351
|
Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proc Natl Acad Sci U S A 2013; 110:4188-93. [PMID: 23440214 DOI: 10.1073/pnas.1218062110] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thiamine pyrophosphate (TPP)-sensitive mRNA domains are the most prevalent riboswitches known. Despite intensive investigation, the complex ligand recognition and concomitant folding processes in the TPP riboswitch that culminate in the regulation of gene expression remain elusive. Here, we used single-molecule fluorescence resonance energy transfer imaging to probe the folding landscape of the TPP aptamer domain in the absence and presence of magnesium and TPP. To do so, distinct labeling patterns were used to sense the dynamics of the switch helix (P1) and the two sensor arms (P2/P3 and P4/P5) of the aptamer domain. The latter structural elements make interdomain tertiary contacts (L5/P3) that span a region immediately adjacent to the ligand-binding site. In each instance, conformational dynamics of the TPP riboswitch were influenced by ligand binding. The P1 switch helix, formed by the 5' and 3' ends of the aptamer domain, adopts a predominantly folded structure in the presence of Mg(2+) alone. However, even at saturating concentrations of Mg(2+) and TPP, the P1 helix, as well as distal regions surrounding the TPP-binding site, exhibit an unexpected degree of residual dynamics and disperse kinetic behaviors. Such plasticity results in a persistent exchange of the P3/P5 forearms between open and closed configurations that is likely to facilitate entry and exit of the TPP ligand. Correspondingly, we posit that such features of the TPP aptamer domain contribute directly to the mechanism of riboswitch-mediated translational regulation.
Collapse
|
352
|
Abstract
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
| | - Shiva Razavi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205
| | - Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
- PRESTO Investigator, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
353
|
Karns K, Vogan JM, Qin Q, Hickey SF, Wilson SC, Hammond MC, Herr AE. Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function. J Am Chem Soc 2013; 135:3136-43. [PMID: 23343213 DOI: 10.1021/ja310742m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Riboswitches are RNA sensors that change conformation upon binding small molecule metabolites, in turn modulating gene expression. Our understanding of riboswitch regulatory function would be accelerated by a high-throughput, quantitative screening tool capable of measuring riboswitch-ligand binding. We introduce a microfluidic mobility shift assay that enables precise and rapid quantitation of ligand binding and subsequent riboswitch conformational change. In 0.3% of the time required for benchtop assays (3.2 versus 1020 min), we screen and validate five candidate SAM-I riboswitches isolated from thermophilic and cryophilic bacteria. The format offers enhanced resolution of conformational change compared to slab gel formats, quantitation, and repeatability for statistical assessment of small mobility shifts, low reagent consumption, and riboswitch characterization without modification of the aptamer structure. Appreciable analytical sensitivity coupled with high-resolution separation performance allows quantitation of equilibrium dissociation constants (K(d)) for both rapidly and slowly interconverting riboswitch-ligand pairs as validated through experiments and modeling. Conformational change, triplicate mobility shift measurements, and K(d) are reported for both a known and a candidate SAM-I riboswitch with comparison to in-line probing assay results. The microfluidic mobility shift assay establishes a scalable format for the study of riboswitch-ligand binding that will advance the discovery and selection of novel riboswitches and the development of antibiotics to target bacterial riboswitches.
Collapse
Affiliation(s)
- Kelly Karns
- San Francisco Graduate Program in Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
354
|
Li S, Breaker RR. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res 2013; 41:3022-31. [PMID: 23376932 PMCID: PMC3597705 DOI: 10.1093/nar/gkt057] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5′ splice site, which greatly increases use of this 5′ splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.
