351
|
Ashida R, Cerminara NL, Edwards RJ, Apps R, Brooks JCW. Sensorimotor, language, and working memory representation within the human cerebellum. Hum Brain Mapp 2019; 40:4732-4747. [PMID: 31361075 PMCID: PMC6865458 DOI: 10.1002/hbm.24733] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
The cerebellum is involved in a wide range of behaviours. A key organisational principle from animal studies is that somatotopically corresponding sensory input and motor output reside in the same cerebellar cortical areas. However, compelling evidence for a similar arrangement in humans and whether it extends to cognitive functions is lacking. To address this, we applied cerebellar optimised whole‐brain functional MRI in 20 healthy subjects. To assess spatial overlap within the sensorimotor and cognitive domains, we recorded activity to a sensory stimulus (vibrotactile) and a motor task; the Sternberg verbal working memory (VWM) task; and a verb generation paradigm. Consistent with animal data, sensory and motor activity overlapped with a somatotopic arrangement in ipsilateral areas of the anterior and posterior cerebellum. During the maintenance phase of the Sternberg task, a positive linear relationship between VWM load and activity was observed in right Lobule VI, extending into Crus I bilaterally. Articulatory movement gave rise to bilateral activity in medial Lobule VI. A conjunction of two independent language tasks localised activity during verb generation in right Lobule VI‐Crus I, which overlapped with activity during VWM. These results demonstrate spatial compartmentalisation of sensorimotor and cognitive function in the human cerebellum, with each area involved in more than one aspect of a given behaviour, consistent with an integrative function. Sensorimotor localisation was uniform across individuals, but the representation of cognitive tasks was more variable, highlighting the importance of individual scans for mapping higher order functions within the cerebellum.
Collapse
Affiliation(s)
- Reiko Ashida
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Neurosurgery Department, Southmead Hospital, North Bristol Trust, Bristol, UK.,Neurosurgery Department, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Nadia L Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard J Edwards
- Neurosurgery Department, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | |
Collapse
|
352
|
Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease. THE CEREBELLUM 2019; 18:166-177. [PMID: 30155831 DOI: 10.1007/s12311-018-0973-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Extinction of conditioned aversive responses (CR) has been shown to be context-dependent. The hippocampus and prefrontal cortex are of particular importance. The cerebellum may contribute to context-related processes because of its known connections with the hippocampus and prefrontal cortex. Context dependency of extinction can be demonstrated by the renewal effect. When CR acquisition takes place in context A and is extinguished in context B, renewal refers to the recovery of the CR in context A (A-B-A paradigm). In the present study acquisition, extinction and renewal of classically conditioned eyeblink responses were tested in 18 patients with subacute focal cerebellar lesions and 18 age- and sex-matched healthy controls. Standard delay eyeblink conditioning was performed using an A-B-A paradigm. All cerebellar patients underwent a high-resolution T1-weighted brain MRI scan to perform lesion-symptom mapping. CR acquisition was not significantly different between cerebellar and control participants allowing to draw conclusions on extinction. CR extinction was significantly less in cerebellar patients. Reduction of CR extinction tended to be more likely in patients with lesions in the lateral parts of lobule VI and Crus I. A significant renewal effect was present in controls only. The present data provide further evidence that the cerebellum contributes to extinction of conditioned eyeblink responses. Because acquisition was preserved and extinction took place in another context than acquisition, more lateral parts of the cerebellar hemisphere may contribute to context-related processes. Furthermore, lack of renewal in cerebellar patients suggest a contribution of the cerebellum to context-related processes.
Collapse
|
353
|
Lin CH, Tierney TM, Holmes N, Boto E, Leggett J, Bestmann S, Bowtell R, Brookes MJ, Barnes GR, Miall RC. Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum. J Physiol 2019; 597:4309-4324. [PMID: 31240719 PMCID: PMC6767854 DOI: 10.1113/jp277899] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/31/2019] [Indexed: 11/08/2022] Open
Abstract
Key points The application of conventional cryogenic magnetoencephalography (MEG) to the study of cerebellar functions is highly limited because typical cryogenic sensor arrays are far away from the cerebellum and naturalistic movement is not allowed in the recording. A new generation of MEG using optically pumped magnetometers (OPMs) that can be worn on the head during movement has opened up an opportunity to image the cerebellar electrophysiological activity non‐invasively. We use OPMs to record human cerebellar MEG signals elicited by air‐puff stimulation to the eye. We demonstrate robust responses in the cerebellum. OPMs pave the way for studying the neurophysiology of the human cerebellum.
Abstract We test the feasibility of an optically pumped magnetometer‐based magnetoencephalographic (OP‐MEG) system for the measurement of human cerebellar activity. This is to our knowledge the first study investigating the human cerebellar electrophysiology using optically pumped magnetometers. As a proof of principle, we use an air‐puff stimulus to the eyeball in order to elicit cerebellar activity that is well characterized in non‐human models. In three subjects, we observe an evoked component at approx. 50 ms post‐stimulus, followed by a second component at approx. 85–115 ms post‐stimulus. Source inversion localizes both components in the cerebellum, while control experiments exclude potential sources elsewhere. We also assess the induced oscillations, with time‐frequency decompositions, and identify additional sources in the occipital lobe, a region expected to be active in our paradigm, and in the neck muscles. Neither of these contributes to the stimulus‐evoked responses at 50–115 ms. We conclude that OP‐MEG technology offers a promising way to advance the understanding of the information processing mechanisms in the human cerebellum. The application of conventional cryogenic magnetoencephalography (MEG) to the study of cerebellar functions is highly limited because typical cryogenic sensor arrays are far away from the cerebellum and naturalistic movement is not allowed in the recording. A new generation of MEG using optically pumped magnetometers (OPMs) that can be worn on the head during movement has opened up an opportunity to image the cerebellar electrophysiological activity non‐invasively. We use OPMs to record human cerebellar MEG signals elicited by air‐puff stimulation to the eye. We demonstrate robust responses in the cerebellum. OPMs pave the way for studying the neurophysiology of the human cerebellum.
