351
|
Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:107-23. [PMID: 20549944 DOI: 10.1007/978-1-4419-6066-5_10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells migration is necessary for proper embryonic development and adult tissue remodeling. Its mechanisms determine the physiopathology of processes such as neuronal targeting, inflammation, wound healing and metastatic spread. Crawling of cells onto solid surfaces requires a controlled sequence of cell protrusions and retractions that mainly depends on sophisticated regulation of the actin cytoskeleton, although the contribution of microtubules should not be neglected. This process is triggered and modulated by a combination of diffusible and fixed environmental signals. External cues are sensed and integrated by membrane receptors, including integrins, which transduce these signals into cellular signaling pathways, often centered on the small GTPase proteins belonging to the Rho family. These pathways regulate the coordinated cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachement at the front and rear side of cells finding their way through the extracellular spaces. The overall process involves continuous modulation of cell motility, shape and volume, in which ion channels play major roles. In particular, Ca2+ signals have both global and local regulatory effects on cell motility, because they target the contractile proteins as well as many regulatory proteins. After reviewing the fundamental mechanisms of eukaryotic cell migration onto solid substrates, we briefly describe how integrin receptors and ion channels are involved in cell movement. We next examine a few processes in which these mechanisms have been studied in depth. We thus illustrate how integrins and K+ channels control cell volume and migration, how intracellular Ca2+ homeostasis affects the motility of neuronal growth cones and what is known about the ion channel roles in epithelial cell migration. These mechanisms are implicated in a variety of pathological processes, such as the disruption of neural circuits and wound healing. Finally, we describe the interaction between neoplastic cells and their local environment and how derangement of adhesion can lead to metastatic spread. It is likely that the cellular mechanisms controlled by integrin receptors, ion channels or both participate in the entire metastatic process. Until now, however, evidence is limited to a few steps of the metastatic cascade, such as brain tumor invasiveness.
Collapse
|
352
|
Bennani-Baiti IM, Cooper A, Lawlor ER, Kauer M, Ban J, Aryee DNT, Kovar H. Intercohort gene expression co-analysis reveals chemokine receptors as prognostic indicators in Ewing's sarcoma. Clin Cancer Res 2010; 16:3769-78. [PMID: 20525755 DOI: 10.1158/1078-0432.ccr-10-0558] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE We report a novel analytic method, named intercohort co-analysis or Ican, which aids in the discovery of genes with predictive value for the progression or outcome of diseases from small-size cohorts. We tested this premise in Ewing's sarcoma (ES), a highly metastatic cancer of bone and soft tissues that lacks validated molecular metastasis and prognostic indicators. EXPERIMENTAL DESIGN To uncover genes significantly expressed in ES patient subsets, we first determined a nonarbitrary gene expression significance cutoff based on expression levels in validated expressing and nonexpressing tissues. We next searched for genes that were consistently significantly expressed in several ES cohort and cell line datasets. Significantly expressed genes were independently validated by quantitative reverse transcription-PCR in an additional ES cohort. RESULTS Analysis of ES cohorts revealed marked intercohort gene expression variability. After filtering out the intercohort variability, CXCR4 and CXCR7 were found to be consistently associated with specific ES subsets. Pairwise analyses showed CXCR4 to correlate with ES metastases, and CXCR4 and CXCR7 to patient survival, but not with several other clinicopathological variables. CONCLUSION Ican is a powerful novel method to identifying genes consistently associated with particular disease states in cancers for which large cohorts are not available, currently the case of most cancers. We report for the first time that high CXCR4 expression preferentially associates with metastatic ES, and that of CXCR7 with poor patient survival.
Collapse
|
353
|
Lin CS, He PJ, Hsu WT, Wu MS, Wu CJ, Shen HW, Hwang CH, Lai YK, Tsai NM, Liao KW. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway. Biochem Biophys Res Commun 2010; 397:283-9. [PMID: 20580690 DOI: 10.1016/j.bbrc.2010.05.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCbeta2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCbeta2/Ca2+ signal transduction in endothelial cells.
