351
|
Ferrer RP, Zimmer RK. The scent of danger: arginine as an olfactory cue of reduced predation risk. ACTA ACUST UNITED AC 2008; 210:1768-75. [PMID: 17488940 DOI: 10.1242/jeb.001719] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal perception of chemosensory cues is a function of ecological context. Larvae of the California newt (Taricha torosa), for example, exhibit predator-avoidance behavior in response to a chemical from cannibalistic adults. The poison tetrodotoxin (TTX), well known as an adult chemical defense, stimulates larval escape to refuges. Although they are cannibals, adult newts feed preferentially on worms (Eisenia rosea) over conspecific young. Hence, larval avoidance reactions to TTX are suppressed in the presence of odor from these alternative prey. The free amino acid, arginine, is abundant in fluids emitted by injured worms. Here, we demonstrate that arginine is a natural suppressant of TTX-stimulated larval escape behavior. Compared to a tapwater control, larvae initiated vigorous swimming in response to 10(-7) mol l(-1) TTX. This excitatory response was eliminated when larval nasal cavities were blocked with an inert gel, but not when gel was placed on the forehead (control). In additional trials, a binary mixture of arginine and 10(-7) mol l(-1) TTX failed to induce larval swimming. The inhibitory effect of arginine was, however, dose dependent. An arginine concentration as low as 0.3-times that of TTX was significantly suppressant. Further analysis showed that suppression by arginine of TTX-stimulated behavior was eliminated by altering the positively-charged guanidinium moiety, but not by modifying the carbon chain, carboxyl group, or amine group. These results are best explained by a mechanism of competitive inhibition between arginine and TTX for common, olfactory receptor binding sites. Although arginine alone has no impact on larval behavior, it nevertheless signals active adult predation on alternative prey, and hence, reduced cannibalism risk.
Collapse
Affiliation(s)
- Ryan P Ferrer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
352
|
Nozawa M, Kawahara Y, Nei M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci U S A 2007; 104:20421-6. [PMID: 18077390 PMCID: PMC2154446 DOI: 10.1073/pnas.0709956104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Indexed: 11/18/2022] Open
Abstract
The number of sensory receptor genes varies extensively among different mammalian species. This variation is believed to be caused partly by physiological requirements of animals and partly by genomic drift due to random duplication and deletion of genes. If the contribution of genomic drift is substantial, each species should contain a significant amount of copy number variation (CNV). We therefore investigated CNVs in sensory receptor genes among 270 healthy humans by using published CNV data. The results indicated that olfactory receptor (OR), taste receptor type 2, and vomeronasal receptor type 1 genes show a high level of intraspecific CNVs. In particular, >30% of the approximately 800 OR gene loci in humans were polymorphic with respect to copy number, and two randomly chosen individuals showed a copy number difference of approximately 11 in functional OR genes on average. There was no significant difference in the amount of CNVs between functional and nonfunctional OR genes. Because pseudogenes are expected to evolve in a neutral fashion, this observation suggests that functional OR genes also have evolved in a similar manner with respect to copy number change. In addition, we found that the evolutionary change of copy number of OR genes approximately follows the Gaussian process in probability theory, and the copy number divergence between populations has increased with evolutionary time. We therefore conclude that genomic drift plays an important role for generating intra- and interspecific CNVs of sensory receptor genes. Similar results were obtained when all annotated genes were analyzed.
Collapse
Affiliation(s)
- Masafumi Nozawa
- *Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802; and
| | - Yoshihiro Kawahara
- *Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802; and
- Integrated Database Team, Japan Biological Information Research Center, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masatoshi Nei
- *Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802; and
| |
Collapse
|
353
|
Horner AJ, Weissburg MJ, Derby CD. The olfactory pathway mediates sheltering behavior of Caribbean spiny lobsters, Panulirus argus, to conspecific urine signals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 194:243-53. [PMID: 18057940 DOI: 10.1007/s00359-007-0302-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 12/19/2022]
Abstract
The "noses" of diverse taxa are organized into different subsystems whose functions are often not well understood. The "nose" of decapod crustaceans is organized into two parallel pathways that originate in different populations of antennular sensilla and project to specific neuropils in the brain-the aesthetasc/olfactory lobe pathway and the non-aesthetasc/lateral antennular neuropil pathway. In this study, we investigated the role of these pathways in mediating shelter selection of Caribbean spiny lobsters, Panulirus argus, in response to conspecific urine signals. We compared the behavior of ablated animals and intact controls. Our results show that control and non-aesthetasc ablated lobsters have a significant overall preference for shelters emanating urine over control shelters. Thus the non-aesthetasc pathway does not play a critical role in shelter selection. In contrast, spiny lobsters with aesthetascs ablated did not show a preference for either shelter, suggesting that the aesthetasc/olfactory pathway is important for processing social odors. Our results show a difference in the function of these dual chemosensory pathways in responding to social cues, with the aesthetasc/olfactory lobe pathway playing a major role. We discuss our results in the context of why the noses of many animals contain multiple parallel chemosensory systems.