Collapse
Affiliation(s)
- Chin-Hsuan Lin
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK.,Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, University College London, London, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
354
|
Thomasson M, Saj A, Benis D, Grandjean D, Assal F, Péron J. Cerebellar contribution to vocal emotion decoding: Insights from stroke and neuroimaging. Neuropsychologia 2019; 132:107141. [PMID: 31306617 DOI: 10.1016/j.neuropsychologia.2019.107141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023]
Abstract
While the role of the cerebellum in emotion recognition has been explored with facial expressions, its involvement in the auditory modality (i.e., emotional prosody) remains to be demonstrated. The present study investigated the recognition of emotional prosody in 15 patients with chronic cerebellar ischaemic stroke and 15 matched healthy controls, using a validated task, as well as clinical, motor, neuropsychological, and psychiatric assessments. We explored the cerebellar lesion-behaviour relationship using voxel-based lesion-symptom mapping. Results showed a significant difference between the stroke and healthy control groups, with patients giving erroneous ratings on the Surprise scale when they listened to fearful stimuli. Moreover, voxel-based lesion-symptom mapping revealed that these emotional misattributions correlated with lesions in right Lobules VIIb, VIIIa,b and IX. Interestingly, the posterior cerebellum has previously been found to be involved in affective processing, and Lobule VIIb in rhythm discrimination. These results point to the cerebellum's functional involvement in vocal emotion decoding.
Collapse
Affiliation(s)
- Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Arnaud Saj
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychology, University of Montréal, Montréal, QC, Canada
| | - Damien Benis
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Frédéric Assal
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland; Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
355
|
Wagner W, Lippmann K, Heisler FF, Gromova KV, Lombino FL, Roesler MK, Pechmann Y, Hornig S, Schweizer M, Polo S, Schwarz JR, Eilers J, Kneussel M. Myosin VI Drives Clathrin-Mediated AMPA Receptor Endocytosis to Facilitate Cerebellar Long-Term Depression. Cell Rep 2019; 28:11-20.e9. [DOI: 10.1016/j.celrep.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/01/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
|
356
|
Honma M, Itoi C, Midorikawa A, Terao Y, Masaoka Y, Kuroda T, Futamura A, Shiromaru A, Ohta H, Kato N, Kawamura M, Ono K. Contraction of distance and duration production in autism spectrum disorder. Sci Rep 2019; 9:8806. [PMID: 31217506 PMCID: PMC6584662 DOI: 10.1038/s41598-019-45250-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) presents certain hallmark features associated with cognitive and social functions, however, the ability to estimate self-generated distance and duration in individuals with ASD are unclear. We compared the performance of 20 ASD individuals with 20 typical developments (TDs) with respect to two tasks: (1) the drawing of a line of a specified distance (10 or 20 cm) and (2) waiting for a specified time (10 or 20 s). We observed that both the line distances and waiting times were substantially shorter in the ASD group than in the TD group. Furthermore, a trait of "attention to detail," as measured by the Autism-Spectrum Quotient, correlated with some distance and duration productions observed in individuals with ASD. We suggest that attentional functions are related to the contraction of distance and duration in ASD.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan.
| | - Chihiro Itoi
- Department of Psychology, Faculty of Letters, Chuo University, Tokyo, Japan
| | - Akira Midorikawa
- Department of Psychology, Faculty of Letters, Chuo University, Tokyo, Japan
| | - Yasuo Terao
- Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yuri Masaoka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Kuroda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Akinori Futamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Azusa Shiromaru
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Mitsuru Kawamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| |
Collapse
|
357
|
Abstract
Supervised learning plays a key role in the operation of many biological and artificial neural networks. Analysis of the computations underlying supervised learning is facilitated by the relatively simple and uniform architecture of the cerebellum, a brain area that supports numerous motor, sensory, and cognitive functions. We highlight recent discoveries indicating that the cerebellum implements supervised learning using the following organizational principles: ( a) extensive preprocessing of input representations (i.e., feature engineering), ( b) massively recurrent circuit architecture, ( c) linear input-output computations, ( d) sophisticated instructive signals that can be regulated and are predictive, ( e) adaptive mechanisms of plasticity with multiple timescales, and ( f) task-specific hardware specializations. The principles emerging from studies of the cerebellum have striking parallels with those in other brain areas and in artificial neural networks, as well as some notable differences, which can inform future research on supervised learning and inspire next-generation machine-based algorithms.
Collapse
Affiliation(s)
- Jennifer L Raymond
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
358
|
Chabrol FP, Blot A, Mrsic-Flogel TD. Cerebellar Contribution to Preparatory Activity in Motor Neocortex. Neuron 2019; 103:506-519.e4. [PMID: 31201123 PMCID: PMC6693889 DOI: 10.1016/j.neuron.2019.05.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
Abstract
In motor neocortex, preparatory activity predictive of specific movements is maintained by a positive feedback loop with the thalamus. Motor thalamus receives excitatory input from the cerebellum, which learns to generate predictive signals for motor control. The contribution of this pathway to neocortical preparatory signals remains poorly understood. Here, we show that, in a virtual reality conditioning task, cerebellar output neurons in the dentate nucleus exhibit preparatory activity similar to that in anterolateral motor cortex prior to reward acquisition. Silencing activity in dentate nucleus by photoactivating inhibitory Purkinje cells in the cerebellar cortex caused robust, short-latency suppression of preparatory activity in anterolateral motor cortex. Our results suggest that preparatory activity is controlled by a learned decrease of Purkinje cell firing in advance of reward under supervision of climbing fiber inputs signaling reward delivery. Thus, cerebellar computations exert a powerful influence on preparatory activity in motor neocortex. Similar activity in dentate nucleus (DN) and ALM cortex prior to reward acquisition Silencing DN activity selectively suppresses preparatory activity in ALM Preparatory activity likely controlled by learned decrease in Purkinje cell firing Dynamics of preparatory activity imply reward time prediction from external cues
Collapse
Affiliation(s)
- Francois P Chabrol
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Antonin Blot
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
359
|
Nicolson RI, Fawcett AJ. Development of Dyslexia: The Delayed Neural Commitment Framework. Front Behav Neurosci 2019; 13:112. [PMID: 31178705 PMCID: PMC6536918 DOI: 10.3389/fnbeh.2019.00112] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
It is now evident that explanations of many developmental disorders need to include a network perspective. In earlier work, we proposed that developmental dyslexia (DD) is well-characterized in terms of impaired procedural learning within the language networks, with the cerebellum being the key structure involved. Here, we deepen the analysis to include the child's developmental process of constructing these networks. The "Delayed Neural Commitment (DNC)" framework proposes that, in addition to slower skill acquisition, dyslexic children take longer to build (and to rebuild) the neural networks that underpin the acquisition of reading. The framework provides an important link backwards in time to the development of executive function networks and the earlier development of networks for language and speech. It is consistent with many theories of dyslexia while providing fruitful suggestions for further research at the genetic, brain, cognitive and behavioral levels of explanation. It also has significant implications for assessment and teaching.