Collapse
Affiliation(s)
- Sanshu Li
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
355
|
Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun 2013; 4:1413. [DOI: 10.1038/ncomms2404] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/19/2012] [Indexed: 11/08/2022] Open
|
356
|
Schill M, Koslowski T. Sensing organic molecules by charge transfer through aptamer-target complexes: theory and simulation. J Phys Chem B 2013; 117:475-83. [PMID: 23227783 DOI: 10.1021/jp308042n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aptamers, i.e., short sequences of RNA and single-stranded DNA, are capable of specificilly binding objects ranging from small molecules over proteins to entire cells. Here, we focus on the structure, stability, dynamics, and electronic properties of oligonucleotides that interact with aromatic or heterocyclic targets. Large-scale molecular dynamics simulations indicate that aromatic rings such as dyes, metabolites, or alkaloides form stable adducts with their oligonucleotide host molecules at least on the simulation time scale. From molecular dynamics snapshots, the energy parameters relevant to Marcus' theory of charge transfer are computed using a modified Su-Schrieffer-Heeger Hamiltonian, permitting an estimate of the charge transfer rates. In many cases, aptamer binding seriously influences the charge transfer kinetics and the charge carrier mobility within the complex, with conductivities up to the nanoampere range for a single complex. We discuss the conductivity properties with reference to potential applications as biosensors.
Collapse
Affiliation(s)
- Maria Schill
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 23a, D-79104 Freiburg im Breisgau, Germany
| | | |
Collapse
|
357
|
Lau PS, Li Y. Exploration of structure-switching in the design of aptamer biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:69-92. [PMID: 23851586 DOI: 10.1007/10_2013_223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The process of "structure-switching" enables biomolecular switches to function as effective biosensing tools. Biomolecular switches can be activated or inactivated by binding to a specific target that triggers a precise conformational change in the biomolecules involved. Although many examples of aptamer-based biomolecular switches can be found in nature, substantial effort has been made in the last decade to engineer structure-switching aptamer sensors by coupling aptamers to a signal transduction method to generate a readout signal upon target binding to the aptamer domain. This chapter focuses on the progress of research on engineered structure-switching aptamer sensors. We begin by discussing the origin of the structure-switching aptamer design, highlight the key developments of structure-switching DNA aptamers for fluorescence-, electrochemistry-, and colorimetry-based detection, and introduce our recent efforts in exploring RNA aptamers to create structure-switching molecular sensors.
Collapse
Affiliation(s)
- Pui Sai Lau
- Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, and Michael D. DeGroote Infectious Disease Research Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
358
|
Wachsmuth M, Findeiß S, Weissheimer N, Stadler PF, Mörl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 2012; 41:2541-51. [PMID: 23275562 PMCID: PMC3575828 DOI: 10.1093/nar/gks1330] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Riboswitches are regulatory RNA elements typically located in the 5′-untranslated region of certain mRNAs and control gene expression at the level of transcription or translation. These elements consist of a sensor and an adjacent actuator domain. The sensor usually is an aptamer that specifically interacts with a ligand. The actuator contains an intrinsic terminator or a ribosomal binding site for transcriptional or translational regulation, respectively. Ligand binding leads to structural rearrangements of the riboswitch and to presentation or masking of these regulatory elements. Based on this modular organization, riboswitches are an ideal target for constructing synthetic regulatory systems for gene expression. Although riboswitches for translational control have been designed successfully, attempts to construct synthetic elements regulating transcription have failed so far. Here, we present an in silico pipeline for the rational design of synthetic riboswitches that regulate gene expression at the transcriptional level. Using the well-characterized theophylline aptamer as sensor, we designed the actuator part as RNA sequences that can fold into functional intrinsic terminator structures. In the biochemical characterization, several of the designed constructs show ligand-dependent control of gene expression in Escherichia coli, demonstrating that it is possible to engineer riboswitches not only for translational but also for transcriptional regulation.
Collapse
Affiliation(s)
- Manja Wachsmuth
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
359
|
Ahmad R, Hansen GÅ, Hansen H, Hjerde E, Pedersen HL, Paulsen SM, Nyrud MLJ, Strauss A, Willassen NP, Haugen P. Prediction, Microarray and Northern Blot Analyses Identify New Intergenic Small RNAs in Aliivibrio salmonicida. J Mol Microbiol Biotechnol 2012; 22:352-60. [DOI: 10.1159/000345769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
360
|
Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 2012; 11:75-82. [PMID: 23268228 DOI: 10.1038/nrmicro2934] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, non-coding RNAs have emerged as key regulators of gene expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly abundant, but in most cases the function and mechanism of action for a particular asRNA remains elusive. Here, we highlight a recently discovered paradigm termed the excludon, which defines a genomic locus encoding an unusually long asRNA that spans divergent genes or operons with related or opposing functions. Because these asRNAs can inhibit the expression of one operon while functioning as an mRNA for the adjacent operon, they act as fine-tuning regulatory switches in bacteria.