Collapse
Affiliation(s)
- Amy J Horner
- Department of Biology, Brains & Behavior Program, and Center for Behavioral Neuroscience, Georgia State University, P. O. Box 4010, Atlanta, GA, 30302-4010, USA
| | | | | |
Collapse
|
354
|
Sullivan JM, Sandeman DC, Benton JL, Beltz BS. Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Histol 2007; 38:527-42. [PMID: 17624620 PMCID: PMC2725433 DOI: 10.1007/s10735-007-9112-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 06/01/2007] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis is a characteristic feature of the olfactory pathways of decapod crustaceans. In crayfish and clawed lobsters, adult-born neurons are the progeny of precursor cells with glial characteristics located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate during S and G(2 )stages of the cell cycle along glial fibers to lateral (cluster 10) and medial (cluster 9) proliferation zones. Here, they divide (M phase) producing offspring that differentiate into olfactory interneurons. The complete lineage of cells producing neurons in these animals, therefore, is arranged along the migratory stream according to cell cycle stage. We have exploited this model to examine the influence of environmental and endogenous factors on adult neurogenesis. We find that increased levels of serotonin upregulate neuronal production, as does maintaining animals in an enriched (versus deprived) environment or augmenting their diet with omega-3 fatty acids; increased levels of nitric oxide, on the other hand, decrease the rate of neurogenesis. The features of the neurogenic niche and migratory streams, and the fact that these continue to function in vitro, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA, e-mail:
| | - David C. Sandeman
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA, e-mail:
| | - Jeanne L. Benton
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA, e-mail:
| | - Barbara S. Beltz
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA, e-mail:
| |
Collapse
|
355
|
Horner AJ, Schmidt M, Edwards DH, Derby CD. Role of the olfactory pathway in agonistic behavior of crayfish, Procambarus clarkii. INVERTEBRATE NEUROSCIENCE 2007; 8:11-8. [PMID: 18030509 DOI: 10.1007/s10158-007-0063-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 11/06/2007] [Indexed: 12/19/2022]
Abstract
Crayfish establish social dominance hierarchies through agonistic interactions, and these hierarchies are maintained through assessment of social status. Chemical signals influence several aspects of fighting behavior, but the specific chemosensory sensilla involved in detecting these signals in crayfish are unknown. The goal of our study was to examine the importance of aesthetasc sensilla--olfactory sensors on the antennules of decapod crustaceans--in regulating changes in fighting behavior in crayfish, Procambarus clarkii, over the course of repeated pairings. We selectively ablated aesthetascs from pairs of crayfish after the first day of trials and compared the behavior of these ablated animals to that of pairs of intact controls. Results show that unablated crayfish significantly decreased the number and duration of fights over repeated pairings, whereas crayfish lacking aesthetascs continued to engage in similar amounts of fighting across all three trial days. This difference shows that aesthetascs regulate fighting behavior in P. clarkii.
Collapse
Affiliation(s)
- Amy J Horner
- Department of Biology, Brains and Behavior Program, Center for Behavioral Neuroscience, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
356
|
Gervais R, Buonviso N, Martin C, Ravel N. What do electrophysiological studies tell us about processing at the olfactory bulb level? ACTA ACUST UNITED AC 2007; 101:40-5. [PMID: 18054211 DOI: 10.1016/j.jphysparis.2007.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrophysiological recordings performed in the mammalian olfactory bulb (OB) aimed at deciphering neural rules supporting neural representation of odors. In spite of a fairly large number of available data, no clear picture emerges yet in the mammalian OB. This paper summarizes some important findings and underlines the fact that difference in experimental conditions still represents a major limitation to the emergence of a synthetic view. More specifically, we examine to what extent the absence or the presence of anaesthetic influence OB neuronal responsiveness. In addition, we will see that recordings of either single cell activity or populational activity provide quite different pictures. As a result some experimental approaches provide data underlying sensory properties of OB neurons while others emphasize their capabilities of integrating incoming sensory information with attention, motivation and previous experience.
Collapse
Affiliation(s)
- Rémi Gervais
- Laboratoire Neurosciences Sensorielles, Comportement Cognition, UMR 5020 CNRS Université Claude Bernard Lyon 1, Université de Lyon, IFR 19, 50 Avenue T Garnier, 69366, Lyon Cedex 07, France.
| | | | | | | |
Collapse
|
357
|
Kishida T, Kubota S, Shirayama Y, Fukami H. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 2007; 3:428-30. [PMID: 17535789 PMCID: PMC2390674 DOI: 10.1098/rsbl.2007.0191] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals.
Collapse
Affiliation(s)
- Takushi Kishida
- Department of Zoology, Kyoto University, Wakayama 649-2211, Japan.
| | | | | | | |
Collapse
|
358
|
Xia S, Tully T. Segregation of odor identity and intensity during odor discrimination in Drosophila mushroom body. PLoS Biol 2007; 5:e264. [PMID: 17914903 PMCID: PMC1994992 DOI: 10.1371/journal.pbio.0050264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/09/2007] [Indexed: 01/12/2023] Open
Abstract
Molecular and cellular studies have begun to unravel a neurobiological basis of olfactory processing, which appears conserved among vertebrate and invertebrate species. Studies have shown clearly that experience-dependent coding of odor identity occurs in "associative" olfactory centers (the piriform cortex in mammals and the mushroom body [MB] in insects). What remains unclear, however, is whether associative centers also mediate innate (spontaneous) odor discrimination and how ongoing experience modifies odor discrimination. Here we show in naïve flies that Galphaq-mediated signaling in MB modulates spontaneous discrimination of odor identity but not odor intensity (concentration). In contrast, experience-dependent modification (conditioning) of both odor identity and intensity occurs in MB exclusively via Galphas-mediated signaling. Our data suggest that spontaneous responses to odor identity and odor intensity discrimination are segregated at the MB level, and neural activity from MB further modulates olfactory processing by experience-independent Galphaq-dependent encoding of odor identity and by experience-induced Galphas-dependent encoding of odor intensity and identity.
Collapse
Affiliation(s)
- Shouzhen Xia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | | |
Collapse
|
359
|
Bohbot J, Pitts RJ, Kwon HW, Rützler M, Robertson HM, Zwiebel LJ. Molecular characterization of the Aedes aegypti odorant receptor gene family. INSECT MOLECULAR BIOLOGY 2007; 16:525-37. [PMID: 17635615 PMCID: PMC3100214 DOI: 10.1111/j.1365-2583.2007.00748.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The olfactory-driven blood-feeding behaviour of female Aedes aegypti mosquitoes is the primary transmission mechanism by which the arboviruses causing dengue and yellow fevers affect over 40 million individuals worldwide. Bioinformatics analysis has been used to identify 131 putative odourant receptors from the A. aegypti genome that are likely to function in chemosensory perception in this mosquito. Comparison with the Anopheles gambiae olfactory subgenome demonstrates significant divergence of the odourant receptors that reflects a high degree of evolutionary activity potentially resulting from their critical roles during the mosquito life cycle. Expression analyses in the larval and adult olfactory chemosensory organs reveal that the ratio of odourant receptors to antennal glomeruli is not necessarily one to one in mosquitoes.