Collapse
Affiliation(s)
| | - Angela J. Fawcett
- Department of Psychology, College of Human and Health Sciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
360
|
Jain FA, Connolly CG, Moore LC, Leuchter AF, Abrams M, Ben-Yelles RW, Chang SE, Ramirez Gomez LA, Huey N, Lavretsky H, Iacoboni M. Grief, Mindfulness and Neural Predictors of Improvement in Family Dementia Caregivers. Front Hum Neurosci 2019; 13:155. [PMID: 31156412 PMCID: PMC6530345 DOI: 10.3389/fnhum.2019.00155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Family dementia caregivers often suffer from an immense toll of grief while caring for their loved ones. We sought to identify the clinical relationship between grief, depression and mindfulness and identify neural predictors of symptomatology and improvement. Methods: Twenty three family dementia caregivers were assessed at baseline for grief, mindfulness and depression, of which 17 underwent functional magnetic resonance imaging (fMRI). During fMRI, caregivers were shown faces of either their dementia-stricken relative or that of a stranger, paired with grief-related or neutral words. In nine subjects, post fMRI scans were also obtained after 4 weeks of either guided imagery or relaxation. Robust regression was used to predict changes in symptoms with longitudinal brain activation (BA) changes as the dependent variable. Results: Grief and depression symptoms were correlated (r = 0.50, p = 0.01), and both were negatively correlated with mindfulness (r = -0.70, p = 0.0002; r = -0.52, p = 0.01). Relative to viewing strangers, caregivers showed pictures of their loved ones (picture factor) exhibited increased activation in the dorsal anterior cingulate gyrus and precuneus. Improvement in grief but not mindfulness or depression was predicted by increased relative BA in the precuneus and anterior cingulate (different subregions from baseline). Viewing grief-related vs. neutral words elicited activity in the medial prefrontal cortex and precuneus. Conclusions: Caregiver grief, depression and mindfulness are interrelated but have at least partially nonoverlapping neural mechanisms. Picture and word stimuli related to caregiver grief evoked brain activity in regions previously identified with bereavement grief. These activation foci might be useful as biomarkers of treatment response.
Collapse
Affiliation(s)
- Felipe A. Jain
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Colm G. Connolly
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Leonardo C. Moore
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, United States
| | - Andrew F. Leuchter
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle Abrams
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ramzi W. Ben-Yelles
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sarah E. Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, United States
| | - Liliana A. Ramirez Gomez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nora Huey
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson-Lovelace Brain Mapping Center, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
361
|
Nomi JS, Marshall E, Zaidel E, Biswal B, Castellanos FX, Dick AS, Uddin LQ, Mooshagian E. Diffusion weighted imaging evidence of extra-callosal pathways for interhemispheric communication after complete commissurotomy. Brain Struct Funct 2019; 224:1897-1909. [PMID: 31062161 DOI: 10.1007/s00429-019-01864-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
The integrity of white matter architecture in the human brain is related to cognitive processing abilities. The corpus callosum is the largest white matter bundle interconnecting the two cerebral hemispheres. "Split-brain" patients in whom all cortical commissures have been severed to alleviate intractable epilepsy demonstrate remarkably intact cognitive abilities despite the lack of this important interhemispheric pathway. While it has often been speculated that there are compensatory alterations in the remaining interhemispheric fibers in split-brain patients several years post-commissurotomy, this has never been directly shown. Here we examined extra-callosal pathways for interhemispheric communication in the brain of a patient who underwent complete cerebral commissurotomy using diffusion weighted imaging tractography. We found that compared with a healthy age-matched comparison group, the split-brain patient exhibited increased fractional anisotropy (FA) of the dorsal and ventral pontine decussations of the cortico-cerebellar interhemispheric pathways. Few differences were observed between the patient and the comparison group with respect to FA of other long-range intrahemispheric fibers. These results point to specific cerebellar anatomical substrates that may account for the spared interhemispheric coordination and intact cognitive abilities that have been extensively documented in this unique patient.
Collapse
Affiliation(s)
- Jason S Nomi
- Department of Psychology, University of Miami, P.O. Box 248185-0751, Coral Gables, FL, 33124, USA.
