virginia, Charlottesville, VA, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mohammad B Haskali
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lester Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | | | | | - Nancy Kant
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
383
|
δ-Oscillation Correlates of Anesthesia-induced Unconsciousness in Large-scale Brain Networks of Human Infants. Anesthesiology 2020; 131:1239-1253. [PMID: 31567366 DOI: 10.1097/aln.0000000000002977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Functional brain connectivity studies can provide important information about changes in brain-state dynamics during general anesthesia. In adults, γ-aminobutyric acid-mediated agents disrupt integration of information from local to the whole-brain scale. Beginning around 3 to 4 months postnatal age, γ-aminobutyric acid-mediated anesthetics such as sevoflurane generate α-electroencephalography oscillations. In previous studies of sevoflurane-anesthetized infants 0 to 3.9 months of age, α-oscillations were absent, and power spectra did not distinguish between anesthetized and emergence from anesthesia conditions. Few studies detailing functional connectivity during general anesthesia in infants exist. This study's aim was to identify changes in functional connectivity of the infant brain during anesthesia. METHODS A retrospective cohort study was performed using multichannel electroencephalograph recordings of 20 infants aged 0 to 3.9 months old who underwent sevoflurane anesthesia for elective surgery. Whole-brain functional connectivity was evaluated during maintenance of a surgical state of anesthesia and during emergence from anesthesia. Functional connectivity was represented as networks, and network efficiency indices (including complexity and modularity) were computed at the sensor and source levels. RESULTS Sevoflurane decreased functional connectivity at the δ-frequency (1 to 4 Hz) in infants 0 to 3.9 months old when comparing anesthesia with emergence. At the sensor level, complexity decreased during anesthesia, showing less whole-brain integration with prominent alterations in the connectivity of frontal and parietal sensors (median difference, 0.0293; 95% CI, -0.0016 to 0.0397). At the source level, similar results were observed (median difference, 0.0201; 95% CI, -0.0025 to 0.0482) with prominent alterations in the connectivity between default-mode and frontoparietal regions. Anesthesia resulted in fragmented modules as modularity increased at the sensor (median difference, 0.0562; 95% CI, 0.0048 to 0.1298) and source (median difference, 0.0548; 95% CI, -0.0040 to 0.1074) levels. CONCLUSIONS Sevoflurane is associated with decreased capacity for efficient information transfer in the infant brain. Such findings strengthen the hypothesis that conscious processing relies on an efficient system of integrated information transfer across the whole brain.
Collapse
|
384
|
Régio Brambilla C, Veselinović T, Rajkumar R, Mauler J, Orth L, Ruch A, Ramkiran S, Heekeren K, Kawohl W, Wyss C, Kops ER, Scheins J, Tellmann L, Boers F, Neumaier B, Ermert J, Herzog H, Langen K, Jon Shah N, Lerche C, Neuner I. mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Hum Brain Mapp 2020; 41:2762-2781. [PMID: 32150317 PMCID: PMC7294054 DOI: 10.1002/hbm.24976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission—in particularly mGluR5—as a possible connection to a shared vulnerability.
Collapse
Affiliation(s)
- Cláudia Régio Brambilla
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Ravichandran Rajkumar
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| | - Jörg Mauler
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Linda Orth
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Andrej Ruch
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Shukti Ramkiran
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Wolfram Kawohl
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Christine Wyss
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZürichSwitzerland
| | - Elena Rota Kops
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Jürgen Scheins
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Lutz Tellmann
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Frank Boers
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Bernd Neumaier
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Johannes Ermert
- INM‐5, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Hans Herzog
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Karl‐Josef Langen
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- Department of Nuclear MedicineRWTH Aachen UniversityAachenGermany
| | - N. Jon Shah
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- JARA – BRAIN – Translational MedicineAachenGermany
- INM‐11, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Christoph Lerche
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
| | - Irene Neuner
- INM‐4, Forschungszentrum Jülich GmbH, Wilhelm‐Johnen‐StraßeInstitute of Neuroscience and MedicineJülichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
- JARA – BRAIN – Translational MedicineAachenGermany
| |
Collapse
|
385
|
Skjulsvik AJ, Bø HK, Jakola AS, Berntsen EM, Bø LE, Reinertsen I, Myrmel KS, Sjåvik K, Åberg K, Berg T, Dai HY, Kloster R, Torp SH, Solheim O. Is the anatomical distribution of low-grade gliomas linked to regions of gliogenesis? J Neurooncol 2020; 147:147-157. [PMID: 31983026 PMCID: PMC7075820 DOI: 10.1007/s11060-020-03409-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/20/2020] [Indexed: 12/02/2022]
Abstract
INTRODUCTION According to the stem cell theory, two neurogenic niches in the adult human brain may harbor cells that initiate the formation of gliomas: The larger subventricular zone (SVZ) and the subgranular zone (SGZ) in the hippocampus. We wanted to explore whether defining molecular markers in low-grade gliomas (LGG; WHO grade II) are related to distance to the neurogenic niches. METHODS Patients treated at two Norwegian university hospitals with population-based referral were included. Eligible patients had histopathological verified supratentorial low-grade glioma. IDH mutational status and 1p19q co-deletion status was retrospectively assessed. 159 patients were included, and semi-automatic tumor segmentation was done from pre-treatment T2-weighted (T2W) or Fluid-Attenuated Inversion Recovery (FLAIR) images. 3D maps showing the anatomical distribution of the tumors were then created for each of the three molecular subtypes (IDH mutated/1p19q co-deleted, IDH mutated and IDH wild-type). Both distance from tumor center and tumor border to the neurogenic niches were recorded. RESULTS In this population-based cohort of previously untreated low-grade gliomas, we found that low-grade gliomas are more often found closer to the SVZ than the SGZ, but IDH wild-type tumors are more often found near SGZ. CONCLUSION Our study suggests that the stem cell origin of IDH wild-type and IDH mutated low-grade gliomas may be different.