Collapse
Affiliation(s)
- Nina Sesto
- Unité des Interactions Bactéries-Cellules, Institut National de Santé et de Recherche Médicale (INSERM) U604, Institut Pasteur, and Institut Scientifique de Recherche Agronomique USC2020, Institut Pasteur, Paris F-75015, France
| | | | | | | | | |
Collapse
|
361
|
Fauster K, Kreutz C, Micura R. 2'-SCF3 uridine-a powerful label for probing structure and function of RNA by 19F NMR spectroscopy. Angew Chem Int Ed Engl 2012; 51:13080-4. [PMID: 23161779 PMCID: PMC3555429 DOI: 10.1002/anie.201207128] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 12/20/2022]
Abstract
Fluorishing: the Togni reagent allows efficient synthetic access to fluorine-labeled RNA molecules. These are in turn highly useful for NMR spectroscopic analyses of secondary and tertiary structures, RNA-protein interactions, and functionality of riboswitch modules.
Collapse
Affiliation(s)
- Katja Fauster
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| |
Collapse
|
362
|
|
363
|
Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY. RNA SHAPE analysis in living cells. Nat Chem Biol 2012. [PMID: 23178934 DOI: 10.1038/nchembio.1131] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA structure has important roles in practically every facet of gene regulation, but the paucity of in vivo structural probes limits current understanding. Here we design, synthesize and demonstrate two new chemical probes that enable selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) in living cells. RNA structures in human, mouse, fly, yeast and bacterial cells are read out at single-nucleotide resolution, revealing tertiary contacts and RNA-protein interactions.
Collapse
Affiliation(s)
- Robert C Spitale
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
364
|
Fauster K, Kreutz C, Micura R. 2′-SCF3Uridine-A Powerful Label for Probing Structure and Function of RNA by19F NMR Spectroscopy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
365
|
|
366
|
Abstract
The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized to date involve long-lived species that can be captured by structure characterization techniques. Here, we report the Nuclear Magnetic Resonance visualization of RNA transitions towards invisible ‘excited states’ (ES), which exist in too little abundance (2–13%) and for too short periods of time (45–250 μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix-junction-helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signaling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.
Collapse
|
367
|
Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM. Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 2012; 40:e167. [PMID: 22885302 PMCID: PMC3505972 DOI: 10.1093/nar/gks734] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic gene transfer by replication-defective viral vectors or, for cancer treatment, by replication-competent oncolytic viruses shows high promise for treatment of major diseases. To ensure safety, timing or dosing in patients, external control of therapeutic gene expression is desirable or even required. In this study, we explored the potential of artificial aptazymes, ligand-dependent self-cleaving ribozymes, as an innovative tool for regulation of therapeutic gene expression. Importantly, aptazymes act on RNA intrinsically, independent of regulatory protein–nucleic acid interactions and stoichiometry, are non-immunogenic and of small size. These are key advantages compared with the widely used inducible promoters, which were also reported to lose regulation at high copy numbers, e.g. after replication of oncolytic viruses. We characterized aptazymes in therapeutic gene transfer utilizing adenovectors (AdVs), adeno-associated vectors (AAVs) and oncolytic adenoviruses (OAds), which are all in advanced clinical testing. Our results show similar aptazyme-mediated regulation of gene expression by plasmids, AdVs, AAVs and OAds. Insertion into the 5′-, 3′- or both untranslated regions of several transgenes resulted in ligand-responsive gene expression. Notably, aptazyme regulation was retained during OAd replication and spread. In conclusion, our study demonstrates the fidelity of aptazymes in viral vectors and oncolytic viruses and highlights the potency of riboswitches for medical applications.