| | - Emily Marshall
- Department of Psychology, University of Miami, P.O. Box 248185-0751, Coral Gables, FL, 33124, USA
| | - Eran Zaidel
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.,Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, 10016, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, P.O. Box 248185-0751, Coral Gables, FL, 33124, USA. .,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
362
|
Schott N. Dual-Task Performance in Developmental Coordination Disorder (DCD): Understanding Trade-offs and Their Implications for Training. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-00163-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
363
|
Ghio M, Haegert K, Vaghi MM, Tettamanti M. Sentential negation of abstract and concrete conceptual categories: a brain decoding multivariate pattern analysis study. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0124. [PMID: 29914992 DOI: 10.1098/rstb.2017.0124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
We rarely use abstract and concrete concepts in isolation but rather embedded within a linguistic context. To examine the modulatory impact of the linguistic context on conceptual processing, we isolated the case of sentential negation polarity, in which an interaction occurs between the syntactic operator not and conceptual information in the negation's scope. Previous studies suggested that sentential negation of concrete action-related concepts modulates activation in the fronto-parieto-temporal action representation network. In this functional magnetic resonance imaging study, we examined the influence of negation on a wider spectrum of meanings, by factorially manipulating sentence polarity (affirmative, negative) and fine-grained abstract (mental state, emotion, mathematics) and concrete (related to mouth, hand, leg actions) conceptual categories. We adopted a multivariate pattern analysis approach, and tested the accuracy of a machine learning classifier in discriminating brain activation patterns associated to the factorial manipulation. Searchlight analysis was used to localize the discriminating patterns. Overall, the neural processing of affirmative and negative sentences with either an abstract or concrete content could be accurately predicted by means of multivariate classification. We suggest that sentential negation polarity modulates brain activation in distributed representational semantic networks, through the functional mediation of syntactic and cognitive control systems.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Marta Ghio
- Institute for Experimental Psychology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karolin Haegert
- Institute for Experimental Psychology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Matilde M Vaghi
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Marco Tettamanti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| |
Collapse
|
364
|
Yang H, Wang N, Luo X, Lv H, Liu H, Fan G. Altered functional connectivity of dentate nucleus in parkinsonian and cerebellar variants of multiple system atrophy. Brain Imaging Behav 2019; 13:1733-1745. [DOI: 10.1007/s11682-019-00097-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
365
|
Increase in Mutual Information During Interaction with the Environment Contributes to Perception. ENTROPY 2019; 21:e21040365. [PMID: 33267079 PMCID: PMC7514849 DOI: 10.3390/e21040365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
Perception and motor interaction with physical surroundings can be analyzed by the changes in probability laws governing two possible outcomes of neuronal activity, namely the presence or absence of spikes (binary states). Perception and motor interaction with the physical environment are partly accounted for by a reduction in entropy within the probability distributions of binary states of neurons in distributed neural circuits, given the knowledge about the characteristics of stimuli in physical surroundings. This reduction in the total entropy of multiple pairs of circuits in networks, by an amount equal to the increase of mutual information, occurs as sensory information is processed successively from lower to higher cortical areas or between different areas at the same hierarchical level, but belonging to different networks. The increase in mutual information is partly accounted for by temporal coupling as well as synaptic connections as proposed by Bahmer and Gupta (Front. Neurosci. 2018). We propose that robust increases in mutual information, measuring the association between the characteristics of sensory inputs' and neural circuits' connectivity patterns, are partly responsible for perception and successful motor interactions with physical surroundings. The increase in mutual information, given the knowledge about environmental sensory stimuli and the type of motor response produced, is responsible for the coupling between action and perception. In addition, the processing of sensory inputs within neural circuits, with no prior knowledge of the occurrence of a sensory stimulus, increases Shannon information. Consequently, the increase in surprise serves to increase the evidence of the sensory model of physical surroundings.
Collapse
|
366
|
Abstract
Cerebellar neuroscience has undergone a paradigm shift. The theories of the universal cerebellar transform and dysmetria of thought and the principles of organization of cerebral cortical connections, together with neuroanatomical, brain imaging, and clinical observations, have recontextualized the cerebellum as a critical node in the distributed neural circuits subserving behavior. The framework for cerebellar cognition stems from the identification of three cognitive representations in the posterior lobe, which are interconnected with cerebral association areas and distinct from the primary and secondary cerebellar sensorimotor representations linked with the spinal cord and cerebral motor areas. Lesions of the anterior lobe primary sensorimotor representations produce dysmetria of movement, the cerebellar motor syndrome. Lesions of the posterior lobe cognitive-emotional cerebellum produce dysmetria of thought and emotion, the cerebellar cognitive affective/Schmahmann syndrome. The notion that the cerebellum modulates thought and emotion in the same way that it modulates motor control advances the understanding of the mechanisms of cognition and opens new therapeutic opportunities in behavioral neurology and neuropsychiatry.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA;
| | - Xavier Guell
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; .,Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA
| | - Mark A Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
367
|
Linguistic networks associated with lexical, semantic and syntactic predictability in reading: A fixation-related fMRI study. Neuroimage 2019; 189:224-240. [DOI: 10.1016/j.neuroimage.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/11/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022] Open
|
368
|
Amemiya K, Morita T, Saito DN, Ban M, Shimada K, Okamoto Y, Kosaka H, Okazawa H, Asada M, Naito E. Local-to-distant development of the cerebrocerebellar sensorimotor network in the typically developing human brain: a functional and diffusion MRI study. Brain Struct Funct 2019; 224:1359-1375. [PMID: 30729998 PMCID: PMC6499876 DOI: 10.1007/s00429-018-01821-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/16/2018] [Indexed: 01/19/2023]
Abstract
Sensorimotor function is a fundamental brain function in humans, and the cerebrocerebellar circuit is essential to this function. In this study, we demonstrate how the cerebrocerebellar circuit develops both functionally and anatomically from childhood to adulthood in the typically developing human brain. We measured brain activity using functional magnetic resonance imaging while a total of 57 right-handed, blindfolded, healthy children (aged 8-11 years), adolescents (aged 12-15 years), and young adults (aged 18-23 years) (n = 19 per group) performed alternating extension-flexion movements of their right wrists in precise synchronization with 1-Hz audio tones. We also collected their diffusion MR images to examine the extent of fiber maturity in cerebrocerebellar afferent and efferent tracts by evaluating the anisotropy-sensitive index of hindrance modulated orientational anisotropy (HMOA). During the motor task, although the ipsilateral cerebellum and the contralateral primary sensorimotor cortices were consistently activated across all age groups, the functional connectivity between these two distant regions was stronger in adults than in children and adolescents, whereas connectivity within the local cerebellum was stronger in children and adolescents than in adults. The HMOA values in cerebrocerebellar afferent and efferent tracts were higher in adults than in children (some were also higher than in adolescents). The results indicate that adult-like cerebrocerebellar functional coupling is not completely achieved during childhood and adolescence, even for fundamental sensorimotor brain function, probably due to anatomical immaturity of cerebrocerebellar tracts. This study clearly demonstrated the principle of "local-to-distant" development of functional brain networks in the human cerebrocerebellar sensorimotor network.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Midori Ban
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
| | - Yuko Okamoto
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- ATR Promotions, 2-2 Hikaridai, Seika, Soraku-gun, Kyoto, 619-0288, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui, 910-1193, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
369
|
de Jong BM. Free Will Emerges From a Multistage Process of Target Assignment and Body-Scheme Recruitment for Free Effector Selection. Front Psychol 2019; 10:388. [PMID: 30873085 PMCID: PMC6401622 DOI: 10.3389/fpsyg.2019.00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Self-intended action implies an initial stage of assigning an external entity as target of action, with subsequent recruitment of body-scheme information serving the free selection of an appropriate effector system to achieve the action aim. This plurality underscores the concept that neuronal response freedom underlying the generation of such action is not necessarily restricted to a singular cerebral event at its initiation, but that such freedom is embedded in a series of successive processing steps. In this respect, action intention initially concerns the transition of a neutral object into a target of action, while the “will” to act further crystalizes with the recruitment of one’s body scheme. The latter is a prerequisite for effector selection and indeed complements the emerging sense of agency. This temporal order of neuronal events fits a model of fronto-parietal interactions associated with volition. A concise behavioral experiment is additionally described, in which successively displayed balls represent either a recognizable object with distinct shape and color features, or a target of action. Instructions to write down the ball’s characteristics were alternated by the command ”action.” When shifting from a neutral object to an action target, the ball was placed in one of three backgrounds: empty, an outdoor goal or indoor basket. In response to the action command, subjects reported intended actions such as kicking, seizing, throwing and heading, thus implicitly referring to the foot, hand, or head as chosen effector. For the latter the parietal cortex is strongly implicated, not only concerning predefined but also free selection. Although subjects were free to choose what to do with the ball, the environmental cues of the ball strongly influenced their choices. These results illustrate the temporal order in fronto-parietal processing associated with initial target assignment, instantly followed by the embodiment of will, i.e., the recruitment of body-scheme information for possible effector selection. Such multistage neuronal processing underlying free action selection underscores that the onset of brain signals prior to the perceived sense of free will is not a valid argument to reduce free will to an illusion.