Collapse
Affiliation(s)
- J Bohbot
- Department of Biological Sciences, Programs in Developmental Biology and Genetics, Centers for Chemical Biology and Molecular Neuroscience, The Institute for Global Health, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
360
|
Vinogradov AE, Anatskaya OV. Organismal complexity, cell differentiation and gene expression: human over mouse. Nucleic Acids Res 2007; 35:6350-6. [PMID: 17881362 PMCID: PMC2095826 DOI: 10.1093/nar/gkm723] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/12/2007] [Accepted: 09/01/2007] [Indexed: 01/25/2023] Open
Abstract
We present a molecular and cellular phenomenon underlying the intriguing increase in phenotypic organizational complexity. For the same set of human-mouse orthologous genes (11 534 gene pairs) and homologous tissues (32 tissue pairs), human shows a greater fraction of tissue-specific genes and a greater ratio of the total expression of tissue-specific genes to housekeeping genes in each studied tissue, which suggests a generally higher level of evolutionary cell differentiation (specialization). This phenomenon is spectacularly more pronounced in those human tissues that are more directly involved in the increase of complexity, longevity and body size (i.e. it is reflected on the organismal level as well). Genes with a change in expression breadth show a greater human-mouse divergence of promoter regions and encoded proteins (i.e. the functional genomics data are supported by the structural analysis). Human also shows the higher expression of translation machinery. The upstream untranslated regions (5'UTRs) of human mRNAs are longer than mouse 5'UTRs (even after correction for the difference in genome sizes) and contain more uAUG codons, which suggest a more complex regulation at the translational level in human cells (and agrees well with the augmented cell specialization).
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St. Petersburg 194064, Russia.
| | | |
Collapse
|
361
|
Benton R. Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci 2007; 30:512-9. [PMID: 17825436 DOI: 10.1016/j.tins.2007.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/11/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022]
Abstract
How the brain perceives volatile chemicals in the environment to evoke the appropriate behaviour is a fundamental question in sensory neuroscience. The olfactory system of the fruit fly, Drosophila melanogaster, has emerged as a powerful model system to address this problem. Recent analysis of the molecular, neuroanatomical and physiological properties of the olfactory circuits that detect the sex and social aggregation pheromone cis-vaccenyl acetate now provides one of the most comprehensive outlines for the neural basis of odour perception. This review describes these latest advances, discusses what they reveal about where stimulus sensitivity and specificity is encoded in olfactory circuits, and considers future questions.
Collapse
Affiliation(s)
- Richard Benton
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue Box 63, New York, NY 10065, USA.
| |
Collapse
|
362
|
Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 2007; 104:14507-12. [PMID: 17724338 PMCID: PMC1964822 DOI: 10.1073/pnas.0704965104] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian main olfactory epithelium (MOE) recognizes and transduces olfactory cues through a G protein-coupled, cAMP-dependent signaling cascade. Additional chemosensory transduction mechanisms have been suggested but remain controversial. We show that a subset of MOE neurons expressing the orphan receptor guanylyl cyclase GC-D and the cyclic nucleotide-gated channel subunit CNGA3 employ an excitatory cGMP-dependent transduction mechanism for chemodetection. By combining gene targeting of Gucy2d, which encodes GC-D, with patch clamp recording and confocal Ca2+ imaging from single dendritic knobs in situ, we find that GC-D cells recognize the peptide hormones uroguanylin and guanylin as well as natural urine stimuli. These molecules stimulate an excitatory, cGMP-dependent signaling cascade that increases intracellular Ca2+ and action potential firing. Responses are eliminated in both Gucy2d- and Cnga3-null mice, demonstrating the essential role of GC-D and CNGA3 in the transduction of these molecules. The sensitive and selective detection of two important natriuretic peptides by the GC-D neurons suggests the possibility that these cells contribute to the maintenance of salt and water homeostasis or the detection of cues related to hunger, satiety, or thirst.
Collapse
Affiliation(s)
- Trese Leinders-Zufall
- *Department of Physiology, University of Saarland School of Medicine, 66421 Homburg/Saar, Germany
| | - Renee E. Cockerham
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Stylianos Michalakis
- Munich Center for Integrated Protein Science and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Martin Biel
- Munich Center for Integrated Protein Science and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David L. Garbers
- Department of Pharmacology and the Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Randall R. Reed
- Department of Molecular Biology and Genetics and Center for Sensory Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Frank Zufall
- *Department of Physiology, University of Saarland School of Medicine, 66421 Homburg/Saar, Germany
- To whom correspondence may be addressed. E-mail:
| | - Steven D. Munger
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
- **To whom correspondence may be addressed at:
Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, S251, Baltimore, MD 21201. E-mail:
| |
Collapse
|
363
|
Affiliation(s)
- Ronald Bentley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
364
|
Takeda A, Kikuchi A, Matsuzaki-Kobayashi M, Sugeno N, Itoyama Y. Olfactory dysfunction in Parkinson's disease. J Neurol 2007. [DOI: 10.1007/s00415-007-4002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
365
|
Colbourne JK, Eads BD, Shaw J, Bohuski E, Bauer DJ, Andrews J. Sampling Daphnia's expressed genes: preservation, expansion and invention of crustacean genes with reference to insect genomes. BMC Genomics 2007; 8:217. [PMID: 17612412 PMCID: PMC1940262 DOI: 10.1186/1471-2164-8-217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 07/06/2007] [Indexed: 11/11/2022] Open
Abstract
Background Functional and comparative studies of insect genomes have shed light on the complement of genes, which in part, account for shared morphologies, developmental programs and life-histories. Contrasting the gene inventories of insects to those of the nematodes provides insight into the genomic changes responsible for their diversification. However, nematodes have weak relationships to insects, as each belongs to separate animal phyla. A better outgroup to distinguish lineage specific novelties would include other members of Arthropoda. For example, crustaceans are close allies to the insects (together forming Pancrustacea) and their fascinating aquatic lifestyle provides an important comparison for understanding the genetic basis of adaptations to life on land versus life in water. Results This study reports on the first characterization of cDNA libraries and sequences for the model crustacean Daphnia pulex. We analyzed 1,546 ESTs of which 1,414 represent approximately 787 nuclear genes, by measuring their sequence similarities with insect and nematode proteomes. The provisional annotation of genes is supported by expression data from microarray studies described in companion papers. Loci expected to be shared between crustaceans and insects because of their mutual biological features are identified, including genes for reproduction, regulation and cellular processes. We identify genes that are likely derived within Pancrustacea or lost within the nematodes. Moreover, lineage specific gene family expansions are identified, which suggest certain biological demands associated with their ecological setting. In particular, up to seven distinct ferritin loci are found in Daphnia compared to three in most insects. Finally, a substantial fraction of the sampled gene transcripts shares no sequence similarity with those from other arthropods. Genes functioning during development and reproduction are comparatively well conserved between crustaceans and insects. By contrast, genes that were responsive to environmental conditions (metal stress) and not sex-biased included the greatest proportion of genes with no matches to insect proteomes. Conclusion This study along with associated microarray experiments are the initial steps in a coordinated effort by the Daphnia Genomics Consortium to build the necessary genomic platform needed to discover genes that account for the phenotypic diversity within the genus and to gain new insights into crustacean biology. This effort will soon include the first crustacean genome sequence.