Collapse
Affiliation(s)
- Patrick Ketzer
- Helmholtz-University Group Oncolytic Adenoviruses, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
368
|
A New Toolkit for Modeling RNA from a Pseudo-Torsional Space. J Mol Biol 2012; 421:1-5. [DOI: 10.1016/j.jmb.2012.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
369
|
Synthetic biology with RNA: progress report. Curr Opin Chem Biol 2012; 16:278-84. [DOI: 10.1016/j.cbpa.2012.05.192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/20/2022]
|
370
|
Abstract
A riboswitch is a non-protein coding sequence capable of directly binding a small molecule effector without the assistance of accessory proteins to regulate expression of the mRNA in which it is embedded. Currently, over 20 different classes of riboswitches have been validated in bacteria with the promise of many more to come, making them an important means of regulating the genome in the bacterial kingdom. Strikingly, half of the known riboswitches recognize effector compounds that contain a purine or related moiety. In the last decade, significant progress has been made to determine how riboswitches specifically recognize these compounds against the background of many other similar cellular metabolites and transduce this signal into a regulatory response. Of the known riboswitches, the purine family containing guanine, adenine and 2'-deoxyguanosine-binding classes are the most extensively studied, serving as a simple and useful paradigm for understanding how these regulatory RNAs function. This review provides a comprehensive summary of the current state of knowledge regarding the structure and mechanism of these riboswitches, as well as insights into how they might be exploited as therapeutic targets and novel biosensors.
Collapse
|
371
|
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that regulates diverse cellular processes in bacteria, including motility, biofilm formation, cell-cell signaling, and host colonization. Studies of c-di-GMP signaling have chiefly focused on Gram-negative bacteria. Here, we investigated c-di-GMP signaling in the Gram-positive bacterium Bacillus subtilis by constructing deletion mutations in genes predicted to be involved in the synthesis, breakdown, or response to the second messenger. We found that a putative c-di-GMP-degrading phosphodiesterase, YuxH, and a putative c-di-GMP receptor, YpfA, had strong influences on motility and that these effects depended on sequences similar to canonical EAL and RxxxR-D/NxSxxG motifs, respectively. Evidence indicates that YpfA inhibits motility by interacting with the flagellar motor protein MotA and that yuxH is under the negative control of the master regulator Spo0A∼P. Based on these findings, we propose that YpfA inhibits motility in response to rising levels of c-di-GMP during entry into stationary phase due to the downregulation of yuxH by Spo0A∼P. We also present evidence that YpfA has a mild influence on biofilm formation. In toto, our results demonstrate the existence of a functional c-di-GMP signaling system in B. subtilis that directly inhibits motility and directly or indirectly influences biofilm formation.
Collapse
|
372
|
Santner T, Rieder U, Kreutz C, Micura R. Pseudoknot preorganization of the preQ1 class I riboswitch. J Am Chem Soc 2012; 134:11928-31. [PMID: 22775200 DOI: 10.1021/ja3049964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore folding and ligand recognition of metabolite-responsive RNAs is of major importance to comprehend gene regulation by riboswitches. Here, we demonstrate, using NMR spectroscopy, that the free aptamer of a preQ(1) class I riboswitch preorganizes into a pseudoknot fold in a temperature- and Mg(2+)-dependent manner. The preformed pseudoknot represents a structure that is close to the ligand-bound state and that likely represents the conformation selected by the ligand. Importantly, a defined base pair mutation within the pseudoknot interaction stipulates whether, in the absence of ligand, dimer formation of the aptamer competes with intramolecular pseudoknot formation. This study pinpoints how RNA preorganization is a crucial determinant for the adaptive recognition process of RNA and ligand.
Collapse
Affiliation(s)
- Tobias Santner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
373
|
Garst AD, Porter EB, Batey RT. Insights into the regulatory landscape of the lysine riboswitch. J Mol Biol 2012; 423:17-33. [PMID: 22771573 DOI: 10.1016/j.jmb.2012.06.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors, these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main-chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, we have determined the relative contributions of the polar functional groups to binding affinity and the regulatory response. Our results reveal that the lysine riboswitch has >1000-fold specificity for lysine over other amino acids. The aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main-chain functional groups in order to achieve this specificity. At low nucleotide triphosphate (NTP) concentrations, we observe good agreement between the half-maximal regulatory activity (T(50)) and the affinity of the receptor for lysine (K(d)), as well as many of its analogs. However, above 400 μM [NTP], the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that, under physiologically relevant conditions, riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell.