Collapse
Affiliation(s)
- Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
- Departments of Clinical and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hans Kristian Bø
- Department of Diagnostic Imaging, Nordland Hospital Trust, Bodø, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neuroscience and Movement Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Olav Kyrres Gate, 7006 Trondheim, Norway
| | - Lars Eirik Bø
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | | | - Kristin Sjåvik
- Department of Neurosurgery, University Hospital of North Norway, Tromsö, Norway
| | - Kristin Åberg
- Department of Clinical Pathology, University Hospital of North Norway, Tromsö, Norway
| | - Thomas Berg
- Department of Clinical Pathology, University Hospital of North Norway, Tromsö, Norway
| | - Hong Yan Dai
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Roar Kloster
- Department of Neurosurgery, University Hospital of North Norway, Tromsö, Norway
| | - Sverre Helge Torp
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
- Departments of Clinical and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs University Hospital, Olav Kyrres Gate, 7006 Trondheim, Norway
- Department of Neuroscience and Movement Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
386
|
Yaakub SN, Heckemann RA, Keller SS, McGinnity CJ, Weber B, Hammers A. On brain atlas choice and automatic segmentation methods: a comparison of MAPER & FreeSurfer using three atlas databases. Sci Rep 2020; 10:2837. [PMID: 32071355 PMCID: PMC7028906 DOI: 10.1038/s41598-020-57951-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/27/2019] [Indexed: 11/09/2022] Open
Abstract
Several automatic image segmentation methods and few atlas databases exist for analysing structural T1-weighted magnetic resonance brain images. The impact of choosing a combination has not hitherto been described but may bias comparisons across studies. We evaluated two segmentation methods (MAPER and FreeSurfer), using three publicly available atlas databases (Hammers_mith, Desikan-Killiany-Tourville, and MICCAI 2012 Grand Challenge). For each combination of atlas and method, we conducted a leave-one-out cross-comparison to estimate the segmentation accuracy of FreeSurfer and MAPER. We also used each possible combination to segment two datasets of patients with known structural abnormalities (Alzheimer's disease (AD) and mesial temporal lobe epilepsy with hippocampal sclerosis (HS)) and their matched healthy controls. MAPER was better than FreeSurfer at modelling manual segmentations in the healthy control leave-one-out analyses in two of the three atlas databases, and the Hammers_mith atlas database transferred to new datasets best regardless of segmentation method. Both segmentation methods reliably identified known abnormalities in each patient group. Better separation was seen for FreeSurfer in the AD and left-HS datasets, and for MAPER in the right-HS dataset. We provide detailed quantitative comparisons for multiple anatomical regions, thus enabling researchers to make evidence-based decisions on their choice of atlas and segmentation method.
Collapse
Affiliation(s)
- Siti Nurbaya Yaakub
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rolf A Heckemann
- MedTech West at Sahlgrenska University Hospital Gothenburg, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
387
|
Kramer V, Brooks AF, Haeger A, Kuljis RO, Rafique W, Koeppe RA, Raffel DM, Frey KA, Amaral H, Scott PJH, Riss PJ. Evaluation of [ 18F]- N-Methyl lansoprazole as a Tau PET Imaging Agent in First-in-Human Studies. ACS Chem Neurosci 2020; 11:427-435. [PMID: 31898886 DOI: 10.1021/acschemneuro.9b00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Development of positron emission tomography (PET) imaging agents capable of quantifying tau aggregates in neurodegenerative disorders such as Alzheimer's disease (AD) is of enormous importance in the field of dementia research. The aim of the present study was to conduct first-in-man imaging studies with the potential novel tau imaging agent [18F]N-methyl lansoprazole ([18F]NML). Herein we report validation of the synthesis of [18F]NML for clinical use by labeling the trifluoromethyl group via radiofluorination of the corresponding gem-difluoro enol ether precursor. This is the first use of this method for clinical production of PET radiotracers and confirmed that it can be readily implemented at multiple production facilities to provide [18F]NML in good noncorrected radiochemical yield (3.4 ± 1.5 GBq, 4.6% ± 2.6%) and molar activity (120.1 ± 186.3 GBq/μmol), excellent radiochemical purity (>97%), and suitable for human use (n = 15). With [18F]NML in hand, we conducted rodent biodistribution, estimates of human dosimetry, and preliminary evaluation of [18F]NML in human subjects at two imaging sites. Healthy controls (n = 4) and mildly cognitively impaired (MCI) AD patients (n = 6) received [18F]NML (tau), [18F]AV1451 (tau), and [18F]florbetaben or [18F]florbetapir (amyloid) PET scans. A single progressive supranuclear palsy (PSP) patient also received [18F]NML and [18F]AV1451 PET scans. [18F]NML showed good brain uptake, reasonable pharmacokinetics, and appropriate imaging characteristics in healthy controls. The mean ± SD of the administered mass of [18F/19F]NML was 2.01 ± 2.17 μg (range, 0.16-8.27 μg) and the mean administered activity was 350 ± 62 MBq (range, 199-403 MBq). There were no adverse or clinically detectable pharmacologic effects in any of the 11 subjects, and no significant changes in vital signs were observed. However, despite high affinity for tau in vitro, brain retention in MCI/AD and PSP patients was low, and there was no evidence of specific signals in vivo that corresponded to tau. Although it is still unclear why clinical translation of the radiotracer was unsuccessful, we nevertheless conclude that further development of [18F]NML as a tau PET imaging agent is not warranted at this time.
