351
|
Dezfulian C, Raat NJH, Shiva S, Gladwin MT. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc Res 2007; 75:327-38. [PMID: 17568573 PMCID: PMC2002522 DOI: 10.1016/j.cardiores.2007.05.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/30/2022] Open
Abstract
The anion nitrite (NO(2)(-)) constitutes a biochemical reservoir for nitric oxide (NO). Nitrite reduction to NO may be catalyzed by hemoglobin, myoglobin or other metal-containing enzymes and occurs at increasing rates under conditions of physiologic hypoxia or ischemia. A number of laboratories have now demonstrated in animal models the ability of nitrite to provide potent cytoprotection following focal ischemia-reperfusion (IR) injury of the heart, liver, brain, and kidney. While the mechanism of nitrite-mediated cytoprotection remains to be fully characterized, the release of nitrite-derived NO following IR appears to be central to this mechanism. The evidence of nitrite-mediated cytoprotection against IR injury in multiple animal models opens the door to potential therapeutic opportunities in human disease. Here we review the mechanisms for nitrite formation in blood and tissue, its metabolic equilibrium with NO, nitrate, and NO-modified proteins, the evidence supporting nitrite-mediated cytoprotection, and the potential mechanisms driving cytoprotection, and we explore the opportunities for the therapeutic application of nitrite for human disease.
Collapse
Affiliation(s)
- Cameron Dezfulian
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Division of Pediatric Anesthesia and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD 21287
| | - Nicolaas JH Raat
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sruti Shiva
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark T. Gladwin
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Corresponding author: Dr. Mark T. Gladwin, National Institutes of Health, Building 10-CRC, Room 5-5140, 10 Center Drive, Bethesda, MD 20892-1662, Phone: 301-435-2310, Fax: 301-402-1213, e-mail:
| |
Collapse
|
352
|
Carreras MC, Poderoso JJ. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol 2007; 292:C1569-80. [PMID: 17496232 DOI: 10.1152/ajpcell.00248.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are the specialized organelles for energy metabolism, but, as a typical example of system biology, they also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or oppositely promote cell arrest and programmed cell death by a limited number of oxidative or nitrosative reactions. These reactions are influenced by matrix nitric oxide (NO) steady-state concentration, either from local production or by gas diffusion to mitochondria from the canonical sources. Likewise, in a range of ∼30–200 nM, NO turns mitochondrial O2utilization down by binding to cytochrome oxidase and elicits a burst of superoxide anion and hydrogen peroxide that diffuses outside mitochondria. Depending on NO levels and antioxidant defenses, more or less H2O2accumulates in cytosol and nucleus, and the resulting redox grading contributes to dual activation of proliferating and proapoptotic cascades, like ERK1/2 or p38 MAPK. Moreover, these sequential activating pathways participate in rat liver and brain development and in thyroid modulation of mitochondrial metabolism and contribute to hypothyroid phenotype through complex I nitration. On the contrary, lack of NO disrupts pathways like S-nitrosylation or H2O2production and likewise is a gateway to disease in amyotrophic lateral sclerosis with superoxide dismutase 1 mutations or to cancer proliferation.
Collapse
Affiliation(s)
- Maria Cecilia Carreras
- Laboratory of Oxygen Metabolism, University Hospital of Buenos Aires, Cordoba 2351, 1120 Buenos Aires, Argentina.
| | | |
Collapse
|
353
|
Nakamura T, Lipton SA. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding. Cell Death Differ 2007; 14:1305-14. [PMID: 17431424 DOI: 10.1038/sj.cdd.4402138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.