Collapse
Affiliation(s)
- Andrew D Garst
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | | | | |
Collapse
|
374
|
Moumné R, Catala M, Larue V, Micouin L, Tisné C. Fragment-based design of small RNA binders: Promising developments and contribution of NMR. Biochimie 2012; 94:1607-19. [DOI: 10.1016/j.biochi.2012.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
|
375
|
Whitford PC, Sanbonmatsu KY, Onuchic JN. Biomolecular dynamics: order-disorder transitions and energy landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076601. [PMID: 22790780 PMCID: PMC3695400 DOI: 10.1088/0034-4885/75/7/076601] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.
Collapse
Affiliation(s)
- Paul C Whitford
- Center for Theoretical Biological Physics, Department of Physics, Rice University, 6100 Main, Houston, TX 77005-1827, USA
| | | | | |
Collapse
|
376
|
Hirano T, Beck DAC, Demuth DR, Hackett M, Lamont RJ. Deep sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant. Front Cell Infect Microbiol 2012; 2:79. [PMID: 22919670 PMCID: PMC3422912 DOI: 10.3389/fcimb.2012.00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/21/2012] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis is a major etiological agent in chronic and aggressive forms of periodontal disease. The organism is an asaccharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve non-coding RNAs were identified, including 11 small RNAs and one cobalamin riboswitch. Fifty-seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor) to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.
Collapse
Affiliation(s)
- Takanori Hirano
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville Louisville, KY, USA
| | | | | | | | | |
Collapse
|
377
|
Romeo T, Vakulskas CA, Babitzke P. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 2012; 15:313-24. [PMID: 22672726 DOI: 10.1111/j.1462-2920.2012.02794.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Originally described as a repressor of gene expression in the stationary phase of growth, CsrA (RsmA) regulates primary and secondary metabolic pathways, biofilm formation, motility, virulence circuitry of pathogens, quorum sensing and stress response systems by binding to conserved sequences in its target mRNAs and altering their translation and/or turnover. While the binding of CsrA to RNA is understood at an atomic level, new mechanisms of gene activation and repression by this protein are still emerging. In the γ-proteobacteria, small non-coding RNAs (sRNAs) use molecular mimicry to sequester multiple CsrA dimers away from mRNA. In contrast, the FliW protein of Bacillus subtilis inhibits CsrA activity by binding to this protein, thereby establishing a checkpoint in flagellum morphogenesis. Turnover of CsrB and CsrC sRNAs in Escherichia coli requires a specificity protein of the GGDEF-EAL domain superfamily, CsrD, in addition to the housekeeping nucleases RNase E and PNPase. The Csr system of E. coli contains extensive autoregulatory circuitry, which governs the expression and activity of CsrA. Interaction of the Csr system with transcriptional regulatory networks results in a variety of complex response patterns. This minireview will highlight basic principles and new insights into the workings of these complex eubacterial regulatory systems.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
378
|
Salim NN, Faner MA, Philip JA, Feig AL. Requirement of upstream Hfq-binding (ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY. Nucleic Acids Res 2012; 40:8021-32. [PMID: 22661574 PMCID: PMC3439879 DOI: 10.1093/nar/gks392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hfq is an important RNA-binding protein that helps bacteria adapt to stress. Its primary function is to promote pairing between trans-acting small non-coding RNAs (sRNAs) and their target mRNAs. Identification of essential Hfq-binding motifs in up-stream regions of rpoS and fhlA led us to ask the question whether these elements are a common occurrence among other Hfq-dependent mRNAs as well. Here, we confirm the presence of a similar (ARN)x motif in glmS RNA, a gene controlled by two sRNAs (GlmZ and GlmY) in an Hfq-dependent manner. GlmZ represents a canonical sRNA:mRNA pairing system, whereas GlmY is non-canonical, interfacing with the RNA processing protein YhbJ. We show that glmS interacts with both Hfq-binding surfaces in the absence of sRNAs. Even though two (ARN)x motifs are present, using a glmS:gfp fusion system, we determined that only one specific (ARN)x element is essential for regulation. Furthermore, we show that residues 66–72 in the C-terminal extension of Escherichia coli Hfq are essential for activation of GlmS expression by GlmY, but not with GlmZ. This result shows that the C-terminal extension of Hfq may be required for some forms of non-canonical sRNA regulation involving ancillary components such as additional RNAs or proteins.