Collapse
Affiliation(s)
- Vasko Kramer
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
- Positronpharma SA, Providencia, 7500921 Santiago Chile
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arlette Haeger
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
| | - Rodrigo O. Kuljis
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
| | - Waqas Rafique
- realomics SRI, Kjemisk Institutt, Universitetet i Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David M. Raffel
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kirk A. Frey
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Horacio Amaral
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
- Positronpharma SA, Providencia, 7500921 Santiago Chile
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Patrick J. Riss
- realomics SRI, Kjemisk Institutt, Universitetet i Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
- Klinik for Kirurgi og Nevrofag, Oslo Universitets Sykehus HF−Rikshospitalet, Postboks
4950 Nydalen, 0424 Oslo, Norway
- Norsk Medisinsk Syklotronsenter AS, Gaustad, Postboks
4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
388
|
van de Kreeke JA, Nguyen HT, Konijnenberg E, Tomassen J, den Braber A, Ten Kate M, Yaqub M, van Berckel B, Lammertsma AA, Boomsma DI, Tan SH, Verbraak F, Visser PJ. Optical coherence tomography angiography in preclinical Alzheimer's disease. Br J Ophthalmol 2020; 104:157-161. [PMID: 31118186 PMCID: PMC7025728 DOI: 10.1136/bjophthalmol-2019-314127] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS As a protrusion from the brain, the retina might reflect the status of the brain. Previous studies showed a decrease in vessel density and foveal avascular zone (FAZ) enlargement on optical coherence tomography angiography (OCTA) in individuals suffering from Alzheimer's disease (AD). This study aims to assess whether such changes are already present in preclinical stages of AD, in a population of monozygotic (MZ) twins. METHODS 124 cognitively healthy individuals (MZ twins, ages 60-93 years) underwent [18F]flutemetamol amyloid positron emission tomography (PET) scanning and OCTA. PET scans were visually rated for cortical amyloid-beta (Aβ) positivity. Parametric global cortical non-displaceable binding potential (BPND) was used as a continuous measure for Aβ aggregation. FAZ size and vessel densities for the inner and outer ring of the macular ETDRS grid and in a 3-6 mm ring around the optic nerve head (ONH) were measured.OCTA measures were associated with visual Aβ score, BPND and amyloid load estimated by twin concordance on visual Aβ score. Twin correlations were estimated as a measure of maximum heritability of OCTA measures. RESULTS 13 of 124 participants were Aβ+. Aβ+ individuals had significantly higher vessel density than Aβ- individuals in all regions but did not differ in FAZ size. Twin analyses showed a positive association between and vessel densities in all regions. BPND tended to be associated with higher vessel density in the inner ring. Twin correlations were moderate/high for all OCTA parameters except vessel density around the ONH, which correlated weakly. CONCLUSION Retinal vessel density was higher in individuals with preclinical AD.
Collapse
Affiliation(s)
| | - Hoang-Ton Nguyen
- Department of Ophthalmology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Elles Konijnenberg
- Alzheimer Center, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mara Ten Kate
- Alzheimer Center, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Bart van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stevie H Tan
- Department of Ophthalmology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Frank Verbraak
- Department of Ophthalmology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | | |
Collapse
|
389
|
Polinder-Bos HA, Elting JWJ, Aries MJ, García DV, Willemsen AT, van Laar PJ, Kuipers J, Krijnen WP, Slart RH, Luurtsema G, Westerhuis R, Gansevoort RT, Gaillard CA, Franssen CF. Changes in cerebral oxygenation and cerebral blood flow during hemodialysis - A simultaneous near-infrared spectroscopy and positron emission tomography study. J Cereb Blood Flow Metab 2020; 40:328-340. [PMID: 30540219 PMCID: PMC7370620 DOI: 10.1177/0271678x18818652] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Near-infrared spectroscopy (NIRS) is used to monitor cerebral tissue oxygenation (rSO2) depending on cerebral blood flow (CBF), cerebral blood volume and blood oxygen content. We explored whether NIRS might be a more easy applicable proxy to [15O]H2O positron emission tomography (PET) for detecting CBF changes during hemodialysis. Furthermore, we compared potential determinants of rSO2 and CBF. In 12 patients aged ≥ 65 years, NIRS and PET were performed simultaneously: before (T1), early after start (T2), and at the end of hemodialysis (T3). Between T1 and T3, the relative change in frontal rSO2 (ΔrSO2) was -8 ± 9% (P = 0.001) and -5 ± 11% (P = 0.08), whereas the relative change in frontal gray matter CBF (ΔCBF) was -11 ± 18% (P = 0.009) and -12 ± 16% (P = 0.007) for the left and right hemisphere, respectively. ΔrSO2 and ΔCBF were weakly correlated for the left (ρ 0.31, P = 0.4), and moderately correlated for the right (ρ 0.69, P = 0.03) hemisphere. The Bland-Altman plot suggested underestimation of ΔCBF by NIRS. Divergent associations of pH, pCO2 and arterial oxygen content with rSO2 were found compared to corresponding associations with CBF. In conclusion, NIRS could be a proxy to PET to detect intradialytic CBF changes, although NIRS and PET capture different physiological parameters of the brain.