Collapse
Affiliation(s)
- Chen-Si Lin
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Voronov E, Reich E, Dotan S, Dransh P, Cohen I, Huszar M, Fogel M, Kleinman HK, White RM, Apte RN. Effects of IL-1 molecules on growth patterns of 3-MCA-induced cell lines: an interplay between immunogenicity and invasive potential. J Immunotoxicol 2010; 7:27-38. [PMID: 20001788 DOI: 10.3109/15476910903405528] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The balance between inflammation and immunity is cardinal for the outcome of the malignant process. Local attenuated inflammatory responses mediated by innate cells may provide accessory signals for the development of acquired immunity against malignant cells. In contrast, excessive inflammatory responses accompany tumorigenesis and tumor invasiveness, by the induction of immunosuppression. In the present study, we have assessed the role of tumor cell-derived IL-1 in determining the invasive versus immunostimulatory potential of tumor cells. For this purpose, we have used 3-MCA-induced fibrosarcoma cell lines from IL-1 knockout (KO) versus control mice. Cell lines with no IL-1 failed to establish tumors in intact mice, while lines obtained from control mice were invasive and induced a potent angiogenic response. In contrast, cell lines from IL-1KO mice were more immunogenic. SDF-1 and IL-6, each induced by IL-1, were the two major cytokines whose levels differed in cell lines with or without IL-1. We could not detect differences in cell surface markers related to immunogenicity, such as MHC Class I, co-stimulatory, or adhesion molecules between both types of cells. However, more T-cells were observed at the inoculation site of tumor cells devoid of IL-1 and more pronounced parameters related to anti-tumor immunity were observed in the spleen (IL-12 and IFNgamma) of these mice, compared to mice bearing tumors derived from control mice, where host-derived IL-1 is present. In addition, injection of tumor cells devoid of IL-1, which failed to grow in mice, induced an anti-tumor cell immune memory, while in mice injected with tumor cells from control mice; no immune memory could be detected. From the results, it seems that IL-1 is a crucial factor in determining the balance between immunity and inflammation in tumor-bearing mice. This suggests that manipulation of IL-1 could be useful in anti-tumor therapy, by reducing invasiveness and promoting immunity against the malignant cells.
Collapse
Affiliation(s)
- Elena Voronov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Abstract
It is becoming increasingly clear that angiogenesis plays a crucial role in prostate cancer (CaP) survival, progression, and metastasis. Tumor angiogenesis is a hallmark of advanced cancers and an attractive treatment target in multiple solid tumors. By understanding the molecular basis of resistance to androgen withdrawal and chemotherapy in CaP, the rational design of targeted therapeutics is possible. This review summarizes the recent advancements that have improved our understanding of the role of angiogenesis in CaP metastasis and the potential therapeutic efficacy of inhibiting angiogenesis in this disease. Current therapeutic options for patients with metastatic hormone-refractory CaP are very limited. Targeting vasculature is a developing area, which shows promise for the control of late stage and recurrent CaP disease and for overcoming drug resistance. We discuss angiogenesis and its postulated mechanisms and focus on the regulation of angiogenesis in CaP progression and the therapeutic beneficial effects associated with targeting of the CaP vasculature to overcome the resistance to current treatments and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St George Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
356
|
Oxidative and nitrosative stress in the metastatic microenvironment. Cancers (Basel) 2010; 2:274-304. [PMID: 24281071 PMCID: PMC3835079 DOI: 10.3390/cancers2020274] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/02/2010] [Accepted: 03/25/2010] [Indexed: 12/17/2022] Open
Abstract
Metastases that are resistant to conventional therapies are the main cause of most cancer-related deaths in humans. Tumor cell heterogeneity, which associates with genomic and phenotypic instability, represents a major problem for cancer therapy. Additional factors, such as the attack of immune cells or organ-specific microenvironments, also influence metastatic cell behavior and the response to therapy. Interaction of cancer and endothelial cells in capillary beds, involving mechanical contact and transient adhesion, is a critical step in the initiation of metastasis. This interaction initiates a cascade of activation pathways that involves cytokines, growth factors, bioactive lipids and reactive oxygen and nitrogen species (ROS and RNS) produced by either the cancer cell or the endothelium. Vascular endothelium-derived NO and H2O2 are cytotoxic for the cancer cells, but also help to identify some critical molecular targets that appear essential for survival of invasive metastatic cell subsets. Surviving cancer cells that extravasate and start colonization of an organ or tissue can still be attacked by macrophages and be influenced by specific intraorgan microenvironment conditions. At all steps; from the primary tumor until colonization of a distant organ; metastatic cells undergo a dynamic process of constant adaptations that may lead to the survival of highly resistant malignant cell subsets. In this sequence of molecular events both ROS and RNS play key roles.