Collapse
Affiliation(s)
- T Nakamura
- Center for Neuroscience and Aging, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
354
|
Grubina R, Huang Z, Shiva S, Joshi MS, Azarov I, Basu S, Ringwood LA, Jiang A, Hogg N, Kim-Shapiro DB, Gladwin MT. Concerted Nitric Oxide Formation and Release from the Simultaneous Reactions of Nitrite with Deoxy- and Oxyhemoglobin. J Biol Chem 2007; 282:12916-27. [PMID: 17322300 DOI: 10.1074/jbc.m700546200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies reveal a novel role for hemoglobin as an allosterically regulated nitrite reductase that may mediate nitric oxide (NO)-dependent signaling along the physiological oxygen gradient. Nitrite reacts with deoxyhemoglobin in an allosteric reaction that generates NO and oxidizes deoxyhemoglobin to methemoglobin. NO then reacts at a nearly diffusion-limited rate with deoxyhemoglobin to form iron-nitrosyl-hemoglobin, which to date has been considered a highly stable adduct and, thus, not a source of bioavailable NO. However, under physiological conditions of partial oxygen saturation, nitrite will also react with oxyhemoglobin, and although this complex autocatalytic reaction has been studied for a century, the interaction of the oxy- and deoxy-reactions and the effects on NO disposition have never been explored. We have now characterized the kinetics of hemoglobin oxidation and NO generation at a range of oxygen partial pressures and found that the deoxy-reaction runs in parallel with and partially inhibits the oxy-reaction. In fact, intermediates in the oxy-reaction oxidize the heme iron of iron-nitrosyl-hemoglobin, a product of the deoxy-reaction, which releases NO from the iron-nitrosyl. This oxidative denitrosylation is particularly striking during cycles of hemoglobin deoxygenation and oxygenation in the presence of nitrite. These chemistries may contribute to the oxygen-dependent disposition of nitrite in red cells by limiting oxidative inactivation of nitrite by oxyhemoglobin, promoting nitrite reduction to NO by deoxyhemoglobin, and releasing free NO from iron-nitrosyl-hemoglobin.
Collapse
Affiliation(s)
- Rozalina Grubina
- Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, Xu X, Murphy E, Darley-Usmar VM, Gladwin MT. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 2007; 100:654-61. [PMID: 17293481 DOI: 10.1161/01.res.0000260171.52224.6b] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have revealed a novel interaction between deoxyhemoglobin and nitrite to generate nitric oxide (NO) in blood. It has been proposed that nitrite acts as an endocrine reservoir of NO and contributes to hypoxic vasodilation and signaling. Here, we characterize the nitrite reductase activity of deoxymyoglobin, which reduces nitrite approximately 36 times faster than deoxyhemoglobin because of its lower heme redox potential. We hypothesize that physiologically this reaction releases NO in proximity to mitochondria and regulates respiration through cytochrome c oxidase. Spectrophotometric and chemiluminescent measurements show that the deoxymyoglobin-nitrite reaction produces NO in a second order reaction that is dependent on deoxymyoglobin, nitrite and proton concentration, with a bimolecular rate constant of 12.4 mol/L(-1)s(-1) (pH 7.4, 37 degrees C). Because the IC(50) for NO-dependent inhibition of mitochondrial respiration is approximately 100 nmol/L at physiological oxygen tensions (5 to 10 mumol/L); we tested whether the myoglobin-dependent reduction of nitrite could inhibit respiration. Indeed, the addition of deoxymyoglobin and nitrite to isolated rat heart and liver mitochondria resulted in the inhibition of respiration, while myoglobin or nitrite alone had no effect. The addition of nitrite to rat heart homogenate containing both myoglobin and mitochondria resulted in NO generation and inhibition of respiration; these effects were blocked by myoglobin oxidation with ferricyanide but not by the xanthine oxidoreductase inhibitor allopurinol. These data expand on the paradigm that heme-globins conserve and generate NO via nitrite reduction along physiological oxygen gradients, and further demonstrate that NO generation from nitrite reduction can escape heme autocapture to regulate NO-dependent signaling.