Collapse
Affiliation(s)
- Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
370
|
|
371
|
Malagurski B, Péran P, Sarton B, Vinour H, Naboulsi E, Riu B, Bounes F, Seguin T, Lotterie JA, Fourcade O, Minville V, Ferré F, Achard S, Silva S. Topological disintegration of resting state functional connectomes in coma. Neuroimage 2019; 195:354-361. [PMID: 30862533 DOI: 10.1016/j.neuroimage.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/10/2023] Open
Abstract
Graph theory has been playing an increasingly important role in understanding the organizational properties of brain networks, subsequently providing new tools for the search of neural correlates of consciousness, particularly in the context of patients recovering from severe brain injury. However, this approach is not without challenges, as it usually relies on arbitrarily fixing a threshold in order to retain the strongest connections proportionally equal across subjects. This method increases the comparability between individuals or groups but it risks the inclusion of false positive and therefore spurious connections, especially in the context of brain disorders. Resting state data acquired in 25 coma patients and 22 healthy subjects was compared. We obtained a representative fixed density of significant connections by first applying a p-value-based threshold on healthy subjects' networks and then choosing a threshold at which all individuals exhibited meaningful connections. The obtained threshold (i.e. 10%) was used to construct graphs in the patient group. The findings showed that coma patients have lower number of significant connections with approximately 50% of them not fulfilling the criteria of the fixed density threshold. The remaining patients with relatively preserved global functional connectivity had sufficient significant connections between regions, but showed signs of major whole-brain network reorganization. These results warrant careful consideration in the construction of functional connectomes in patients with disorders of consciousness and set the scene for future studies investigating potential clinical implications of such an approach.
Collapse
Affiliation(s)
- Brigitta Malagurski
- University Research Priority Program "Dynamics of Healthy Aging", University of Zürich, Zürich, Switzerland; Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Benjamine Sarton
- Critical Care Unit. University Teaching Hospital of Purpan, Place du Dr Baylac, F-31059, Toulouse Cedex 9, France
| | - Hélène Vinour
- Critical Care Unit. University Teaching Hospital of Purpan, Place du Dr Baylac, F-31059, Toulouse Cedex 9, France
| | - Edouard Naboulsi
- Critical Care Unit. University Teaching Hospital of Purpan, Place du Dr Baylac, F-31059, Toulouse Cedex 9, France
| | - Béatrice Riu
- Critical Care Unit. University Teaching Hospital of Purpan, Place du Dr Baylac, F-31059, Toulouse Cedex 9, France
| | - Fanny Bounes
- Critical Care Unit. University Teaching Hospital of Rangueil, F-31060, Toulouse Cedex 9, France
| | - Thierry Seguin
- Critical Care Unit. University Teaching Hospital of Rangueil, F-31060, Toulouse Cedex 9, France
| | | | - Olivier Fourcade
- Critical Care Unit. University Teaching Hospital of Rangueil, F-31060, Toulouse Cedex 9, France
| | - Vincent Minville
- Critical Care Unit. University Teaching Hospital of Rangueil, F-31060, Toulouse Cedex 9, France
| | - Fabrice Ferré
- Critical Care Unit. University Teaching Hospital of Purpan, Place du Dr Baylac, F-31059, Toulouse Cedex 9, France
| | - Sophie Achard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000, Grenoble, France
| | - Stein Silva
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Critical Care Unit. University Teaching Hospital of Purpan, Place du Dr Baylac, F-31059, Toulouse Cedex 9, France
| |
Collapse
|
372
|
The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study. THE CEREBELLUM 2019; 18:457-468. [DOI: 10.1007/s12311-019-01014-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
373
|
Savini G, Pardini M, Castellazzi G, Lascialfari A, Chard D, D'Angelo E, Gandini Wheeler-Kingshott CAM. Default Mode Network Structural Integrity and Cerebellar Connectivity Predict Information Processing Speed Deficit in Multiple Sclerosis. Front Cell Neurosci 2019; 13:21. [PMID: 30853896 PMCID: PMC6396736 DOI: 10.3389/fncel.2019.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/17/2019] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment affects about 50% of multiple sclerosis (MS) patients, but the mechanisms underlying this remain unclear. The default mode network (DMN) has been linked with cognition, but in MS its role is still poorly understood. Moreover, within an extended DMN network including the cerebellum (CBL-DMN), the contribution of cortico-cerebellar connectivity to MS cognitive performance remains unexplored. The present study investigated associations of DMN and CBL-DMN structural connectivity with cognitive processing speed in MS, in both cognitively impaired (CIMS) and cognitively preserved (CPMS) MS patients. 68 MS patients and 22 healthy controls (HCs) completed a symbol digit modalities test (SDMT) and had 3T brain magnetic resonance imaging (MRI) scans that included a diffusion weighted imaging protocol. DMN and CBL-DMN tracts were reconstructed with probabilistic tractography. These networks (DMN and CBL-DMN) and the cortico-cerebellar tracts alone were modeled using a graph theoretical approach with fractional anisotropy (FA) as the weighting factor. Brain parenchymal fraction (BPF) was also calculated. In CIMS SDMT scores strongly correlated with the FA-weighted global efficiency (GE) of the network [GE(CBL-DMN): ρ = 0.87, R2 = 0.76, p < 0.001; GE(DMN): ρ = 0.82, R2 = 0.67, p < 0.001; GE(CBL): ρ = 0.80, R2 = 0.64, p < 0.001]. In CPMS the correlation between these measures was significantly lower [GE(CBL-DMN): ρ = 0.51, R2 = 0.26, p < 0.001; GE(DMN): ρ = 0.48, R2 = 0.23, p = 0.001; GE(CBL): ρ = 0.52, R2 = 0.27, p < 0.001] and SDMT scores correlated most with BPF (ρ = 0.57, R2 = 0.33, p < 0.001). In a multivariable regression model where SDMT was the independent variable, FA-weighted GE was the only significant explanatory variable in CIMS, while in CPMS BPF and expanded disability status scale were significant. No significant correlation was found in HC between SDMT scores, MRI or network measures. DMN structural GE is related to cognitive performance in MS, and results of CBL-DMN suggest that the cerebellum structural connectivity to the DMN plays an important role in information processing speed decline.