Collapse
Affiliation(s)
- John K Colbourne
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Brian D Eads
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph Shaw
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Elizabeth Bohuski
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Darren J Bauer
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Justen Andrews
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
366
|
Abstract
Systematic mapping studies involving 365 odorant chemicals have shown that glomerular responses in the rat olfactory bulb are organized spatially in patterns that are related to the chemistry of the odorant stimuli. This organization involves the spatial clustering of principal responses to numerous odorants that share key aspects of chemistry such as functional groups, hydrocarbon structural elements, and/or overall molecular properties related to water solubility. In several of the clusters, responses shift progressively in position according to odorant carbon chain length. These response domains appear to be constructed from orderly projections of sensory neurons in the olfactory epithelium and may also involve chromatography across the nasal mucosa. The spatial clustering of glomerular responses may serve to "tune" the principal responses of bulbar projection neurons by way of inhibitory interneuronal networks, allowing the projection neurons to respond to a narrower range of stimuli than their associated sensory neurons. When glomerular activity patterns are viewed relative to the overall level of glomerular activation, the patterns accurately predict the perception of odor quality, thereby supporting the notion that spatial patterns of activity are the key factors underlying that aspect of the olfactory code. A critical analysis suggests that alternative coding mechanisms for odor quality, such as those based on temporal patterns of responses, enjoy little experimental support.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
367
|
Wu C, Wang L, Zhou J, Zhao L, Wang P. The progress of olfactory transduction and biomimetic olfactory-based biosensors. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0295-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
368
|
Hagelin JC, Jones IL. Bird Odors and Other Chemical Substances: A Defense Mechanism or Overlooked Mode of Intraspecific Communication? ACTA ACUST UNITED AC 2007. [DOI: 10.1093/auk/124.3.741] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Julie C. Hagelin
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081, USA
| | - Ian L. Jones
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
369
|
Abstract
The chemical senses-smell and taste-allow animals to evaluate and distinguish valuable food resources from dangerous substances in the environment. The central mechanisms by which the brain recognizes and discriminates attractive and repulsive odorants and tastants, and makes behavioral decisions accordingly, are not well understood in any organism. Recent molecular and neuroanatomical advances in Drosophila have produced a nearly complete picture of the peripheral neuroanatomy and function of smell and taste in this insect. Neurophysiological experiments have begun to provide insight into the mechanisms by which these animals process chemosensory cues. Given the considerable anatomical and functional homology in smell and taste pathways in all higher animals, experimental approaches in Drosophila will likely provide broad insights into the problem of sensory coding. Here we provide a critical review of the recent literature in this field and comment on likely future directions.
Collapse
Affiliation(s)
- Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10021-6399, USA.
| | | |
Collapse
|
370
|
Asahina K, Benton R. Smell and taste on a high: symposium on chemical senses: from genes to perception. EMBO Rep 2007; 8:634-8. [PMID: 17525750 PMCID: PMC1905892 DOI: 10.1038/sj.embor.7400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/13/2007] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kenta Asahina
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, New York 10021, USA
| | - Richard Benton
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, New York 10021, USA
- Tel: +1 212 327 7239; Fax: +1 212 327 7238;
| |
Collapse
|
371
|
Ferrer RP, Zimmer RK. Chemosensory reception, behavioral expression, and ecological interactions at multiple trophic levels. J Exp Biol 2007; 210:1776-85. [PMID: 17488941 DOI: 10.1242/jeb.001727] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYChemoreception may function throughout an entire animal lifetime, with independent, stage-specific selection pressures leading to changes in physiological properties, behavioral expression, and hence, trophic interactions. When the California newt (Taricha torosa) metamorphoses from an entirely aquatic larva to a semi-terrestrial juvenile/adult form, its chemosensory organs undergo dramatic reorganization. The relationship between newt life-history stage and chemosensory-mediated behavior was established by comparing responses of adults (as determined here) to those of conspecific larvae (as studied previously). Bioassays were performed in mountain streams,testing responses of free-ranging adults to 13 individual l-amino acids. Relative to stream water (controls), adults turned immediately upcurrent and moved to the source of arginine, glycine or alanine release. These responses were indicative of predatory search. Arginine was the strongest attractant tested, with a response threshold (median effective dose)of 8.3×10–7 mol l–1 (uncorrected for dilution associated with chemical release and delivery). In contrast to adult behavior, arginine suppressed cannibal-avoidance and failed to evoke search reactions in larvae. For a common set of arginine analogs, the magnitudes of adult attraction and larval suppression were not positively correlated. Suppression of cannibal-avoidance behavior in larvae was unaffected by most structural modifications of the arginine molecule. Adult behavior, on the other hand, was strongly influenced by even subtle alterations in the parent compound. Reactions to arginine in both adults and larvae were eliminated by blocking the external openings of the nasal cavity.Stimulating adult predatory search in one case and inhibiting larval cannibal avoidance in the other, arginine is a chemical signal with opposing behavioral effects and varying ecological consequences. Significant differences between responses of adults and larvae to changes in arginine structure suggest alternative, chemosensory receptor targets. Although arginine reception functions throughout an entire newt lifetime, an ontogenetic shift in larval and adult chemoreceptive ability changes behavioral expression, and thus, reflects the unique selection pressures that act at each life-history stage.
