351
|
Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32:232-46. [PMID: 18951091 DOI: 10.1016/j.molcel.2008.08.022] [Citation(s) in RCA: 913] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/25/2008] [Accepted: 08/12/2008] [Indexed: 01/09/2023]
Abstract
Recent investigations have implicated long antisense noncoding RNAs in the epigenetic regulation of chromosomal domains. Here we show that Kcnq1ot1 is an RNA polymerase II-encoded, 91 kb-long, moderately stable nuclear transcript and that its stability is important for bidirectional silencing of genes in the Kcnq1 domain. Kcnq1ot1 interacts with chromatin and with the H3K9- and H3K27-specific histone methyltransferases G9a and the PRC2 complex in a lineage-specific manner. This interaction correlates with the presence of extended regions of chromatin enriched with H3K9me3 and H3K27me3 in the Kcnq1 domain in placenta, whereas fetal liver lacks both chromatin interactions and heterochromatin structures. In addition, the Kcnq1 domain is more often found in contact with the nucleolar compartment in placenta than in liver. Taken together, our data describe a mechanism whereby Kcnq1ot1 establishes lineage-specific transcriptional silencing patterns through recruitment of chromatin remodeling complexes and maintenance of these patterns through subsequent cell divisions occurs via targeting the associated regions to the perinucleolar compartment.
Collapse
Affiliation(s)
- Radha Raman Pandey
- Department of Genetics and Pathology, Dag Hammarskjölds Väg 20, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Transcription and activation under environmental stress of the complex telomeric repeats of Chironomus thummi. Chromosome Res 2008; 16:1085-96. [PMID: 18956244 DOI: 10.1007/s10577-008-1260-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 01/08/2023]
Abstract
In contrast to their traditional role, telomeres seem to behave as transcriptionally active regions. RNAs complementary to the short DNA repeats characteristic of telomerase-maintained telomeres have recently been identified in various mammalian cell lines, representing a new and unexpected element in telomere architecture. Here, we report the existence of transcripts complementary to telomeric sequences characteristic of Chironomus thummi telomeres. As in other Diptera, the non-canonical telomeres of chironomids lack the simple telomerase repeats and have instead more complex repetitive sequences. Northern blots of total RNA hybridized with telomere probes and RT-PCR with telomere-specific tailed primers confirm the existence of small non-coding RNAs of around 200 bp, the size of the DNA repeated telomeric unit. Telomere transcripts are heterogeneous in length, and they appear as a ladder pattern that probably corresponds to multimers of the repeat. Moreover, telomeres are activated under conditions of environmental stress, such as heat shock, appearing highly decondensed and densely labelled with acetylated H4 histone, as well as with RNA polymerase II antibodies, both marks of transcriptional activity. Changes in the expression levels of telomeric RNA were detected after heat shock. These findings provide evidence that transcriptional activity of the repetitive telomere sequences is an evolutionarily conserved feature, not limited to telomerase telomeres. The functional significance of this non-coding RNA as a new additional element in the context of telomere biology remains to be explained.
Collapse
|
353
|
Hogg JR, Collins K. Structured non-coding RNAs and the RNP Renaissance. Curr Opin Chem Biol 2008; 12:684-9. [PMID: 18950732 DOI: 10.1016/j.cbpa.2008.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/10/2008] [Accepted: 09/20/2008] [Indexed: 11/15/2022]
Abstract
Non-protein-coding (nc) RNAs are diverse in their modes of synthesis, processing, assembly, and function. The inventory of transcripts known or suspected to serve their biological roles as RNA has increased dramatically in recent years. Although studies of ncRNA function are only beginning to match the pace of ncRNA discovery, some principles are emerging. Here we focus on a framework for understanding functions of ncRNAs that have evolved in a protein-rich cellular environment, as distinct from ncRNAs that arose originally in the ancestral RNA World. The folding and function of ncRNAs in the context of ribonucleoprotein (RNP) complexes provide myriad opportunities for ncRNA gain of function, leading to a modern-day RNP Renaissance.
Collapse
Affiliation(s)
- J Robert Hogg
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
354
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|
355
|
Abstract
Retrotransposons, mainly LINEs, SINEs, and endogenous retroviruses, make up roughly 40% of the mammalian genome and have played an important role in genome evolution. Their prevalence in genomes reflects a delicate balance between their further expansion and the restraint imposed by the host. In any human genome only a small number of LINE1s (L1s) are active, moving their own and SINE sequences into new genomic locations and occasionally causing disease. Recent insights and new technologies promise answers to fundamental questions about the biology of transposable elements.