Collapse
Affiliation(s)
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico S. Martino, Genoa, Italy
| | - Gloria Castellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | | | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.,National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, United Kingdom
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
374
|
Modular architecture of metabolic brain network and its effects on the spread of perturbation impact. Neuroimage 2019; 186:146-154. [DOI: 10.1016/j.neuroimage.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/16/2018] [Accepted: 11/03/2018] [Indexed: 12/25/2022] Open
|
375
|
Clausi S, Olivito G, Lupo M, Siciliano L, Bozzali M, Leggio M. The Cerebellar Predictions for Social Interactions: Theory of Mind Abilities in Patients With Degenerative Cerebellar Atrophy. Front Cell Neurosci 2019; 12:510. [PMID: 30670949 PMCID: PMC6332472 DOI: 10.3389/fncel.2018.00510] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Recent studies have focused on the role of the cerebellum in the social domain, including in Theory of Mind (ToM). ToM, or the “mentalizing” process, is the ability to attribute mental states, such as emotion, intentions and beliefs, to others to explain and predict their behavior. It is a fundamental aspect of social cognition and crucial for social interactions, together with more automatic mechanisms, such as emotion contagion. Social cognition requires complex interactions between limbic, associative areas and subcortical structures, including the cerebellum. It has been hypothesized that the typical cerebellar role in adaptive control and predictive coding could also be extended to social behavior. The present study aimed to investigate the social cognition abilities of patients with degenerative cerebellar atrophy to understand whether the cerebellum acts in specific ToM components playing a role as predictive structure. To this aim, an ad hoc social cognition battery was administered to 27 patients with degenerative cerebellar pathology and 27 healthy controls. In addition, 3D T1-weighted and resting-state fMRI scans were collected to characterize the structural and functional changes in cerebello-cortical loops. The results evidenced that the patients were impaired in lower-level processes of immediate perception as well as in the more complex conceptual level of mentalization. Furthermore, they presented a pattern of GM reduction in cerebellar portions that are involved in the social domain such as crus I-II, lobule IX and lobule VIIIa. These areas showed decreased functional connectivity with projection cerebral areas involved in specific aspects of social cognition. These findings boost the idea that the cerebellar modulatory function on the cortical projection areas subtends the social cognition process at different levels. Particularly, regarding the lower-level processes, the cerebellum may act by implicitly matching the external information (i.e., expression of the eyes) with the respective internal representation to guarantee an immediate judgment about the mental state of others. Otherwise, at a more complex conceptual level, the cerebellum seems to be involved in the construction of internal models of mental processes during social interactions in which the prediction of sequential events plays a role, allowing us to anticipate the other person's behavior.
Collapse
Affiliation(s)
- Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy.,Neuroimage Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Libera Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Marco Bozzali
- Neuroimage Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
376
|
Zillekens IC, Brandi ML, Lahnakoski JM, Koul A, Manera V, Becchio C, Schilbach L. Increased functional coupling of the left amygdala and medial prefrontal cortex during the perception of communicative point-light stimuli. Soc Cogn Affect Neurosci 2019; 14:97-107. [PMID: 30481356 PMCID: PMC6318468 DOI: 10.1093/scan/nsy105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022] Open
Abstract
Interpersonal predictive coding (IPPC) describes the behavioral phenomenon whereby seeing a communicative rather than an individual action helps to discern a masked second agent. As little is known, yet, about the neural correlates of IPPC, we conducted a functional magnetic resonance imaging study in a group of 27 healthy participants using point-light displays of moving agents embedded in distractors. We discovered that seeing communicative compared to individual actions was associated with higher activation of right superior frontal gyrus, whereas the reversed contrast elicited increased neural activation in an action observation network that was activated during all trials. Our findings, therefore, potentially indicate the formation of action predictions and a reduced demand for executive control in response to communicative actions. Further, in a regression analysis, we revealed that increased perceptual sensitivity was associated with a deactivation of the left amygdala during the perceptual task. A consecutive psychophysiological interaction analysis showed increased connectivity of the amygdala with medial prefrontal cortex in the context of communicative compared to individual actions. Thus, whereas increased amygdala signaling might interfere with task-relevant processes, increased co-activation of the amygdala and the medial prefrontal cortex in a communicative context might represent the integration of mentalizing computations.