Collapse
Affiliation(s)
- Ryan P Ferrer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|
372
|
Kaun KR, Hendel T, Gerber B, Sokolowski MB. Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem 2007; 14:342-9. [PMID: 17522025 PMCID: PMC1876758 DOI: 10.1101/lm.505807] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Animals must be able to find and evaluate food to ensure survival. The ability to associate a cue with the presence of food is advantageous because it allows an animal to quickly identify a situation associated with a good, bad, or even harmful food. Identifying genes underlying these natural learned responses is essential to understanding this ability. Here, we investigate whether natural variation in the foraging (for) gene in Drosophila melanogaster larvae is important in mediating associations between either an odor or a light stimulus and food reward. We found that for influences olfactory conditioning and that the mushroom bodies play a role in this for-mediated olfactory learning. Genotypes associated with high activity of the product of for, cGMP-dependent protein kinase (PKG), showed greater memory acquisition and retention compared with genotypes associated with low activity of PKG when trained with three conditioning trials. Interestingly, increasing the number of training trials resulted in decreased memory retention only in genotypes associated with high PKG activity. The difference in the dynamics of memory acquisition and retention between variants of for suggests that the ability to learn and retain an association may be linked to the foraging strategies of the two variants.
Collapse
Affiliation(s)
- Karla R. Kaun
- Department of Biology, University of Toronto, Mississauga, Ontario L5L-1C6, Canada
| | - Thomas Hendel
- Department of Genetics and Neurobiology, University of Wuerzburg, Biozentrum am Hubland, 97074 Wuerzburg, Germany
| | - Bertram Gerber
- Department of Genetics and Neurobiology, University of Wuerzburg, Biozentrum am Hubland, 97074 Wuerzburg, Germany
| | - Marla B. Sokolowski
- Department of Biology, University of Toronto, Mississauga, Ontario L5L-1C6, Canada
- Corresponding author.E-mail ; fax (905) 828-3792
| |
Collapse
|
373
|
Tasaki T, Sohr R, Xia Z, Hellweg R, Hörtnagl H, Varshavsky A, Kwon YT. Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J Biol Chem 2007; 282:18510-18520. [PMID: 17462990 DOI: 10.1074/jbc.m701894200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous work identified E3 ubiquitin ligases, termed UBR1-UBR7, that contain the approximately 70-residue UBR box, a motif important for the targeting of N-end rule substrates. In this pathway, specific N-terminal residues of substrates are recognized as degradation signals by UBR box-containing E3s that include UBR1, UBR2, UBR4, and UBR5. The other E3s of this set, UBR3, UBR6, and UBR7, remained uncharacterized. Here we describe the cloning and analyses of mouse UBR3. The similarities of UBR3 to the UBR1 and UBR2 E3s of the N-end rule pathway include the RING and UBR domains. We show that HR6A and HR6B, the E2 enzymes that bind to UBR1 and UBR2, also interact with UBR3. However, in contrast to UBR1 and UBR2, UBR3 does not recognize N-end rule substrates. We also constructed UBR3-lacking mouse strains. In the 129SvImJ background, UBR3-/- mice died during embryogenesis, whereas the C57BL/6 background UBR3-/- mice exhibited neonatal lethality and suckling impairment that could be partially rescued by litter size reduction. The adult UBR3-/- mice had female-specific behavioral anosmia. Cells of the olfactory pathway were found to express beta-galactosidase (LacZ) that marked the deletion/disruption UBR3- allele. The UBR3-specific LacZ expression was also prominent in cells of the touch, vision, hearing, and taste systems, suggesting a regulatory role of UBR3 in sensory pathways, including olfaction. By analogy with functions of the UBR domain in the N-end rule pathway, we propose that the UBR box of UBR3 may recognize small compounds that modulate the targeting, by this E3, of its currently unknown substrates.
Collapse
Affiliation(s)
- Takafumi Tasaki
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Reinhard Sohr
- Institute of Pharmacology and Toxicology, Charité-University Medicine Berlin, Campus Mitte, Dorotheenstrasse 94, D-10117 Berlin, Germany
| | - Zanxian Xia
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Campus Benjamin Franklin, Eschenallee 3, D-14050 Berlin, Germany
| | - Heide Hörtnagl
- Institute of Pharmacology and Toxicology, Charité-University Medicine Berlin, Campus Mitte, Dorotheenstrasse 94, D-10117 Berlin, Germany
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Yong Tae Kwon
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
374
|
Nozawa M, Nei M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci U S A 2007; 104:7122-7. [PMID: 17438280 PMCID: PMC1855360 DOI: 10.1073/pnas.0702133104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Olfactory receptor (OR) genes are of vital importance for animals to find food, identify mates, and avoid dangers. In mammals, the number of OR genes is large and varies extensively among different orders, whereas, in insects, the extent of interspecific variation appears to be small, although only a few species have been studied. To understand the evolutionary changes of OR genes, we identified all OR genes from 12 Drosophila species, of which the evolutionary time is roughly equivalent to that of eutherian mammals. The results showed that all species examined have similar numbers ( approximately 60) of functional OR genes. Phylogenetic analysis indicated that the ancestral species also had similar numbers of genes, but there were frequent gains and losses of genes that occurred in each evolutionary lineage. It appears that tandem duplication and random inactivation of duplicate genes are the major factors of gene number change. However, chromosomal rearrangements have contributed to the establishment of genome-wide distribution of OR genes. These results suggest that the repertoire of OR genes in Drosophila has been quite stable compared with the mammalian genes. The difference in evolutionary pattern between Drosophila and mammals can be explained partly by the differences of gene expression mechanisms and partly by the environmental and behavioral differences.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
- *To whom correspondence may be addressed. E-mail: or
| | - Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802
- *To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
375
|
Schmidt M. The olfactory pathway of decapod crustaceans--an invertebrate model for life-long neurogenesis. Chem Senses 2007; 32:365-84. [PMID: 17404151 DOI: 10.1093/chemse/bjm008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The first part of this review includes a short description of the cellular and morphological organization of the olfactory pathway of decapod crustaceans, followed by an overview of adult neurogenesis in this pathway focusing on the olfactory lobe (OL), the first synaptic relay in the brain. Adult neurogenesis in the central olfactory pathway has the following characteristics. 1) It is present in all the diverse species of decapod crustaceans so far studied. 2) In all these species, projection neurons (PNs), which have multiglomerular dendritic arborizations, are generated. 3) Neurons are generated by one round of symmetrical cell divisions of a small population of immediate precursor cells that are located in small proliferation zones at the inner margin of the respective soma clusters. 4) The immediate precursor cells in each soma cluster appear to be generated by repeated cell divisions of one or few neuronal stem cells that are located outside of the proliferation zone. 5) These neuronal stem cells are enclosed in a highly structured clump of small glial-like cells, which likely establishes a specific microenvironment and thus can be regarded as a stem cell niche. 6) Diverse internal and external factors, such as presence of olfactory afferents, age, season of the year, and living under constant and deprived conditions modulate the generation and/or survival of new neurons. In the second part of this review, I address the question why in decapod crustaceans adult neurogenesis persists in the visual and olfactory pathways of the brain but is lacking in all other mechanosensory-chemosensory pathways. Due to the indeterminate growth of most adult decapod crustaceans, new sensory neurons of all modalities (olfaction and chemo-, mechano-, and photoreception) are continuously added during adulthood and provide an ever-increasing sensory input to all primary sensory neuropils of the central nervous system. From these facts, I conclude that adult neurogenesis in the brain cannot simply be a mechanism to accommodate increasing sensory input and propose instead that it is causally linked to the specific "topographic logic" of information processing implemented in the sensory neuropils serving different modalities. For the presumptive odotopic type of information processing in the OL, new multiglomerular PNs allow interconnection of novel combinations of spatially unrelated input channels (glomeruli), whose simultaneous activation by specific odorants is the basis of odor coding. Thus, adult neurogenesis could provide a unique way to increase the resolution of odorant quality coding and allow adaptation of the olfactory system of these long-lived animals to ever-changing odor environments.