Collapse
Affiliation(s)
- Harmke A Polinder-Bos
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Willem J Elting
- Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Jh Aries
- Department of Intensive Care, University of Maastricht, University Medical Center Maastricht, Maastricht, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon Tm Willemsen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter J van Laar
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Wim P Krijnen
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, The Netherlands.,Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
| | - Riemer Hja Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Ron T Gansevoort
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carlo Ajm Gaillard
- Division of Internal Medicine and Dermatology, Department of Nephrology, University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Casper Fm Franssen
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
390
|
Golla SSV, Wolters EE, Timmers T, Ossenkoppele R, van der Weijden CWJ, Scheltens P, Schwarte L, Mintun MA, Devous Sr MD, Schuit RC, Windhorst AD, Lammertsma AA, Yaqub M, van Berckel BNM, Boellaard R. Parametric methods for [ 18F]flortaucipir PET. J Cereb Blood Flow Metab 2020; 40:365-373. [PMID: 30569813 PMCID: PMC7044757 DOI: 10.1177/0271678x18820765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
[18F]Flortaucipir is a PET tau tracer used to visualize tau binding in Alzheimer's disease (AD) in vivo. The present study evaluated the performance of several methods to obtain parametric images of [18F]flortaucipir. One hundred and thirty minutes dynamic PET scans were performed in 10 AD patients and 10 controls. Parametric images were generated using different linearization and basis function approaches. Regional binding potential (BPND) and volume of distribution (VT) values obtained from the parametric images were compared with corresponding values derived using the reversible two-tissue compartment model (2T4k_VB). Performance of SUVr parametric images was assessed by comparing values with distribution volume ratio (DVR) and SRTM-derived BPND estimates obtained using non-linear regression (NLR). Spectral analysis (SA) (r2 = 0.92; slope = 0.99) derived VT correlated well with NLR-derived VT. RPM (r2 = 0.95; slope = 0.98) derived BPND correlated well with NLR-derived DVR. Although SUVr80-100 min correlated well with NLR-derived DVR (r2 = 0.91; slope = 1.09), bias in SUVr appeared to depend on uptake time and underlying level of specific binding. In conclusion, RPM and SA provide parametric images comparable to the NLR estimates. Individual SUVr values are biased compared with DVR and this bias requires further study in a larger dataset in order to understand its consequences.
Collapse
Affiliation(s)
- Sandeep SV Golla
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Emma E Wolters
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
- Alzheimer Center and Department of
Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
- Alzheimer Center and Department of
Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Rik Ossenkoppele
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
- Alzheimer Center and Department of
Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Chris WJ van der Weijden
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
- Alzheimer Center and Department of
Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of
Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Lothar Schwarte
- Department of Anaesthesiology, Amsterdam
Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | - Robert C Schuit
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Bart NM van Berckel
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear
Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The
Netherlands
| |
Collapse
|
391
|
Beyer L, Brendel M, Scheiwein F, Sauerbeck J, Hosakawa C, Alberts I, Shi K, Bartenstein P, Ishii K, Seibyl J, Cumming P, Rominger A. Improved Risk Stratification for Progression from Mild Cognitive Impairment to Alzheimer's Disease with a Multi-Analytical Evaluation of Amyloid-β Positron Emission Tomography. J Alzheimers Dis 2020; 74:101-112. [PMID: 31985461 DOI: 10.3233/jad-190818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) accumulation in brain of patients with suspected Alzheimer's disease (AD) can be assessed by positron emission tomography (PET) in vivo. While visual classification prevails in the clinical routine, semiquantitative PET analyses may enable more reliable evaluation of cases with a visually uncertain, borderline Aβ accumulation. OBJECTIVE We evaluated different analysis approaches (visual/semiquantitative) to find the most accurate and sensitive interpretation of Aβ-PET for predicting risk of progression from mild cognitive impairment (MCI) to AD. METHODS Based on standard uptake value (SUV) ratios of a cortical-composite volume of interest of 18F-AV45-PET from MCI subjects (n = 396, ADNI database), we compared three different reference region (cerebellar grey matter, CBL; brainstem, BST; white matter, WM) normalizations and the visual read by receiver operator characteristics for calculating a hazard ratio (HR) for progression to Alzheimer's disease dementia (ADD). RESULTS During a mean follow-up time of 45.6±13.0 months, 28% of the MCI cases (110/396) converted to ADD. Among the tested methods, the WM reference showed best discriminatory power and progression-risk stratification (HRWM of 4.4 [2.6-7.6]), but the combined results of the visual and semiquantitative analysis with all three reference regions showed an even higher discriminatory power. CONCLUSION A multi-analytical composite of visual and semiquantitative reference tissue analyses of 18F-AV45-PET gave improved risk stratification for progression from MCI to ADD relative to performance of single read-outs. This optimized approach is of special interest for prospective treatment trials, which demand a high accuracy.