Collapse
Affiliation(s)
- John L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
356
|
Lee JY, Ji Z, Tian B. Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes. Nucleic Acids Res 2008; 36:5581-90. [PMID: 18757892 PMCID: PMC2553571 DOI: 10.1093/nar/gkn540] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
mRNA polyadenylation is an essential step for the maturation of almost all eukaryotic mRNAs, and is tightly coupled with termination of transcription in defining the 3′-end of genes. Large numbers of human and mouse genes harbor alternative polyadenylation sites [poly(A) sites] that lead to mRNA variants containing different 3′-untranslated regions (UTRs) and/or encoding distinct protein sequences. Here, we examined the conservation and divergence of different types of alternative poly(A) sites across human, mouse, rat and chicken. We found that the 3′-most poly(A) sites tend to be more conserved than upstream ones, whereas poly(A) sites located upstream of the 3′-most exon, also termed intronic poly(A) sites, tend to be much less conserved. Genes with longer evolutionary history are more likely to have alternative polyadenylation, suggesting gain of poly(A) sites through evolution. We also found that nonconserved poly(A) sites are associated with transposable elements (TEs) to a much greater extent than conserved ones, albeit less frequently utilized. Different classes of TEs have different characteristics in their association with poly(A) sites via exaptation of TE sequences into polyadenylation elements. Our results establish a conservation pattern for alternative poly(A) sites in several vertebrate species, and indicate that the 3′-end of genes can be dynamically modified by TEs through evolution.
Collapse
Affiliation(s)
- Ju Youn Lee
- Graduate School of Biomedical Sciences and Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | |
Collapse
|
357
|
Abstract
The two human herpesviruses that are causally associated with cancer are Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus (KSHV). Both are lymphocryptoviruses that establish latency in B lymphocytes and persist for the lifetime of the host. EBV and KSHV are both linked to a variety of lymphomas. EBV is also a causative agent or cofactor in epithelial malignancies such as nasopharyngeal carcinoma whereas Kaposi's sarcoma is of endothelial cell origin. Both viruses encode a limited number of proteins during latent replication that are important for growth transformation and evasion of the immune system. In addition, they express noncoding RNAs during both latent and lytic infection. Many of these RNAs have been highly conserved during evolution and are expressed in a wide variety of clinical settings, suggesting their fundamental importance in the viral life cycle. The function of some of these RNAs such as the nuclear EBV EBER RNAs remains elusive although they are some of the most abundant transcripts produced by each virus. Both EBV and KSHV also have recently been shown to encode and express microRNAs. The study of these viral microRNAs is just beginning although several of their cellular and viral gene targets have been established. Viral microRNAs appear to be involved in both modulation of the immune response as well as oncogenesis. Because each target gene may have many microRNAs acting on its mRNA, and each microRNA may have more than one target, there are likely to be many new discoveries regarding the complex interactions of viral microRNAs and host cell genes.
Collapse
Affiliation(s)
- Sankar Swaminathan
- University of Florida Shands Cancer Center, Gainesville, Florida 32610, USA.
| |
Collapse
|
358
|
Pouch-Pélissier MN, Pélissier T, Elmayan T, Vaucheret H, Boko D, Jantsch MF, Deragon JM. SINE RNA induces severe developmental defects in Arabidopsis thaliana and interacts with HYL1 (DRB1), a key member of the DCL1 complex. PLoS Genet 2008; 4:e1000096. [PMID: 18551175 PMCID: PMC2408557 DOI: 10.1371/journal.pgen.1000096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/13/2008] [Indexed: 11/18/2022] Open
Abstract
The proper temporal and spatial expression of genes during plant development is governed, in part, by the regulatory activities of various types of small RNAs produced by the different RNAi pathways. Here we report that transgenic Arabidopsis plants constitutively expressing the rapeseed SB1 SINE retroposon exhibit developmental defects resembling those observed in some RNAi mutants. We show that SB1 RNA interacts with HYL1 (DRB1), a double-stranded RNA-binding protein (dsRBP) that associates with the Dicer homologue DCL1 to produce microRNAs. RNase V1 protection assays mapped the binding site of HYL1 to a SB1 region that mimics the hairpin structure of microRNA precursors. We also show that HYL1, upon binding to RNA substrates, induces conformational changes that force single-stranded RNA regions to adopt a structured helix-like conformation. Xenopus laevis ADAR1, but not Arabidopsis DRB4, binds SB1 RNA in the same region as HYL1, suggesting that SINE RNAs bind only a subset of dsRBPs. Consistently, DCL4-DRB4-dependent miRNA accumulation was unchanged in SB1 transgenic Arabidopsis, whereas DCL1-HYL1-dependent miRNA and DCL1-HYL1-DCL4-DRB4-dependent tasiRNA accumulation was decreased. We propose that SINE RNA can modulate the activity of the RNAi pathways in plants and possibly in other eukaryotes. Short interspersed elements (SINEs) are transposable elements in eukaryotic genomes that mobilize through an RNA intermediate. Recently, mammalian SINE RNAs were shown to have roles as noncoding riboregulators in stress situations or in specific tissues. Mammalian SINE RNAs modulate the level of mRNAs and proteins by interacting with key proteins involved in gene transcription and translation. Here we show that constitutive production of a plant SINE RNA induces developmental defects in Arabidopsis thaliana and that this SINE RNA interacts with HYL1, a double-stranded RNA-binding protein required for the production of microRNA and trans-acting small interfering (tasi)RNA. We mapped the binding site of HYL1 to a SINE RNA region that mimics the hairpin structure of microRNA precursors. We also found that HYL1 induces conformational changes upon binding to RNA substrates. These data suggest that SINE RNAs modulate the activity of RNAi pathways in Arabidopsis.