Collapse
Affiliation(s)
- Sruti Shiva
- Vascular Medicine Branch, Clinical Center; National Institutes of Health, Bethesda, MD 20892-1662, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Nadtochiy SM, Burwell LS, Brookes PS. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 2007; 42:812-25. [PMID: 17350035 PMCID: PMC2134894 DOI: 10.1016/j.yjmcc.2007.01.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/08/2007] [Accepted: 01/23/2007] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction is a key pathologic event in cardiac ischemia-reperfusion (IR) injury, and protection of mitochondrial function is a potential mechanism underlying ischemic preconditioning (IPC). Acknowledging the role of nitric oxide (NO()) in IPC, it was hypothesized that mitochondrial protein S-nitrosation may be a cardioprotective mechanism. The reagent S-nitroso-2-mercaptopropionyl-glycine (SNO-MPG) was therefore developed to enhance mitochondrial S-nitrosation and elicit cardioprotection. Within cardiomyocytes, mitochondrial proteins were effectively S-nitrosated by SNO-MPG. Consistent with the recent discovery of mitochondrial complex I as an S-nitrosation target, SNO-MPG inhibited complex I activity and cardiomyocyte respiration. The latter effect was insensitive to the NO() scavenger c-PTIO, indicating no role for NO()-mediated complex IV inhibition. A cardioprotective role for reversible complex I inhibition has been proposed, and consistent with this SNO-MPG protected cardiomyocytes from simulated IR injury. Further supporting a cardioprotective role for endogenous mitochondrial S-nitrosothiols, patterns of protein S-nitrosation were similar in mitochondria isolated from Langendorff perfused hearts subjected to IPC, and mitochondria or cells treated with SNO-MPG. The functional recovery of perfused hearts from IR injury was also improved under conditions which stabilized endogenous S-nitrosothiols (i.e. dark), or by pre-ischemic administration of SNO-MPG. Mitochondria isolated from SNO-MPG-treated hearts at the end of ischemia exhibited improved Ca(2+) handling and lower ROS generation. Overall these data suggest that mitochondrial S-nitrosation and complex I inhibition constitute a protective signaling pathway that is amenable to pharmacologic augmentation.
Collapse
Affiliation(s)
- Sergiy M. Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Lindsay S. Burwell
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14620, USA
- Corresponding Author: Paul S. Brookes, PhD., Department of Anesthesiology, Box 604, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, Tel. 585-273-1626, Fax. 585 273-2652,
| |
Collapse
|
357
|
Lipton SA, Gu Z, Nakamura T. Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:1-27. [PMID: 17678953 DOI: 10.1016/s0074-7742(07)82001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory mediators, including free radicals such as nitric oxide (NO) and reactive oxygen species (ROS), can contribute to neurodegenerative diseases in part by triggering protein misfolding. In this chapter, we will discuss a newly discovered pathway for this phenomenon and possible novel treatments. Excitotoxicity, defined as overstimulation of glutamate receptors, has been implicated in a final common pathway contributing to neuronal injury and death in a wide range of acute and chronic neurological disorders, ranging from Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis, and Alzheimer's disease (AD) to stroke and trauma. Excitotoxic cell death is due, at least in part, to excessive activation of N-methyl-d-aspartate (NMDA)-type glutamate receptors, leading to excessive Ca(2+) influx through the receptor's associated ion channel and subsequent free radical production, including NO and ROS. These free radicals can trigger a variety of injurious pathways, but newly discovered evidence suggests that some proteins are S-nitrosylated (transfer of NO to a critical thiol group), and this reaction can mimic the effect of rare genetic mutations. This posttranslational modification can contribute to protein misfolding, triggering neurodegenerative diseases. One such molecule affected is protein disulfide isomerase (PDI), an enzyme responsible for normal protein folding in the endoplasmic reticulum (ER). We found that when PDI is S-nitrosylation (forming SNO-PDI), the function of the enzyme is compromised, leading to misfolded proteins and contributing to neuronal cell injury and loss. Moreover, SNO-PDI occurs at pathological levels in several human diseases, including AD and PD. This discovery thus links protein misfolding to excitotoxicity and free radical formation in a number of neurodegenerative disorders. Another molecule whose S-nitrosylation can lead to abnormal protein accumulation is the E3 ubiquitin ligase, parkin, which contributes to the pathogenesis of PD. One way to ameliorate excessive NO production and hence abnormal S-nitrosylations would be to inhibit NMDA receptors. In fact, blockade of excessive NMDA receptor activity can in large measure protect neurons from this type of injury and death. However, inhibition of the NMDA receptor by high-affinity antagonists also blocks the receptor's normal function in synaptic transmission and leads to unacceptable side effects. For this reason, many NMDA receptor antagonists have disappointingly failed in advanced clinical trials. Our group was the first to demonstrate that gentle blockade of NMDA receptors by memantine, via a mechanism of uncompetitive open-channel block with a rapid "off-rate," can prevent this type of damage in a clinically efficacious manner without substantial side effects. For these Uncompetitive/Fast Off-rate therapeutics, we use the term "UFO drugs" because like Unidentified Flying Objects, they leave very quickly as soon as their job is finished. As a result, memantine blocks excessive NMDA receptor activity without disrupting normal activity. Memantine does this by preferentially entering the receptor-associated ion channel when it is excessively open, and, most importantly, when its off-rate from the channel is relatively fast so that it does not accumulate to interfere with normal synaptic transmission. Hence, memantine is clinically well tolerated, has been used in Europe for PD for many years, and recently passed multiple phase III trials for dementia, leading to its approval by the FDA and European Union for moderate-to-severe AD. Clinical studies of memantine for additional neurological disorders, including other dementias, neuropathic pain, and glaucoma, are underway. We have also developed a series of second-generation drugs that display greater neuroprotective properties than memantine. These second-generation drugs take advantage of the fact that the NMDA receptor has other modulatory sites, including critical thiol groups that are S-nitrosylated. In this case, in contrast to PDI or parkin, S-nitrosylation proves to be neuroprotective by decreasing excessive NMDA receptor activity. Targeted S-nitrosylation of the NMDA receptor can be achieved by coupling NO to memantine, yielding second-generation "UFO drugs" known as NitroMemantines.