Collapse
Affiliation(s)
- Manfred Schmidt
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30303, USA.
| |
Collapse
|
376
|
Abstract
Molecular approaches and genetic manipulations have provided novel insights into the processing of pheromone-mediated information by the olfactory and vomeronasal systems of mammals. We will review and discuss the specific contribution of each of the two chemosensory systems that ensure specific behavioral responses to conspecific animals.
Collapse
Affiliation(s)
- C Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
377
|
Schaefer AT, Margrie TW. Spatiotemporal representations in the olfactory system. Trends Neurosci 2007; 30:92-100. [PMID: 17224191 DOI: 10.1016/j.tins.2007.01.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/07/2006] [Accepted: 01/04/2007] [Indexed: 11/24/2022]
Abstract
A complete understanding of the mechanisms underlying any kind of sensory, motor or cognitive task requires analysis from the systems to the cellular level. In olfaction, new behavioural evidence in rodents has provided temporal limits on neural processing times that correspond to less than 150ms--the timescale of a single sniff. Recent in vivo data from the olfactory bulb indicate that, within each sniff, odour representation is not only spatially organized, but also temporally structured by odour-specific patterns of onset latencies. Thus, we propose that the spatial representation of odour is not a static one, but rather evolves across a sniff, whereby for difficult discriminations of similar odours, it is necessary for the olfactory system to "wait" for later-activated components. Based on such evidence, we have devised a working model to assess further the relevance of such spatiotemporal processes in odour representation.
Collapse
Affiliation(s)
- Andreas T Schaefer
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
378
|
Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 2007; 104:2471-6. [PMID: 17267604 PMCID: PMC1892929 DOI: 10.1073/pnas.0610201104] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals.
Collapse
Affiliation(s)
- Weihong Lin
- *Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Robert Margolskee
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gerald Donnert
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Stefan W. Hell
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
379
|
Abstract
The olfactory system is a remarkable model for investigating the factors that influence the guidance of sensory axon populations to specific targets in the CNS. Since the initial discovery of the vast odorant receptor (ORs) gene family in rodents and the subsequent finding that these molecules directly influence targeting, several additional olfactory axon guidance cues have been identified. Two of these, ephrins and semaphorins, have well-established functions in patterning axon connections in other systems. In addition, lactosamine-containing glycans are also required for proper targeting and maintenance of olfactory axons, and may also function in other sensory regions. It is now apparent that these and likely other additional molecules are required along with ORs to orchestrate the complex pattern of convergence and divergence that is unique to the olfactory system.
Collapse
Affiliation(s)
- Timothy R Henion
- Shriver Center and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 02452, USA
| | | |
Collapse
|
380
|
De Saint Jan D, Westbrook GL. Disynaptic amplification of metabotropic glutamate receptor 1 responses in the olfactory bulb. J Neurosci 2007; 27:132-40. [PMID: 17202480 PMCID: PMC6672277 DOI: 10.1523/jneurosci.2439-06.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory systems often respond to rapid stimuli with high frequency and fidelity, as perhaps best exemplified in the auditory system. Fast synaptic responses are fundamental requirements to achieve this task. The importance of speed is less clear in the olfactory system. Moreover, olfactory bulb output mitral cells respond to a single stimulation of the sensory afferents with unusually long EPSPs, lasting several seconds. We examined the temporal characteristics, developmental regulation, and the mechanism generating these responses in mouse olfactory bulb slices. The slow EPSP appeared at postnatal days 10-11 and was mediated by metabotropic glutamate receptor 1 (mGluR1) and NMDA receptors. mGluR1 contribution was unexpected because its activation usually requires strong, high-frequency stimulation of inputs. However, dendritic release of glutamate from the intraglomerular network caused spillover-mediated recurrent activation of metabotropic glutamate receptors. We suggest that persistent responses in mitral cells amplify the incoming sensory information and, along with asynchronous inputs, drive odor-evoked slow temporal activity in the bulb.
Collapse
Affiliation(s)
- Didier De Saint Jan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
381
|
Lei H, Mooney R, Katz LC. Synaptic integration of olfactory information in mouse anterior olfactory nucleus. J Neurosci 2006; 26:12023-32. [PMID: 17108176 PMCID: PMC6674854 DOI: 10.1523/jneurosci.2598-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Individual odorants activate only a small fraction of mitral cells in the mouse main olfactory bulb (MOB). Odor mixtures are represented by a combination of activated mitral cells, forming reproducible activation maps in the olfactory bulb. However, how the activation of a cohort of narrowly tuned mitral cells by odor mixtures is read out synaptically by neurons in higher-level olfactory structures, such as the anterior olfactory nucleus (AON), is mostly unknown. In the current study, we used intracellular and extracellular recordings to examine and compare responses of AON neurons and MOB mitral cells to a panel of structurally diverse odorants presented either as mixtures or as individual components. We found that a majority of individual AON neurons could be synaptically activated by several mixtures of structurally dissimilar components and by several dissimilar components in an effective mixture. The suprathreshold response of an AON neuron to an effective mixture often exceeded the sum of its suprathreshold responses to all of the components in that mixture, indicating a nonlinear combinatorial interaction. In contrast to the broad responsiveness of AON neurons, the majority of mitral cells were activated by only one or two components in a single mixture. The broader responsiveness of AON neurons relative to mitral cells suggests that individual AON neurons synaptically integrate several functionally distinct mitral cell inputs.