Collapse
|
357
|
Kyrgidis A, Tzellos TG, Kechagias N, Patrikidou A, Xirou P, Kitikidou K, Bourlidou E, Vahtsevanos K, Antoniades K. Cutaneous squamous cell carcinoma (SCC) of the head and neck: risk factors of overall and recurrence-free survival. Eur J Cancer 2010; 46:1563-72. [PMID: 20338745 DOI: 10.1016/j.ejca.2010.02.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Head and neck cutaneous squamous cell carcinoma (HNCSCC) although rarely fatal has significant adverse public health effects due to high medical costs, compromised quality of life, functional impairment and other serious consequences. The present longitudinal cohort study of HNCSCC was designed to determine whether certain clinical-pathologic features of HNCSCC are associated with reduced overall and recurrence-free survival, as suggested by previous data. PATIENTS The cohort sample consisted of 315 consecutive patients presenting with primary HNCSCC of the head and neck. Life-table analysis and Kaplan-Meier survival analysis were performed. Multivariate Cox's proportional hazards regression models were used to assess the effects of covariates on the length of the interval. RESULTS There were 145 male and 170 female Caucasian patients. At the time of analysis, 222 patients were alive. The mean follow-up time of a patient after enrolment has been 46.7 months (range, 12-124 months). Broder's differentiation grade, perineural involvement, the presence of inflammation and T-stage were independent adjusted predictors for overall survival. pT and N-stage, inflammation and perineural involvement were significant predictors for recurrence-free survival while adjuvant irradiation was associated with a 92% reduced risk for recurrence. Life-table analysis showed that 87% and 69% study patients were free from recurrence at years 3 and 5, respectively. CONCLUSIONS Certain clinico-pathological predictors can be used to discriminate subsets of high-risk patients that could benefit from long-term follow-up. After excision in negative margins, patients with HNCSCC should be referred to specialised multidisciplinary oncology clinics for counselling on adjuvant radiotherapy and follow-up.
Collapse
Affiliation(s)
- Athanassios Kyrgidis
- Department of Maxillofacial Surgery, Theagenio Cancer Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
359
|
The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 2010; 11:1235-42. [PMID: 19881959 DOI: 10.1593/neo.09988] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022] Open
Abstract
CC chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein-1) has been demonstrated to recruit monocytes to tumor sites. Monocytes are capable of being differentiated into tumor-associated macrophages (TAMs) and osteoclasts (OCs). TAMs have been shown to promote tumor growth in several cancer types. Osteoclasts have also been known to play an important role in cancer bone metastasis. To investigate the effects of CCL2 on tumorigenesis and its potential effects on bone metastasis of human prostate cancer, CCL2 was overexpressed into a luciferase-tagged human prostate cancer cell line PC-3. In vitro, the conditioned medium of CCL2 overexpressing PC-3luc cells (PC-3(lucCCL2)) was a potent chemoattractant for mouse monocytes in comparison to a conditioned medium from PC-3(lucMock). In addition, CCL2 overexpression increased the growth of transplanted xenografts and increased the accumulation of macrophages in vivo. In a tumor dissemination model, PC-3(lucCCL2) enhanced the growth of bone metastasis, which was associated with more functional OCs. Neutralizing antibodies targeting both human and mouse CCL2 inhibited the growth of PC-3(luc), which was accompanied by a decrease in macrophage recruitment to the tumor. These findings suggest that CCL2 increases tumor growth and bone metastasis through recruitment of macrophages and OCs to the tumor site.
Collapse
|
360
|
Karami KJ, Poulik J, Rabah R, Krass J, Sood S. Simultaneous choroid plexus carcinoma and pilocytic astrocytoma in a pediatric patient. J Neurosurg Pediatr 2010; 5:104-12. [PMID: 20043745 DOI: 10.3171/2009.8.peds09117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Simultaneous primary brain tumors in pediatric patients without prior chemotherapy or radiotherapy, phacomatosis, or known familial history are a rare occurrence. The authors report the case of a 4-year-old boy with simultaneous choroid plexus carcinoma and pilocytic astrocytoma with features of oligodendroglioma. Magnetic resonance imaging studies revealed diffuse heterogeneously enhancing left intraventricular and posterior fossa tumors initially believed most consistent with multicentric choroid plexus carcinomas. A multiple staged resection was carried out for each tumor and gross-total resection was achieved. Upon gross inspection intraoperatively as well as postoperative histological analysis, 2 distinct simultaneous tumors were identified: choroid plexus carcinoma and pilocytic astrocytoma. To the authors' knowledge this is the first case report published identifying 2 distinct tumor types with similar radiological appearances in a pediatric patient with no prior history of radiotherapy, chemotherapy, or phacomatosis.