Collapse
Affiliation(s)
- Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU, Munich, Germany
| | - Franziska Scheiwein
- Department of Nuclear Medicine, University Hospital of Munich, LMU, Munich, Germany
| | - Julia Sauerbeck
- Department of Nuclear Medicine, University Hospital of Munich, LMU, Munich, Germany
| | - Chisa Hosakawa
- Department of Radiology, Kindai University, Osaka, Japan
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU, Munich, Germany
| | - Kazunari Ishii
- Department of Radiology, Kindai University, Osaka, Japan
| | | | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland.,School of Psychology and Counseling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | | |
Collapse
|
392
|
Nicastro N, Mak E, Williams GB, Surendranathan A, Bevan-Jones WR, Passamonti L, Vàzquez Rodrìguez P, Su L, Arnold R, Fryer TD, Hong YT, Aigbirhio FI, Rowe JB, O'Brien JT. Correlation of microglial activation with white matter changes in dementia with Lewy bodies. Neuroimage Clin 2020; 25:102200. [PMID: 32032816 PMCID: PMC7005463 DOI: 10.1016/j.nicl.2020.102200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/02/2023]
Abstract
Dementia with Lewy bodies (DLB) is characterized by alpha-synuclein protein deposition with variable degree of concurrent Alzheimer's pathology. Neuroinflammation is also increasingly recognized as a significant contributor to degeneration. We aimed to examine the relationship between microglial activation as measured with [11C]-PK11195 brain PET, MR diffusion tensor imaging (DTI) and grey matter atrophy in DLB. Nineteen clinically probable DLB and 20 similarly aged controls underwent 3T structural MRI (T1-weighted) and diffusion-weighted imaging. Eighteen DLB subjects also underwent [11C]-PK11195 PET imaging and 15 had [11C]-Pittsburgh compound B amyloid PET, resulting in 9/15 being amyloid-positive. We used Computational Anatomy Toolbox (CAT12) for volume-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) for DTI to assess group comparisons between DLB and controls and to identify associations of [11C]-PK11195 binding with grey/white matter changes and cognitive score in DLB patients. VBM analyses showed that DLB had extensive reduction of grey matter volume in superior frontal, temporal, parietal and occipital cortices (family-wise error (FWE)-corrected p < 0.05). TBSS showed widespread changes in DLB for all DTI parameters (reduced fractional anisotropy, increased diffusivity), involving the corpus callosum, corona radiata and superior longitudinal fasciculus (FWE-corrected p < 0.05). Higher [11C]-PK11195 binding in parietal cortices correlated with widespread lower mean and radial diffusivity in DLB patients (FWE-corrected p < 0.05). Furthermore, preserved cognition in DLB (higher Addenbrookes Cognitive Evaluation revised score) also correlated with higher [11C]-PK11195 binding in frontal, temporal, and occipital lobes. However, microglial activation was not significantly associated with grey matter changes. Our study suggests that increased microglial activation is associated with a relative preservation of white matter and cognition in DLB, positioning neuroinflammation as a potential early marker of DLB etio-pathogenesis.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, UK,Department of Clinical Neurosciences, Geneva University Hospitals, Switzerland
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, UK
| | | | | | | | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Consiglio Nazionale delle Ricerche (CNR), Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milano, Italy
| | | | - Li Su
- Department of Psychiatry, University of Cambridge, UK,China-UK Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
| | - Robert Arnold
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D. Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Young T. Hong
- Wolfson Brain Imaging Centre, University of Cambridge, UK,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - John T. O'Brien
- Department of Psychiatry, University of Cambridge, UK,Corresponding author at: Department of Psychiatry, University of Cambridge School of Clinical Medicine, Box 189, Level E4 Cambridge Biomedical Campus, Cambridge CB2 0SP, United Kingdom.