Collapse
Affiliation(s)
- Nilshad N Salim
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
379
|
Serganov A, Patel DJ. Molecular recognition and function of riboswitches. Curr Opin Struct Biol 2012; 22:279-86. [PMID: 22579413 DOI: 10.1016/j.sbi.2012.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Regulatory mRNAs elements termed riboswitches respond to elevated concentrations of cellular metabolites by modulating expression of associated genes. Riboswitches attain their high metabolite selectivity by capitalizing on the intrinsic tertiary structures of their sensor domains. Over the years, riboswitch structure and folding have been amongst the most researched topics in the RNA field. Most recently, novel structures of single-ligand and cooperative double-ligand sensors have broadened our knowledge of architectural and molecular recognition principles exploited by riboswitches. The structural information has been complemented by extensive folding studies, which have provided several important clues on the formation of ligand-competent conformations and mechanisms of ligand discrimination. These studies have greatly improved our understanding of molecular events in riboswitch-mediated gene expression control and provided the molecular basis for intervention into riboswitch-controlled genetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Ave., MSB-393, New York, NY 10016, USA
| | | |
Collapse
|
380
|
Krzyzanowski PM, Muro EM, Andrade-Navarro MA. Computational approaches to discovering noncoding RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:567-79. [PMID: 22555938 DOI: 10.1002/wrna.1121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New developments are being brought to the field of molecular biology with the mounting evidence that RNA transcripts not translated into protein (noncoding RNAs, ncRNAs) hold a variety of biological functions. Computational discovery of ncRNAs is one of these developments, fueled not only by the urge to characterize these sequences but also by necessity to prioritize ones with the most relevant functions for experimental verification. The heterogeneity in size and mode of activity of ncRNAs is reflected in the corresponding diversity of computational methods for their study. Sequence and structural analysis, conservation across species, and relative position to other genomic elements are being used for ncRNA detection. In addition, the recent development of techniques that allow deep sequencing of cell transcripts either globally or from isolated ncRNA-related material is leading the field toward increased use of such high-throughput data. We expect that imminent breakthroughs will include the classification of newer types of ncRNA and new insights into miRNA and piRNA biology, eventually leading toward the completion of a catalog of all human ncRNAs.
Collapse
|
381
|
Romilly C, Caldelari I, Parmentier D, Lioliou E, Romby P, Fechter P. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus. RNA Biol 2012; 9:402-13. [PMID: 22546940 DOI: 10.4161/rna.20103] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus is one of the major human pathogens, which causes numerous community-associated and hospital-acquired infections. The regulation of the expression of numerous virulence factors is coordinated by complex interplays between two component systems, transcriptional regulatory proteins, and regulatory RNAs. Recent studies have identified numerous novel RNAs comprising cis-acting regulatory RNAs, antisense RNAs, small non coding RNAs and small mRNAs encoding peptides. We present here several examples of RNAs regulating S. aureus pathogenicity and describe various aspects of antisense regulation.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
382
|
Ryan RP, Tolker-Nielsen T, Dow JM. When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Trends Microbiol 2012; 20:235-42. [PMID: 22444828 DOI: 10.1016/j.tim.2012.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 01/25/2023]
Abstract
The second messenger cyclic di-GMP has emerged as a central regulator of many important bacterial processes including biofilm formation and virulence. Although the pathways of cyclic di-GMP synthesis and degradation have been established, the mechanisms by which this second messenger exerts its action on diverse cellular functions remain relatively poorly understood. Recent studies report considerable advances in identifying different classes of cyclic di-GMP effectors; these include the PilZ protein domain, transcription factors, proteins involved in RNA processing and riboswitches. Here, we review this range of cyclic di-GMP effectors and the biological processes that they govern using examples from several different bacteria.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
383
|
Kick-starting the origin of life. Phys Life Rev 2012; 9:111-3; discussion 121-3. [DOI: 10.1016/j.plrev.2011.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 11/21/2022]
|
384
|