Collapse
Affiliation(s)
- Kristophe J Karami
- Department of Neurosurgery, Providence Hospital and Medical Center, Michigan State University, Southfield, Michigan 48075, USA.
| | | | | | | | | |
Collapse
|
361
|
Giaccia AJ, Schipani E. Role of carcinoma-associated fibroblasts and hypoxia in tumor progression. Curr Top Microbiol Immunol 2010; 345:31-45. [PMID: 20517716 DOI: 10.1007/82_2010_73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, a variety of experimental evidence has convincingly shown that progression of malignant tumors does not depend exclusively on cell-autonomous properties of the cancer cells, but can also be influenced by the tumor stroma. The concept that cancer cells are subjected to microenvironmental control has thus emerged as an important chapter in cancer biology. Recent findings have suggested an important role, in particular, for macrophages, endothelial cells, and cancer-associated fibroblasts (CAFs) in tumor growth and progression. Numerous lines of evidence indicate that the bone marrow is the source, at least in part, of these cells. This chapter summarizes our current knowledge of how bone marrow contributes to the tumor stroma, with particular emphasis on CAFs. The potential role of hypoxia in modulating the differentiation and activity of CAFs, and the therapeutical implications of targeting CAFs for anticancer therapy are discussed.
Collapse
Affiliation(s)
- Amato J Giaccia
- Department of Radiation Oncology, Division of Cancer and Radiation Biology, Stanford University School of Medicine, Stanford, CA 94305-5152, USA.
| | | |
Collapse
|
362
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
363
|
Strnad H, Lacina L, Kolár M, Cada Z, Vlcek C, Dvoránková B, Betka J, Plzák J, Chovanec M, Sáchová J, Valach J, Urbanová M, Smetana K. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol 2009; 133:201-11. [PMID: 19924430 DOI: 10.1007/s00418-009-0661-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2009] [Indexed: 01/09/2023]
Abstract
Epithelial-mesenchymal interaction between stromal fibroblasts and cancer cells influences the functional properties of tumor epithelium, including the tumor progression and spread. We compared fibroblasts prepared from stroma of squamous cell carcinoma and normal dermal fibroblasts concerning their biological activity toward normal keratinocytes assessed by immunocytochemistry and profiling of gene activation for growth factors/cytokines by microarray chip technology. IGF-2 and BMP-4 were determined as candidate factors responsible for tumor-associated fibroblast activity that influences normal epithelia. This effect was confirmed by addition of recombinant IGF-2 and BMP4, respectively, to the culture medium. This hypothesis was also verified by inhibition experiments where blocking antibodies were employed in the medium conditioned by cancer-associated fibroblast. Presence of these growth factors was also detected in tumor samples.
Collapse
Affiliation(s)
- Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Castello G, Scala S, Palmieri G, Curley SA, Izzo F. HCV-related hepatocellular carcinoma: From chronic inflammation to cancer. Clin Immunol 2009; 134:237-50. [PMID: 19910258 DOI: 10.1016/j.clim.2009.10.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection is a worldwide health problem because of its incidence and pathogenicity. It might evolve into chronic disease, cirrhosis, and/or hepatocellular carcinoma (HCC) and the outcome is mainly determined by the host immune response. For viral clearance, combined innate and adaptive immune responses are required; resolution requires a vigorous, durable, polyclonal CD4(+) and CD8(+) T-cell response, with an increase in virus-specific CD8(+) T cells or cytotoxic T lymphocytes. Failure of efficient immune response can lead to chronic inflammation, tissue remodeling through cell growth, apoptosis and/or necrosis and induction of oxidative stress. Development of fibrosis and/or cirrhosis plus a microenvironment conducive to genomic instability mutations will promote neoplastic transformation. System governance derives from cellular (regulatory cells) and humoral (cytokines and chemokines) immune networks. Therefore, HCC pathogenesis may be a model to study the disease progression from chronic inflammation to cancer allowing design of new strategies targeting the immune response, thereby modifying disease outcome.