| |
Collapse
|
393
|
The Whole Picture: From Isolated to Global MRI Measures of Neurovascular and Neurodegenerative Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 31894568 DOI: 10.1007/978-3-030-31904-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Structural magnetic resonance imaging (MRI) has been used to characterise the appearance of the brain in cerebral small vessel disease (SVD), ischaemic stroke, cognitive impairment, and dementia. SVD is a major cause of stroke and dementia; features of SVD include white matter hyperintensities (WMH) of presumed vascular origin, lacunes of presumed vascular origin, microbleeds, and perivascular spaces. Cognitive impairment and dementia have traditionally been stratified into subtypes of varying origin, e.g., vascular dementia versus dementia of the Alzheimer's type (Alzheimer's disease; AD). Vascular dementia is caused by reduced blood flow in the brain, often as a result of SVD, and AD is thought to have its genesis in the accumulation of tau and amyloid-beta leading to brain atrophy. But after early seminal studies in the 1990s found neurovascular disease features in around 30% of AD patients, it is becoming recognised that so-called "mixed pathologies" (of vascular and neurodegenerative origin) exist in many more patients diagnosed with stroke, only one type of dementia, or cognitive impairment. On the back of these discoveries, attempts have recently been made to quantify the full extent of degenerative and vascular disease in the brain in vivo on MRI. The hope being that these "global" methods may one day lead to better diagnoses of disease and provide more sensitive measurements to detect treatment effects in clinical trials. Indeed, the "Total MRI burden of cerebral small vessel disease", the "Brain Health Index" (BHI), and "MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease" have all been shown to have stronger associations with clinical and cognitive phenotypes than individual brain MRI features. This chapter will review individual structural brain MRI features commonly seen in SVD, stroke, and dementia. The relationship between these features and differing clinical and cognitive phenotypes will be discussed along with developments in their measurement and quantification. The chapter will go on to review emerging methods for quantifying the collective burden of structural brain MRI findings and how these "whole picture" methods may lead to better diagnoses of neurovascular and neurodegenerative disorders.
Collapse
|
394
|
Hansen SJ, McMahon KL, de Zubicaray GI. The neurobiology of taboo language processing: fMRI evidence during spoken word production. Soc Cogn Affect Neurosci 2020; 14:271-279. [PMID: 30715549 PMCID: PMC6399611 DOI: 10.1093/scan/nsz009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Every language has words deemed to be socially inappropriate or ‘taboo’ to utter. Taboo word production appears prominently in language disorders following brain injury. Yet, we know little about the cognitive and neural mechanisms involved in processing taboo compared to neutral language. In the present study, we introduced taboo distractor words in the picture word interference paradigm during functional magnetic resonance imaging to investigate how these words influence spoken word production. Taboo distractor words significantly slowed picture-naming latencies compared to neutral words. This interference effect was associated with increased blood oxygen level dependent signal across a distributed thalamo-cortical network including bilateral anterior cingulate cortex and left inferior frontal gyrus, left posterior middle temporal gyrus and right thalamus. We interpret our findings as being consistent with an account integrating both domain-general attention-capture/distractor blocking and language-specific mechanisms in processing taboo words during spoken word production.
Collapse
Affiliation(s)
- Samuel J Hansen
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Greig I de Zubicaray
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
395
|
Visualization of AMPA receptors in living human brain with positron emission tomography. Nat Med 2020; 26:281-288. [PMID: 31959988 DOI: 10.1038/s41591-019-0723-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
Although aberrations in the number and function of glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors are thought to underlie neuropsychiatric disorders, no methods are currently available for visualizing AMPA receptors in the living human brain. Here we developed a positron emission tomography (PET) tracer for AMPA receptors. A derivative of 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide radiolabeled with 11C ([11C]K-2) showed specific binding to AMPA receptors. Our clinical trial with healthy human participants confirmed reversible binding of [11C]K-2 in the brain according to Logan graphical analysis (UMIN000020975; study design: non-randomized, single arm; primary outcome: dynamics and distribution volumes of [11C]K-2 in the brain; secondary outcome: adverse events of [11C]K-2 during the 4-10 d following dosing; this trial met prespecified endpoints). In an exploratory clinical study including patients with epilepsy, we detected increased [11C]K-2 uptake in the epileptogenic focus of patients with mesial temporal lobe epilepsy, which was closely correlated with the local AMPA receptor protein distribution in surgical specimens from the same individuals (UMIN000025090; study design: non-randomized, single arm; primary outcome: correlation between [11C]K-2 uptake measured with PET before surgery and AMPA receptor protein density examined by biochemical study after surgery; secondary outcome: adverse events during the 7 d following PET scan; this trial met prespecified endpoints). Thus, [11C]K-2 is a potent PET tracer for AMPA receptors, potentially providing a tool to examine the involvement of AMPA receptors in neuropsychiatric disorders.