Collapse
Affiliation(s)
- Imme C Zillekens
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Atesh Koul
- Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Cristina Becchio
- Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Psychology, University of Turin, Turin, Italy
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany.,Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
377
|
POLUSHIN YUS, POLUSHIN АYU, YUKINА GYU, KOZHEMYAKINА MV. POSTOPERATIVE COGNITIVE DYSFUNCTION – WHAT WE KNOW AND WHERE WE GO. ВЕСТНИК АНЕСТЕЗИОЛОГИИ И РЕАНИМАТОЛОГИИ 2019. [DOI: 10.21292/2078-5658-2019-16-1-19-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
378
|
Abstract
OBJECTIVES The aim of this study was to examine the effects of perinatal exposure to gadolinium (Gd)-based contrast agents (GBCAs) on the behavior of adulthood offspring. MATERIALS AND METHODS Pregnant Balb/C mice (n = 5 per group) were intravenously injected with gadoterate meglumine (Magnescope, macrocyclic GBCA), gadodiamide (Omniscan, linear GBCA), or vehicle from pregnancy day 15 to 19, corresponding to embryonic day 15 to 19 of the fetus, at 2 mmol/kg body weight per day. Brain samples from dams and pups were collected on postpartum day 28. The total Gd concentration was quantified by inductively coupled plasma-mass spectrometry (dams, n = 3; gadoterate meglumine-treated pups group, n = 9; and gadodiamide-treated pups group, n = 10). Behavioral testing of offspring was started on postpartum day 70 (control group, n = 22; gadoterate meglumine-treated group, n = 23; and gadodiamide-treated group, n = 20). RESULTS Higher levels of Gd retention were observed in dams and pups in the gadodiamide-treated group. Perinatal exposure to GBCAs caused anxiety-like behavior, disrupted motor coordination, impaired memory function, stimulated tactile sensitivity, and decreased muscle strength, particularly in the gadodiamide-treated group. CONCLUSIONS In the present study, we showed that Gd was transferred to pups and was retained in their brain during postnatal development. Gadolinium retention may lead to impaired brain development. These findings indicate that the use of GBCAs in pregnant women should be avoided because it may have adverse effects on the fetus, particularly on brain development.
Collapse
|
379
|
Structural and effective brain connectivity underlying biological motion detection. Proc Natl Acad Sci U S A 2018; 115:E12034-E12042. [PMID: 30514816 DOI: 10.1073/pnas.1812859115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The perception of actions underwrites a wide range of socio-cognitive functions. Previous neuroimaging and lesion studies identified several components of the brain network for visual biological motion (BM) processing, but interactions among these components and their relationship to behavior remain little understood. Here, using a recently developed integrative analysis of structural and effective connectivity derived from high angular resolution diffusion imaging (HARDI) and functional magnetic resonance imaging (fMRI), we assess the cerebro-cerebellar network for processing of camouflaged point-light BM. Dynamic causal modeling (DCM) informed by probabilistic tractography indicates that the right superior temporal sulcus (STS) serves as an integrator within the temporal module. However, the STS does not appear to be a "gatekeeper" in the functional integration of the occipito-temporal and frontal regions: The fusiform gyrus (FFG) and middle temporal cortex (MTC) are also connected to the right inferior frontal gyrus (IFG) and insula, indicating multiple parallel pathways. BM-specific loops of effective connectivity are seen between the left lateral cerebellar lobule Crus I and right STS, as well as between the left Crus I and right insula. The prevalence of a structural pathway between the FFG and STS is associated with better BM detection. Moreover, a canonical variate analysis shows that the visual sensitivity to BM is best predicted by BM-specific effective connectivity from the FFG to STS and from the IFG, insula, and STS to the early visual cortex. Overall, the study characterizes the architecture of the cerebro-cerebellar network for BM processing and offers prospects for assessing the social brain.
Collapse
|
380
|
Miki S, Baker R, Hirata Y. Cerebellar Role in Predictive Control of Eye Velocity Initiation and Termination. J Neurosci 2018; 38:10371-10383. [PMID: 30355638 PMCID: PMC6596215 DOI: 10.1523/jneurosci.1375-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 01/15/2023] Open
Abstract
Predictive motor control is essential to achieve rapid and precise motor action in all vertebrates. Visuomotor transformations have been a popular model system to study the underlying neural mechanisms, in particular, the role of the cerebellum in both predictive and gain adaptations. In all species, large-field visual motion produces an involuntary conjugate ocular movement facilitating gaze stabilization called the optokinetic response. Gain adaptation can be induced by prolonged optokinetic visual stimulation; and if the visual stimulation is temporally periodic, predictive behavior emerges. Two predictive timing components were identifiable in this behavior. The first was prediction of stimulus initiation (when to move) and the other was stimulus termination (when to stop). We designed visual training that allowed us to evaluate initiation and termination independently that included the recording of cerebellar activity followed by acute and chronic cerebellar removal in goldfish of both sexes. We found that initiation and termination predictions were present in the cerebellum and more robust than conflicting visual sensory signals. Each prediction could be acquired independently, and both the acquisition and maintenance of each component were cerebellar-dependent. Subsequent analysis of the neuronal connectivity strongly supports the hypothesis that the acquired eye velocity behaviors were dependent on feedforward velocity buildup signals from the brainstem, but the adaptive timing mechanism itself originates within the circuitry of the cerebellum.SIGNIFICANCE STATEMENT Predictive and rapid motor control is essential in our daily life, such as in the playing of musical instruments or sports. The current work evaluates timing of a visuomotor behavior shown to be similar in humans as well as goldfish. Given the latter species' known brainstem cerebellar neuronal connectivity and experimental advantage, it was possible to demonstrate the cerebellum to be necessary for acquisition and maintenance of both the initiation and termination components of when to move and to stop. All evidence in this study points to the adaptive predictive control site to lie within the cerebellar circuitry.