Collapse
|
365
|
Cardoso SV, Souza KCN, Faria PR, Eisenberg ALA, Dias FL, Loyola AM. Assessment of angiogenesis by CD105 antigen in epithelial salivary gland neoplasms with diverse metastatic behavior. BMC Cancer 2009; 9:391. [PMID: 19889225 PMCID: PMC2777937 DOI: 10.1186/1471-2407-9-391] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 11/04/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Information on the biology of metastasis development in salivary gland tumors is scarce. Since angiogenesis seems associated with this phenomenon in other tumors, we sought to compare salivary gland tumors with diverse metastatic behavior in order to improve the knowledge and management of these lesions. METHODS Samples from the most important salivary gland tumors were segregated according to its metastatic behavior and submitted to routine immunohistochemistry to identify vessels positive for CD105 expression. Frequency of positive cases and intratumoral microvessel density (IMD) was compared among the group of lesions. RESULTS CD105 positive vessels were absent in normal salivary gland tissue, were rare in pleomorphic adenomas and adenoid cystic carcinomas (ACC), more common in polymorphous low-grade adenocarcinomas and highest in mucoepidermoid carcinomas. Only ACC with such feature were metastatic. IMD was higher in malignant rather than benign tumors. CONCLUSION Immunostaining of CD105 in salivary gland tumors implies participation of angiogenesis in the development of malignant lesions, as well as some role for myoepithelial cells in the control of new vessel formation. In addition, suggest that ACC with positive CD105 vessels are at higher risk for metastasis.
Collapse
Affiliation(s)
- Sergio V Cardoso
- Pathology Area, School of Dentistry, Federal University of Uberlandia, Brazil.
| | | | | | | | | | | |
Collapse
|
366
|
Martina E, Degen M, Rüegg C, Merlo A, Lino MM, Chiquet-Ehrismann R, Brellier F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro. FASEB J 2009; 24:778-87. [PMID: 19884327 PMCID: PMC2830132 DOI: 10.1096/fj.09-140491] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microenvironment hosting a tumor actively participates in regulating tumor cell proliferation, migration, and invasion. Among the extracellular matrix proteins enriched in the stroma of carcinomas are the tenascin family members tenascin-C and tenascin-W. Whereas tenascin-C overexpression in gliomas is known to correlate with poor prognosis, the status of tenascin-W in brain tumors has not been investigated so far. In the present study, we analyzed protein levels of tenascin-W in 38 human gliomas and found expression of tenascin-W in 80% of the tumor samples, whereas no tenascin-W could be detected in control, nontumoral brain tissues. Double immunohistochemical staining of tenascin-W and von Willebrand factor revealed that tenascin-W is localized around blood vessels, exclusively in tumor samples. In vitro, the presence of tenascin-W increased the proportion of elongated human umbilical vein endothelial cells (HUVECs) and augmented the mean speed of cell migration. Furthermore, tenascin-W triggered sprouting of HUVEC spheroids to a similar extent as the proangiogenic factor tenascin-C. In conclusion, our study identifies tenascin-W as a candidate biomarker for brain tumor angiogenesis that could be used as a molecular target for therapy irrespective of the glioma subtype.—Martina, E., Degen, M., Rüegg, C., Merlo, A., Lino, M. M., Chiquet-Ehrismann, R., Brellier, F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro.
Collapse
Affiliation(s)
- Enrico Martina
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
367
|
Arnold SA, Brekken RA. SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3:255-73. [PMID: 19809893 PMCID: PMC2778590 DOI: 10.1007/s12079-009-0072-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature.