Collapse
|
396
|
Ceccarini J, Bourgeois S, Van Weehaeghe D, Goffin K, Vandenberghe R, Vandenbulcke M, Sunaert S, Van Laere K. Direct prospective comparison of 18F-FDG PET and arterial spin labelling MR using simultaneous PET/MR in patients referred for diagnosis of dementia. Eur J Nucl Med Mol Imaging 2020; 47:2142-2154. [PMID: 31960098 DOI: 10.1007/s00259-020-04694-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/12/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE 18F-FDG PET is routinely used as an imaging marker in the early and differential diagnosis of dementing disorders and has incremental value over the clinical neurological and neuropsychological evaluation. Perfusion MR imaging by means of arterial spin labelling (ASL) is an alternative modality to indirectly measure neuronal functioning and could be used as complement measurement in a single MR session in the workup of dementia. Using simultaneous PET-MR, we performed a direct head-to-head comparison between enhanced multiplane tagging ASL (eASL) and 18F-FDG PET in a true clinical context of subjects referred for suspicion of neurodegenerative dementia. METHODS Twenty-seven patients underwent a 20-min 18F-FDG PET/MR and simultaneously acquired eASL on a GE Signa PET/MR. Data were compared with 30 screened age- and gender-matched healthy controls. Both integral eASL and 18F-FDG datasets were analysed visually by two readers unaware of the final clinical diagnosis, either in normal/abnormal classes, or full differential diagnosis (normal, Alzheimer type dementia [AD], dementia with Lewy Bodies [LBD], frontotemporal dementia [FTD] or other). Reader confidence was assessed with a rating scale (range 1-4). Data were also analysed semiquantitatively by VOI and voxel-based analyses. RESULTS The ground truth diagnosis for the patient group resulted in 14 patients with a neurodegenerative cognitive disorder (AD, FTD, LBD) and 13 patients with no arguments for an underlying neurodegenerative cause. Visual analysis resulted in equal specificity (0.70) for differentiating normal and abnormal cases between the two modalities, but in a higher sensitivity (0.93), confidence rating (0.64) and interobserver agreement for 18F-FDG PET compared with eASL. The same was true for assigning a specific differential diagnosis (sensitivity: and 0.39 for 18F-FDG PET and eASL, respectively). Semiquantitative analyses revealed prototypical patterns for AD and FTD, with both higher volumes of abnormality and intensity differences on 18F-FDG PET. CONCLUSION In a direct head-to-head comparison on a simultaneous GE Signa PET/MR, 18F-FDG PET performed better compared with ASL in terms of sensitivity and reader confidence, as well as volume and intensity of abnormalities. However, using pure semiquantitative analysis, similar diagnostic accuracy between the two modalities was obtained. Therefore, ASL may still serve as complement to neuroreceptor or protein deposition PET studies when a single simultaneous investigation is warranted.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sophie Bourgeois
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Karolien Goffin
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Stefan Sunaert
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
397
|
La Joie R, Visani AV, Baker SL, Brown JA, Bourakova V, Cha J, Chaudhary K, Edwards L, Iaccarino L, Janabi M, Lesman-Segev OH, Miller ZA, Perry DC, O'Neil JP, Pham J, Rojas JC, Rosen HJ, Seeley WW, Tsai RM, Miller BL, Jagust WJ, Rabinovici GD. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med 2020; 12:eaau5732. [PMID: 31894103 PMCID: PMC7035952 DOI: 10.1126/scitranslmed.aau5732] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
β-Amyloid plaques and tau-containing neurofibrillary tangles are the two neuropathological hallmarks of Alzheimer's disease (AD) and are thought to play crucial roles in a neurodegenerative cascade leading to dementia. Both lesions can now be visualized in vivo using positron emission tomography (PET) radiotracers, opening new opportunities to study disease mechanisms and improve patients' diagnostic and prognostic evaluation. In a group of 32 patients at early symptomatic AD stages, we tested whether β-amyloid and tau-PET could predict subsequent brain atrophy measured using longitudinal magnetic resonance imaging acquired at the time of PET and 15 months later. Quantitative analyses showed that the global intensity of tau-PET, but not β-amyloid-PET, signal predicted the rate of subsequent atrophy, independent of baseline cortical thickness. Additional investigations demonstrated that the specific distribution of tau-PET signal was a strong indicator of the topography of future atrophy at the single patient level and that the relationship between baseline tau-PET and subsequent atrophy was particularly strong in younger patients. These data support disease models in which tau pathology is a major driver of local neurodegeneration and highlight the relevance of tau-PET as a precision medicine tool to help predict individual patient's progression and design future clinical trials.
Collapse
Affiliation(s)
- Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Adrienne V Visani
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jungho Cha
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kiran Chaudhary
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David C Perry
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - James P O'Neil
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Richard M Tsai
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
398
|
Kark SM, Slotnick SD, Kensinger EA. Forgotten but not gone: FMRI evidence of implicit memory for negative stimuli 24 hours after the initial study episode. Neuropsychologia 2020; 136:107277. [PMID: 31783080 PMCID: PMC7012535 DOI: 10.1016/j.neuropsychologia.2019.107277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Endel Tulving conducted pioneering work on the explicit and implicit memory systems and demonstrated that priming effects can be long-lasting. It is also well-established that emotion can amplify explicit and implicit memory. Prior work has utilized repetition suppression (RS) of the fMRI-BOLD signal-a reduction in the magnitude of activity over repeated presentations of stimuli-to index implicit memory. Using an explicit recognition memory paradigm, we examined emotional modulation of long-term implicit memory effects as revealed by repetition suppression (i.e., comparing second-exposure forgotten items to first-exposure correct rejections). Forty-seven participants incidentally encoded line-drawings of negative, positive, and neutral scenes followed by the full color image. Twenty-four hours later, participants underwent fMRI during a recognition memory test in which old and new line-drawings were presented. Implicit and explicit memory effects were defined by the contrasts of New-Correct Rejections > Old-Misses and Old-Hits > New-Correct Rejections, respectively. Wide-spread Negative RS was found in frontal and occipito-temporal cortex that was greater than Neutral RS in the right orbito-frontal cortex and inferior frontal gyri. Valence-specific Negative RS, compared to Positive RS, was observed in the left inferior occipital gyrus. There was no strong evidence for emotional modulation of amygdala RS, but functional connectivity analyses revealed valence-specificity: Negative and positive valence were associated with repetition suppression and repetition enhancement of amygdala-occipital connectivity, respectively. Negative implicit memory patterns in most frontal regions-but not occipital areas-overlapped with explicit memory effects. Thus, implicit memory effects for a single visual stimulus presentation are modulated by emotional valence, can be observed 24hours after initial exposure, and show some overlap with explicit memory.