Collapse
Affiliation(s)
- Stuart A Lipton
- Neuroscience and Aging Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | |
Collapse
|
358
|
Fujimura S, Nakagawa T, Ito T, Matsufuji Y, Miyaji T, Tomizuka N. Peroxisomal metabolism is regulated by an oxygen-recognition system through organelle crosstalk between the mitochondria and peroxisomes. Yeast 2007; 24:491-8. [PMID: 17476698 DOI: 10.1002/yea.1487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the present study using Pichia methanolica, it was found that expressions of methanol-metabolic enzymes were strictly regulated by the presence of oxygen, and that induction of alcohol oxidase (AOD) isozymes was completely dependent on oxygen concentrations. A proportion of AOD-isozyme species responded to oxygen conditions, e.g. in a low oxygen condition, Mod1p was dominant, but with an increase in the oxygen concentration, the ratio of Mod2p increased. The K(m) value of Mod1p for oxygen was ca. one-seventh lower than that of Mod2p (0.47 and 3.51 mM, respectively). This shows that Mod1p is suitable at low oxygen concentrations and Mod2p at high oxygen concentrations. Also, zymogram changes for AOD isozymes were observed by inhibition of respiratory chain activity. These indicated that P. methanolica has the ability to recognize oxygen conditions and the respiratory chain should participate in the sensor for available oxygen. These facts indicate that there is organelle crosstalk between mitochondria and peroxisomes through nucleus gene regulation in order to control the consumption balance of available oxygen between the mitochondrial respiratory chain and peroxisomal AODs.
Collapse
Affiliation(s)
- Shuki Fujimura
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
359
|
Csordás A, Pankotai E, Snipes JA, Cselenyák A, Sárszegi Z, Cziráki A, Gaszner B, Papp L, Benko R, Kiss L, Kovács E, Kollai M, Szabó C, Busija DW, Lacza Z. Human heart mitochondria do not produce physiologically relevant quantities of nitric oxide. Life Sci 2007; 80:633-7. [PMID: 17113604 DOI: 10.1016/j.lfs.2006.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 12/21/2022]
Abstract
Previous studies raised the possibility that nitric oxide synthase is present in heart mitochondria (mtNOS) and the existence of such an enzyme became generally accepted. However, original experimental evidence is rather scarce and positive identification of the enzyme is lacking. We aimed to detect an NOS protein in human and mouse heart mitochondria and to measure the level of NO released from the organelles. Western blotting with 7 different anti-NOS antibodies failed to detect a NOS-like protein in mitochondria. Immunoprecipitation or substrate-affinity purification of the samples concentrated NOS in control preparations but not in mitochondria. Release of NO from live respiring human mitochondria was below 2 ppb after 45 min of incubation. In a bioassay system, mitochondrial suspension failed to cause vasodilation of human mammary artery segments. These results indicate that mitochondria do not produce physiologically relevant quantities of NO in the heart and are unlikely to have any physiological importance as NO donors, nor do they contain a recognizable mtNOS enzyme.