Collapse
Affiliation(s)
- Huimeng Lei
- Howard Hughes Medical Institute and
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lawrence C. Katz
- Howard Hughes Medical Institute and
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
382
|
Abstract
The sense of smell is one of the phylogenetically oldest human senses. Nevertheless the number of publications regarding olfaction is marginal compared with other sensory systems. In recent years, however, there have been enormous advances in understanding the main olfactory processes. These range from the first contact of odorants with receptor cells in the nasal mucosa to the olfactory signal cascade to the processing of olfactory stimuli in the central nervous system. This article focuses on anatomy and physiology of the human sense of smell, which consists mostly of sensory input from two neural systems--the olfactory and trigeminal systems. It considers recent biomolecular experiments and functional neuroimaging studies in humans.
Collapse
Affiliation(s)
- J Albrecht
- Abteilung für Neuroradiologie, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377 München
| | | |
Collapse
|
383
|
Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, Arnone MI. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 2006; 300:461-75. [PMID: 17067569 DOI: 10.1016/j.ydbio.2006.08.070] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/28/2006] [Accepted: 08/30/2006] [Indexed: 11/24/2022]
Abstract
Rhodopsin-type G-protein-coupled receptors (GPCRs) contribute the majority of sensory receptors in vertebrates. With 979 members, they form the largest GPCR family in the sequenced sea urchin genome, constituting more than 3% of all predicted genes. The sea urchin genome encodes at least six Opsin proteins. Of these, one rhabdomeric, one ciliary and two G(o)-type Opsins can be assigned to ancient bilaterian Opsin subfamilies. Moreover, we identified four greatly expanded subfamilies of rhodopsin-type GPCRs that we call sea urchin specific rapidly expanded lineages of GPCRs (surreal-GPCRs). Our analysis of two of these groups revealed genomic clustering and single-exon gene structures similar to the most expanded group of vertebrate rhodopsin-type GPCRs, the olfactory receptors. We hypothesize that these genes arose by rapid duplication in the echinoid lineage and act as chemosensory receptors of the animal. In support of this, group B surreal-GPCRs are most prominently expressed in distinct classes of pedicellariae and tube feet of the adult sea urchin, structures that have previously been shown to react to chemical stimuli and to harbor sensory neurons in echinoderms. Notably, these structures also express different opsins, indicating that sea urchins possess an intricate molecular set-up to sense their environment.
Collapse
|
384
|
Abstract
Rhythmically bursting neurons are fundamental to neuronal network function but typically are not considered in the context of primary sensory signaling. We now report intrinsically bursting lobster primary olfactory receptor neurons that respond to odors with a phase-dependent burst of action potentials. Rhythmic odor input as might be generated by sniffing entrains the intrinsic bursting rhythm in a concentration-dependent manner and presumably synchronizes the ensemble of bursting cells. We suggest such intrinsically bursting olfactory receptor cells provide a novel way for encoding odor information.
Collapse
Affiliation(s)
- Y V Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., Saint Augustine, FL 32080, USA.
| | | |
Collapse
|
385
|
Gerber B, Stocker RF. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 2006; 32:65-89. [PMID: 17071942 DOI: 10.1093/chemse/bjl030] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.
Collapse
Affiliation(s)
- Bertram Gerber
- Universität Würzburg, Biozentrum, Am Hubland, Lehrstuhl für Genetik und Neurobiologie, D-97074 Würzburg, Germany.
| | | |
Collapse
|
386
|
Brady JD, Rich ED, Martens JR, Karpen JW, Varnum MD, Brown RL. Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A 2006; 103:15635-40. [PMID: 17032767 PMCID: PMC1622874 DOI: 10.1073/pnas.0603344103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) has been proposed to modulate the odorant sensitivity of olfactory sensory neurons by inhibiting activation of cyclic nucleotide-gated (CNG) channels in the cilia. When applied to the intracellular face of excised patches, PIP3 has been shown to inhibit activation of heteromeric olfactory CNG channels, composed of CNGA2, CNGA4, and CNGB1b subunits, and homomeric CNGA2 channels. In contrast, we discovered that channels formed by CNGA3 subunits from cone photoreceptors were unaffected by PIP3. Using chimeric channels and a deletion mutant, we determined that residues 61-90 within the N terminus of CNGA2 are necessary for PIP3 regulation, and a biochemical "pulldown" assay suggests that PIP3 directly binds this region. The N terminus of CNGA2 contains a previously identified calcium-calmodulin (Ca2+/CaM)-binding domain (residues 68-81) that mediates Ca2+/CaM inhibition of homomeric CNGA2 channels but is functionally silent in heteromeric channels. We discovered, however, that this region is required for PIP3 regulation of both homomeric and heteromeric channels. Furthermore, PIP3 occluded the action of Ca2+/CaM on both homomeric and heteromeric channels, in part by blocking Ca2+/CaM binding. Our results establish the importance of the CNGA2 N terminus for PIP3 inhibition of olfactory CNG channels and suggest that PIP3 inhibits channel activation by disrupting an autoexcitatory interaction between the N and C termini of adjacent subunits. By dramatically suppressing channel currents, PIP3 may generate a shift in odorant sensitivity that does not require prior channel activity.