Sherman EM, Esquiaqui J, Elsayed G, Ye JD. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA (NEW YORK, N.Y.) 2012; 18:496-507. [PMID: 22279151 PMCID: PMC3285937 DOI: 10.1261/rna.031286.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/14/2011] [Indexed: 05/21/2023]
Abstract
Comprised of two aptamers connected by a short nucleotide linker, the glycine riboswitch was the first example of naturally occurring RNA elements reported to bind small organic molecules cooperatively. Earlier works have shown binding of glycine to the second aptamer allows tertiary interactions to be made between the two aptamers, which facilitates binding of a separate glycine molecule to the first aptamer, leading to glycine-binding cooperativity. Prompted by a distinctive protection pattern in the linker region of a minimal glycine riboswitch construct, we have identified a highly conserved (>90%) leader-linker duplex involving leader nucleotides upstream of the previously reported consensus glycine riboswitch sequences. In >50% of the glycine riboswitches, the leader-linker interaction forms a kink-turn motif. Characterization of three glycine ribsowitches showed that the leader-linker interaction improved the glycine-binding affinities by 4.5- to 86-fold. In-line probing and native gel assays with two aptamers in trans suggested synergistic action between glycine-binding and interaptamer interaction during global folding of the glycine riboswitch. Mutational analysis showed that there appeared to be no ligand-binding cooperativity in the glycine riboswitch when the leader-linker interaction is present, and the previously measured cooperativity is simply an artifact of a truncated construct missing the leader sequence.
Collapse
Affiliation(s)
- Eileen M. Sherman
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Jackie Esquiaqui
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Galal Elsayed
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
- Corresponding author.E-mail .
| |
Collapse
|
385
|
Chang AL, Wolf JJ, Smolke CD. Synthetic RNA switches as a tool for temporal and spatial control over gene expression. Curr Opin Biotechnol 2012; 23:679-88. [PMID: 22305712 DOI: 10.1016/j.copbio.2012.01.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 11/17/2022]
Abstract
The engineering of biological systems offers significant promise for advances in areas including health and medicine, chemical synthesis, energy production, and environmental sustainability. Realizing this potential requires tools that enable design of sophisticated genetic systems. The functional diversity of RNA makes it an attractive and versatile substrate for programming sensing, information processing, computation, and control functions. Recent advances in the design of synthetic RNA switches capable of detecting and responding to molecular and environmental signals enable dynamic modulation of gene expression through diverse mechanisms, including transcription, splicing, stability, RNA interference, and translation. Furthermore, implementation of these switches in genetic circuits highlights the potential for building synthetic cell systems targeted to applications in environmental remediation and next-generation therapeutics and diagnostics.
Collapse
Affiliation(s)
- Andrew L Chang
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | | | | |
Collapse
|
386
|
|
387
|
Engineering biological systems with synthetic RNA molecules. Mol Cell 2011; 43:915-26. [PMID: 21925380 DOI: 10.1016/j.molcel.2011.08.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 01/08/2023]
Abstract
RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors.
Collapse
|
388
|
Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880-91. [PMID: 21925377 PMCID: PMC3176440 DOI: 10.1016/j.molcel.2011.08.022] [Citation(s) in RCA: 892] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022]
Abstract
Research on the discovery and characterization of small, regulatory RNAs in bacteria has exploded in recent years. These sRNAs act by base pairing with target mRNAs with which they share limited or extended complementarity, or by modulating protein activity, in some cases by mimicking other nucleic acids. Mechanistic insights into how sRNAs bind mRNAs and proteins, how they compete with each other, and how they interface with ribonucleases are active areas of discovery. Current work also has begun to illuminate how sRNAs modulate expression of distinct regulons and key transcription factors, thus integrating sRNA activity into extensive regulatory networks. In addition, the application of RNA deep sequencing has led to reports of hundreds of additional sRNA candidates in a wide swath of bacterial species. Most importantly, recent studies have served to clarify the abundance of remaining questions about how, when, and why sRNA-mediated regulation is of such importance to bacterial lifestyles.
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 18 Library Drive, Bethesda, MD 20892-5430, USA.
| | | | | |
Collapse
|