Collapse
Affiliation(s)
- Attila Csordás
- Department of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 2006; 292:H101-8. [PMID: 16963616 DOI: 10.1152/ajpheart.00699.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria are proposed to play an important role in hypoxic cell signaling. One currently accepted signaling paradigm is that the mitochondrial generation of reactive oxygen species (ROS) increases in hypoxia. This is paradoxical, because oxygen is a substrate for ROS generation. Although the response of isolated mitochondrial ROS generation to [O(2)] has been examined previously, such investigations did not apply rigorous control over [O(2)] within the hypoxic signaling range. With the use of open-flow respirometry and fluorimetry, the current study determined the response of isolated rat liver mitochondrial ROS generation to defined steady-state [O(2)] as low as 0.1 microM. In mitochondria respiring under state 4 (quiescent) or state 3 (ATP turnover) conditions, decreased ROS generation was always observed at low [O(2)]. It is concluded that the biochemical mechanism to facilitate increased ROS generation in response to hypoxia in cells is not intrinsic to the mitochondrial respiratory chain alone but may involve other factors. The implications for hypoxic cell signaling are discussed.
Collapse
Affiliation(s)
- David L Hoffman
- Box 604 Anesthesiology, Univ. of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | |
Collapse
|
361
|
|
362
|
Martin CE, Oh CS, Jiang Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:271-85. [PMID: 16920014 DOI: 10.1016/j.bbalip.2006.06.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae forms monounsaturated fatty acids using the ER membrane-bound Delta-9 fatty acid desaturase, Ole1p, an enzyme system that forms a double bond in saturated fatty acyl CoA substrates. Ole1p is a chimeric protein consisting of an amino terminal desaturase domain fused to cytochrome b5. It catalyzes the formation of the double bond through an oxygen-dependent mechanism that requires reducing equivalents from NADH. These are transferred to the enzyme via NADH cytochrome b5 reductase to the Ole1p cytochrome b5 domain and then to the diiron-oxo catalytic center of the enzyme. The control of OLE1 gene expression appears to mediated through the ER membrane proteins Spt23p and Mga2p. N-terminal fragments of these proteins are released by an ubiquitin/proteasome mediated proteolysis system and translocated to the nucleus where they appear to act as transcription coactivators of OLE1. OLE1 is regulated through Spt23p and Mga2p by multiple systems that control its transcription and mRNA stability in response to diverse stimuli that include nutrient fatty acids, carbon source, metal ions and the availability of oxygen.
Collapse
Affiliation(s)
- Charles E Martin
- Rutgers University, Department of Cell Biology and Neuroscience, Nelson Laboratories, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | | | |
Collapse
|
363
|
Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med 2006; 41:691-701. [PMID: 16895789 DOI: 10.1016/j.freeradbiomed.2006.05.019] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/12/2006] [Accepted: 05/17/2006] [Indexed: 12/22/2022]
Abstract
All life requires nitrogen compounds. Nitrite is such a compound that is naturally occurring in nature and biology. Over the years, the pharmacological stance on nitrite has undergone a surprising metamorphosis, from a vilified substance that generates carcinogenic nitrosamines in the stomach to a life-saving drug that liberates a protective agent (nitric oxide or NO) during hypoxic events. Nitrite has been investigated as a vasodilator in mammals for over 125 years and is a known by-product of organic nitrate metabolism. There has been a recent rediscovery of some of the vasodilator actions of nitrite in physiology along with novel discoveries which render nitrite a fundamental molecule in biology. Until recently nitrite was thought to be an inert oxidative breakdown product of endogenous NO synthesis but the past few years have focused on the reduction of nitrite back to NO in the circulation as a possible mechanism for hypoxic vasodilatation. Nitrite has evolved into an endogenous signaling molecule and regulator of gene expression that may not only serve as a diagnostic marker but also find its role as a potential therapeutic agent of cardiovascular disease. These data therefore warrant a reevaluation on the fate and metabolism of nitrite in biological systems. This review serves to encompass the history and recent evolution of nitrite, the compartment-specific metabolism of nitrite and its role in plasma as a biomarker for disease, the role of nitrite as a potential regulator of NO homeostasis, and the future of nitrite-based research.
Collapse
|