Collapse
Affiliation(s)
| | - Elizabeth D. Rich
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, and Program in Neuroscience, Washington State University, Pullman, WA 99164; and
| | | | - Jeffrey W. Karpen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97006
| | - Michael D. Varnum
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, and Program in Neuroscience, Washington State University, Pullman, WA 99164; and
| | | |
Collapse
|
387
|
Wachowiak M, Shipley MT. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 2006; 17:411-23. [PMID: 16765614 DOI: 10.1016/j.semcdb.2006.04.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Input from olfactory receptor neurons is first organized and processed in the glomerular layer of the olfactory bulb. Olfactory glomeruli serve as functional units in coding olfactory information and contain a complex network of synaptic connections. Odor information has long been thought to be represented by spatial patterns of glomerular activation; recent work has, additionally, shown that these patterns are temporally dynamic. At the same time, recent advances in our understanding of the glomerular network suggest that glomerular processing serves to temporally sharpen these dynamics and to modulate spatial patterns of glomerular activity. We speculate that odor representations and their postsynaptic processing are tuned to and shaped by the sniffing behavior of the animal.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
388
|
Von Dannecker LEC, Mercadante AF, Malnic B. Ric-8B promotes functional expression of odorant receptors. Proc Natl Acad Sci U S A 2006; 103:9310-4. [PMID: 16754875 PMCID: PMC1482606 DOI: 10.1073/pnas.0600697103] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Indexed: 11/18/2022] Open
Abstract
Odorants are detected by a large family of odorant receptors (ORs) expressed in the nose. The information provided by the ORs is transmitted to specific regions of the brain, leading to odorant perception. The determination of the odorant specificities of the different ORs will contribute to the understanding of how odorants are discriminated by the olfactory system. However, to date only a few ORs have been linked to odorants they recognize, because ORs are poorly expressed on the cell surface of heterologous cells. Here we show that Ric-8B, a putative guanine nucleotide exchange factor for Galphaolf, promotes efficient heterologous expression of ORs. Our results also show that Ric-8B enhances accumulation of Galphaolf at the cell periphery, indicating that it promotes functional OR expression by improving the efficiency of OR coupling to Galphaolf. Expression systems containing Galphaolf and Ric-8B should contribute to the functional characterization of ORs.
Collapse
Affiliation(s)
- Luiz Eduardo C. Von Dannecker
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, CEP 05508-000, São Paulo, Brazil
| | - Adriana F. Mercadante
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, CEP 05508-000, São Paulo, Brazil
| | - Bettina Malnic
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, CEP 05508-000, São Paulo, Brazil
| |
Collapse
|
389
|
Abstract
The olfactory bulb receives signals from olfactory sensory neurons and conveys them to higher centers. The mapping of the sensory inputs generates a reproducible spatial pattern in the glomerular layer of the olfactory bulb for each odorant. Then, this restricted activation is transformed into highly distributed patterns by lateral interactions between relay neurons and local interneurons. Thus, odor information processing requires the spatial patterning of both sensory inputs and synaptic interactions. In other words, odor representation is highly dynamic and temporally orchestrated. Here, we describe how the local inhibitory network shapes the global oscillations and the precise synchronization of relay neurons. We discuss how local inhibitory interneurons transpose the spatial dimension into temporal patterning. Remarkably, this transposition is not fixed but highly flexible to continuously optimize olfactory information processing.
Collapse
Affiliation(s)
- Pierre-Marie Lledo
- Laboratory of Perception and Memory, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2182, Pasteur Institute, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
390
|
Niimura Y, Nei M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 2006; 51:505-517. [PMID: 16607462 PMCID: PMC1850483 DOI: 10.1007/s10038-006-0391-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human-mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
391
|
Bathellier B, Lagier S, Faure P, Lledo PM. Circuit Properties Generating Gamma Oscillations in a Network Model of the Olfactory Bulb. J Neurophysiol 2006; 95:2678-91. [PMID: 16381804 DOI: 10.1152/jn.01141.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of the neural basis of olfaction is important both for understanding the sense of smell and for understanding the mechanisms of neural computation. In the olfactory bulb (OB), the spatial patterning of both sensory inputs and synaptic interactions is crucial for processing odor information, although this patterning alone is not sufficient. Recent studies have suggested that representations of odor may already be distributed and dynamic in the first olfactory relay. The growing evidence demonstrating a functional role for the temporal structure of bulbar neuronal activity supports this assumption. However, the detailed mechanisms underlying this temporal structure have never been thoroughly studied. Our study focused on gamma (40–100 Hz) network oscillations in the mammalian OB, which is a form of temporal patterning in bulbar activity elicited by olfactory stimuli. We used computational modeling combined with electrophysiological recordings to investigate the basic synaptic organization necessary and sufficient to generate sustained gamma rhythms. We found that features of gamma oscillations obtained in vitro were identical to those of a model based on lateral inhibition as the coupling modality (i.e., low irregular firing rate and high oscillation stability). In contrast, they differed substantially from those of a model based on lateral excitatory coupling (i.e., high regular firing rate and instable oscillations). Therefore we could precisely tune the oscillation frequency by changing the kinetics of inhibitory events supporting the lateral inhibition. Moreover, gradually decreasing GABAergic synaptic transmission decreased the degree of relay neuron synchronization in response to sensory inputs, both theoretically and experimentally. Thus we have shown that lateral inhibition provides a mechanism by which the dynamic processing of odor information might be finely tuned within the OB circuit.
Collapse
Affiliation(s)
- Brice Bathellier
- Laboratory of Perception and Memory, Centre National de la Recherche Scientifique Unité de Recherche Associée 2182, Paris, France
| | | | | | | |
Collapse
|
392
|
Franks KM, Isaacson JS. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 2006; 49:357-63. [PMID: 16446140 DOI: 10.1016/j.neuron.2005.12.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/30/2005] [Accepted: 12/27/2005] [Indexed: 11/30/2022]
Abstract
Olfactory information is first encoded in a combinatorial fashion by olfactory bulb glomeruli, which individually represent distinct chemical features of odors. This information is then transmitted to piriform (olfactory) cortex, via axons of olfactory bulb mitral and tufted (M/T) cells, where it is presumed to form the odor percept. However, mechanisms governing the integration of sensory information in mammalian olfactory cortex are unclear. Here we show that single M/T cells can make powerful connections with cortical pyramidal cells, and coincident input from few M/T cells is sufficient to elicit spike output. These findings suggest that odor coding is broad and distributed in olfactory cortex.
Collapse
Affiliation(s)
- Kevin M Franks
- Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.
| | | |
Collapse
|
393
|
van Wijk M, Wadman WJ, Sabelis MW. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis. EXPERIMENTAL & APPLIED ACAROLOGY 2006; 40:217-29. [PMID: 17245560 DOI: 10.1007/s10493-006-9038-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/16/2006] [Indexed: 05/13/2023]
Abstract
The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.
Collapse
Affiliation(s)
- Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, Section Population Biology, University of Amsterdam, Kruislaan 320, 1098, SM, Amsterdam, The Netherlands.
| | | | | |
Collapse
|