Collapse
Affiliation(s)
| | - Thierry Pélissier
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, Perpignan, France
| | - Taline Elmayan
- INRA Laboratoire de Biologie Cellulaire, Versailles, France
| | | | - Drasko Boko
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Michael F. Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, Perpignan, France
- * E-mail:
| |
Collapse
|
359
|
Abstract
In this issue of Molecular Cell, Mariner et al. (2008) demonstrate that Alu RNA from a human SINE represses RNA polymerase II transcription during heat shock. This noncoding RNA is the first example of a "protein-like" transcription factor with a distinct modular architecture.
Collapse
Affiliation(s)
- Ilya Shamovsky
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
360
|
Abstract
The past few years have revealed that the genomes of all studied eukaryotes are almost entirely transcribed, generating an enormous number of non-protein-coding RNAs (ncRNAs). In parallel, it is increasingly evident that many of these RNAs have regulatory functions. Here, we highlight recent advances that illustrate the diversity of ncRNA control of genome dynamics, cell biology, and developmental programming.
Collapse
Affiliation(s)
- Paulo P Amaral
- Institute for Molecular Bioscience, University of Queensland, St. Lucia QLD 4072, Australia
| | | | | | | |
Collapse
|
361
|
In brief. Nat Rev Genet 2008. [DOI: 10.1038/nrg2355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
362
|
Mercer TR, Dinger ME, Mariani J, Kosik KS, Mehler MF, Mattick JS. Noncoding RNAs in Long-Term Memory Formation. Neuroscientist 2007; 14:434-45. [DOI: 10.1177/1073858408319187] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current research exploring the molecular basis of memory focuses mainly on proteins despite recent genomic studies reporting the abundant transcription of non-protein-coding RNA (ncRNA). Although ncRNAs are involved in a diverse range of biological processes, they are particularly prevalent within the nervous system, where they contribute towards the complexity and function of the mammalian brain. In this review, we apply recent advances in ncRNA biology to predict a critical role for ncRNAs in the molecular mechanisms underlying memory formation and maintenance. We describe the role of ncRNAs in regulating the translation, stability, and editing of mRNA populations in response to synaptic activity during memory formation and the role of ncRNAs in the epigenetic and transcriptional programs that underlie long-term memory storage. We also consider ncRNAs acting as an additional avenue of communication between neurons by their intercellular trafficking. Taken together, the emerging evidence suggests a central role for ncRNAs in memory formation and provokes novel research directions in this field. NEUROSCIENTIST 14(5):434—445, 2008. DOI: 10.1177/1073858408319187
Collapse
Affiliation(s)
- Tim R. Mercer
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia
| | - Marcel E. Dinger
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia
| | - Jean Mariani
- Université Pierre et Marie Curie-Paris 6, UMR 7102-Neurobiologie
des Processus Adaptatifs (NPA): CNRS, Paris, France
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California
at Santa Barbara, Santa Barbara, California
| | - Mark F. Mehler
- Institute for Brain Disorders and Neural Regeneration,
Departments of Neurology, Neuroscience and Psychiatry and Behavioral Sciences,
Einstein Cancer Center and Rose F. Kennedy Center for Research in Mental Retardation
and Developmental Disabilities, Albert Einstein College of Medicine, Bronx,
New York
| | - John S. Mattick
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia,
| |
Collapse
|