Collapse
Affiliation(s)
- Shanna A Arnold
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology and Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| | | |
Collapse
|
368
|
Damia G, D'Incalci M. Contemporary pre-clinical development of anticancer agents--what are the optimal preclinical models? Eur J Cancer 2009; 45:2768-81. [PMID: 19762228 DOI: 10.1016/j.ejca.2009.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/07/2009] [Indexed: 02/07/2023]
Abstract
The successful identification of novel effective anticancer drugs is largely dependent on the use of appropriate preclinical experimental models that should possibly mimic the complexity of different cancer diseases. The huge number of targets suitable for the design of new anticancer drugs is producing hundreds of novel molecules that require appropriate experimental models to investigate their mode of action and antitumour activity in order to select for clinical investigation the ones with higher chances of being clinically effective. However, our ability to predict the clinical efficacy of a new compound in the clinic based on preclinical data is still limited. This paper overviews the in vitro/in vivo preclinical systems that are currently used to test either compounds with an unknown mechanism of action or compounds designed to hit cancer-specific or cancer-related molecular targets. Examples of experimental models successfully used to identify novel compounds are provided. Xenografts are still the most commonly used in vivo models in drug development due to their high degree of reproducibility and because, in some cases, particularly when orthotopically transplanted, they maintain several biological properties of the human tumours they derive from. Genetic models are very useful for target validation, but are often not sufficiently reproducible to be used for drug evaluation. The variety of animal models can be effectively used to optimally test drugs that presumably act by a defined mode of action, but final success is highly dependent on the ability of drug development teams to integrate different expertises such as biology, chemistry, pharmacology, toxicology and clinical oncology into a clever and well orchestrated plan that keeps in consideration both the complexity of cancer diseases, involving alterations of different pathways, and the complexity of drugs whose pharmacological properties are crucial to obtain the desired effects.
Collapse
Affiliation(s)
- Giovanna Damia
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan 20157, Italy.
| | | |
Collapse
|
369
|
Abstract
Cancer remains an outstanding cause of global morbidity and mortality, despite intensive research and unprecedented insights into the basic mechanisms of cancer development. A plethora of clinical and experimental evidence suggests that cancers from individual patients are likely to be molecularly heterogeneous in their use of distinct oncogenic pathways and biological programs. Efforts to significantly impact cancer patient outcomes will almost certainly require the development of robust strategies to subdivide such heterogeneous panels of cancers into biologically and clinically homogenous subgroups, for the purposes of personalizing treatment protocols and identifying optimal drug targets. In this review, I describe recent progress in the development of both targeted and genome-wide approaches for the molecular stratification of cancers, drawing examples from both the haematopoietic and solid tumor malignancies.
Collapse
Affiliation(s)
- Patrick Tan
- Duke-NUS Graduate Medical School, Genome Institute of Singapore, Singapore; Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
370
|
Witz IP. The tumor microenvironment: the making of a paradigm. CANCER MICROENVIRONMENT 2009; 2 Suppl 1:9-17. [PMID: 19701697 PMCID: PMC2756342 DOI: 10.1007/s12307-009-0025-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 12/17/2022]
Abstract
What has been will be again, what has been done will be done again; there is nothing new under the sun (Ecclesiastes 1:9) Stephen Paget was the conceptual father of the role played by the Tumor Microenvironment (TME) in tumor progression. The focus of this essay is the developmental phase of the post Paget TME research. Attempts will be made to highlight some of the pioneering work of scientists from the late sixties through the eighties of last century who laid the foundations for the contemporary scientific achievements of TME research but whose ground breaking studies are rarely cited. This review should serve as a small tribute to their great work.
Collapse
Affiliation(s)
- Isaac P Witz
- Faculty of Life Sciences, Department of Cell Research & Immunology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel,
| |
Collapse
|
371
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
372
|
Abstract
The microenvironment of breast cancer comprises predominantly of adipocytes. Adipocytes drive cancer progression through the secretion adipocytokines. Adipocytes induce epithelial mesenchymal transition of breast cancer cells through paracrine IL-6/Stat3 signalling. Treatment approaches that can target adipocytes in the microenvironment and abrogate paracrine signals that drive breast cancer growth and metastasis are urgently needed. Repositioning of old drugs has become an effective approach for discovering new cancer drugs. In this study, niclosamide, an FDA approved anthelminthic drug was evaluated for its anti-breast cancer activity and its ability to inhibit adipocytes induced EMT. Niclosamide potently inhibited proliferation, migration and invasion at low concentration and induced significant apoptosis at high concentrations in human breast cancer cell lines MDA-MB-468 and MCF-7. Additionally, niclosamide reversed adipocyte-induced EMT with a correlated inhibition of IL-6/Stat3 activation and downregulation of EMT-TFs TWIST and SNAIL. Moreover, niclosamide markedly impaired MDA-MB-468 and MCF-7 migration and invasion. We further found that the inhibitory effects of niclosamide on MDA-MB-468 and MCF-7 motility was closely related to destabilization of focal adhesion complex formation. With decreased co-localization of focal adhesion kinase (FAK) and phosphorylated paxillin (pPAX). Collectively, these results demonstrate that niclosamide could be used to inhibit adipocyte-induced breast cancer growth and metastasis.
Collapse
|