Collapse
Affiliation(s)
- Sarah M Kark
- Department of Psychology, McGuinn Hall Room 300, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA.
| | - Scott D Slotnick
- Department of Psychology, McGuinn Hall Room 300, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA.
| | - Elizabeth A Kensinger
- Department of Psychology, McGuinn Hall Room 300, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
399
|
Tavares V, Prata D, Ferreira HA. Comparing SPM12 and CAT12 segmentation pipelines: a brain tissue volume-based age and Alzheimer's disease study. J Neurosci Methods 2019; 334:108565. [PMID: 31887318 DOI: 10.1016/j.jneumeth.2019.108565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain volumes have been used as research biomarkers both in health and in Alzheimer's disease(AD). In order to improve the comparability between studies and aid future analytical software platform choice in the research setting, here we compare two segmentation pipelines of structural brain magnetic resonance imaging(sMRI): the SPM12 toolbox, and a SPM12 add-on, the CAT12 toolbox. METHODS We segmented 1.5T and 3T T1-weighted sMRI images (from the OASIS-brain database) using both pipelines and compared them in terms of their impact on: 1)the effect of age on the total grey matter(GM) and white matter(WM), and on the hippocampi GM volumes in a healthy sample(n = 238); 2)the effect of AD diagnosis on the same volume measures; and 3)the accuracy of each volume measure detecting diagnosis (100 patients with AD and 78 age- and gender-matched healthy subjects). RESULTS AND COMPARISON BETWEEN METHODS Our results demonstrated that: 1)volume estimates from SPM12 were highly correlated with the ones from CAT12, albeit absolute differences between pipelines were tissue specific; 2)the choice of pipeline modulated the effect of age on all volume measures and of diagnosis on hippocampi GM volumes computed from 3 T data; and 3)pipeline had no impact on the accuracy of any brain volume measure detecting AD diagnosis. CONCLUSIONS Our findings indicate that other studies should take these pipeline effects on age and AD diagnosis, into account, for improved comparability in previous literature. Additionally, we encourage future studies to use CAT12 as this is a more advanced and computationally efficient brain segmentation tool.
Collapse
Affiliation(s)
- Vânia Tavares
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Portugal.
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Portugal; Instituto Universitário de Lisboa (ISCTE-IUL), CIS-IUL, Lisboa, Portugal; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| |
Collapse
|
400
|
Hofer C, Kwitt R, Höller Y, Trinka E, Uhl A. An empirical assessment of appearance descriptors applied to MRI for automated diagnosis of TLE and MCI. Comput Biol Med 2019; 117:103592. [PMID: 32072961 DOI: 10.1016/j.compbiomed.2019.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Differential diagnosis of mild cognitive impairment MCI and temporal lobe epilepsy TLE is a debated issue, specifically because these conditions may coincide in the elderly population. We evaluate automated differential diagnosis based on characteristics derived from structural brain MRI of different brain regions. METHODS In 22 healthy controls, 19 patients with MCI, and 17 patients with TLE we used scale invariant feature transform (SIFT), local binary patterns (LBP), and wavelet-based features and investigate their predictive performance for MCI and TLE. RESULTS The classification based on SIFT features resulted in an accuracy of 81% of MCI vs. TLE and reasonable generalizability. Local binary patterns yielded satisfactory diagnostic performance with up to 94.74% sensitivity and 88.24% specificity in the right Thalamus for the distinction of MCI vs. TLE, but with limited generalizable. Wavelet features yielded similar results as LPB with 94.74% sensitivity and 82.35% specificity but generalize better. SIGNIFICANCE Features beyond volume analysis are a valid approach when applied to specific regions of the brain. Most significant information could be extracted from the thalamus, frontal gyri, and temporal regions, among others. These results suggest that analysis of changes of the central nervous system should not be limited to the most typical regions of interest such as the hippocampus and parahippocampal areas. Region-independent approaches can add considerable information for diagnosis. We emphasize the need to characterize generalizability in future studies, as our results demonstrate that not doing so can lead to overestimation of classification results. LIMITATIONS The data used within this study allows for separation of MCI and TLE subjects using a simple age threshold. While we present a strong indication that the presented method is age-invariant and therefore agnostic to this situation, new data would be needed for a rigorous empirical assessment of this findings.
Collapse
Affiliation(s)
- Christoph Hofer
- Department of Computer Science, University of Salzburg, Austria.
| | - Roland Kwitt
- Department of Computer Science, University of Salzburg, Austria.
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Eugen Trinka
- Spinal Cord Injury & Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Andreas Uhl
- Department of Computer Science, University of Salzburg, Austria.
| |
Collapse
|