Collapse
Affiliation(s)
- Shuntaro Miki
- Department of Information Science, Chubu University Graduate School of Engineering, Kasugai, Japan, 487-8501
| | - Robert Baker
- Department of Neuroscience, New York University Langone Medical Center, New York, New York 10016, and
| | - Yutaka Hirata
- Department of Information Science, Chubu University Graduate School of Engineering, Kasugai, Japan, 487-8501,
- Department of Robotic Science and Technology, Chubu University College of Engineering, Kasugai, Japan, 487-8501
| |
Collapse
|
381
|
Vandervert L. How Prediction Based on Sequence Detection in the Cerebellum Led to the Origins of Stone Tools, Language, and Culture and, Thereby, to the Rise of Homo sapiens. Front Cell Neurosci 2018; 12:408. [PMID: 30483059 PMCID: PMC6243095 DOI: 10.3389/fncel.2018.00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 12/04/2022] Open
Abstract
This article extends Leiner et al.'s watershed position that cerebellar mechanisms played prominent roles in the evolution of the manipulation and refinement of ideas and language. First it is shown how cerebellar mechanism of sequence-detection may lead to the foundational learning of a predictive working memory in the infant. Second, it is argued how this same cerebellar mechanism may have led to the adaptive selection toward the progressively predictive phonological loop in the evolution of working memory of pre-humans. Within these contexts, cerebellar sequence detection is then applied to an analysis of leading anthropologists Stout and Hecht's cerebral cortex-based explanation of the evolution of culture and language through the repetitious rigors of stone-tool knapping. It is argued that Stout and Hecht's focus on the roles of areas of the brain's cerebral cortex is seriously lacking, because it can be readily shown that cerebellar sequence detection importantly (perhaps predominantly) provides more fundamental explanations for the origins of culture and language. It is shown that the cerebellum does this in the following ways: (1) through prediction-enhancing silent speech in working memory, (2) through prediction in observational learning, and (3) through prediction leading to accuracy in stone-tool knapping. It is concluded, in agreement with Leiner et al. that the more recently proposed mechanism of cerebellar sequence-detection has played a prominent role in the evolution of culture, language, and stone-tool technology, the earmarks of Homo sapiens. It is further concluded that through these same mechanisms the cerebellum continues to play a prominent role in the relentless advancement of culture.
Collapse
|
382
|
Fan L, Hu J, Ma W, Wang D, Yao Q, Shi J. Altered baseline activity and connectivity associated with cognitive impairment following acute cerebellar infarction: A resting-state fMRI study. Neurosci Lett 2018; 692:199-203. [PMID: 30439397 DOI: 10.1016/j.neulet.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/18/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022]
Abstract
The aims of this study were to investigated the changes of brain function and cognitive function in patients with acute posterior cerebellar infarction using the functional magnetic resonance imaging (fMRI) tecniques: fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC). Forty acute cerebellar infarction patients and 40 healthy controls were included. The differences of fALFF were compared. The regions showed significant differences were set as regions of interest (ROIs), and then the FC values between ROIs and the whole brain were analysed. Pearson correlation analysis was used to understand the correlation between FC values and cognitive function scores. The results showed significant group differences in fALFF values in the four brain regions, including the right frontal lobe, left hippocampus, right cingulate gyrus and cerebellum posterior lobe. Pearson correlation analysis suggested that abnormal alterations in the left hippocampus and right cingulate gyrus may play a core role in the cognitive impairment associated with cerebellar infarction. The changes of fALFF and FC values in related brain area from cerebellar stroke complement and enrich our understanding of cerebellar involvement in cognition involved in cognitive performance.
Collapse
Affiliation(s)
- Lin Fan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 21000, China; Department of Neurology, Taizhou People's Hospital, Taizhou, 225300, China
| | - Jun Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 21000, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 21000, China
| | - Donghao Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 21000, China
| | - Qun Yao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 21000, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 21000, China.
| |
Collapse
|
383
|
Mariman JJ, Burgos P, Maldonado PE. Parallel learning processes of a visuomotor adaptation task in a changing environment. Eur J Neurosci 2018; 49:106-119. [PMID: 30402979 DOI: 10.1111/ejn.14258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
During the control of reaching movements, a key contribution of the visual system is the localization of relevant environmental targets. In motor adaptation processes, the visual evaluation of effector motor behavior enables learning from errors, which demands continuous visual attentional focus. However, most current adaptation paradigms include static targets; therefore, when a learning situation develops in a highly variable environment and there is a double demand for visual resources (environment and motor performance), the evolution of learning processes is unknown. In order to understand how learning processes evolve in a variable environment, a video game task was designed in which subjects were asked to manage a 60° counterclockwise-rotated cursor to capture descending targets with initially unpredictable trajectories. During the task, the cursor and eye movements were recorded to dissect visuomotor coordination. We observed that the pursuit of the targets conditioned a predominant and continuous visual inspection of the environment instead of the rotated cursor. As learning progressed, subjects exhibited a linear reduction in directional error and selected a motor strategy based on the degree of reward, which improved the performance. These results suggest that when the environment demands high visual attention, error-based and reinforced motor learning processes are implemented simultaneously, thus enabling efficient predictive behavior.
Collapse
Affiliation(s)
- Juan J Mariman
- Neurosystem Laboratory, Department of Neuroscience, Universidad de Chile, Santiago, Chile.,Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Research and Development Direction, Universidad Tecnológica de Chile Inacap, Santiago, Chile
| | - Pablo Burgos
- Neurosystem Laboratory, Department of Neuroscience, Universidad de Chile, Santiago, Chile.,Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Research and Development Direction, Universidad Tecnológica de Chile Inacap, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Pedro E Maldonado
- Neurosystem Laboratory, Department of Neuroscience, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
384
|
He Y, Wang Y, Chang TT, Jia Y, Wang J, Zhong S, Huang H, Sun Y, Deng F, Wu X, Niu C, Huang L, Ma G, Huang R. Abnormal intrinsic cerebro-cerebellar functional connectivity in un-medicated patients with bipolar disorder and major depressive disorder. Psychopharmacology (Berl) 2018; 235:3187-3200. [PMID: 30206663 DOI: 10.1007/s00213-018-5021-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/29/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The cerebellum plays an important role in depression. Cerebro-cerebellar circuits have been found to show aberrance in bipolar disorder (BD) and major depressive disorder (MDD). However, whether the cerebro-cerebellar connectivity contributes equally to the pathologic mechanisms of BD and MDD remains unknown. METHODS We recruited 33 patients with MDD, 32 patients with BD, and 43 healthy controls (HC). We selected six seed regions (three per hemisphere) in the cerebrum, corresponding to the affective, cognitive control, and default mode networks, to establish cerebro-cerebellar functional connectivity maps. RESULTS Relative to the HC, both the BD and MDD patients exhibited weaker negative connectivity between the right subgenual anterior cingulate cortex and the cerebellar vermis IV_V (pBD = 0.03, pMDD = 0.001) and weaker positive connectivity between the left precuneus and the left cerebellar lobule IX (pBD = 0.043, pMDD = 0.000). Moreover, the MDD patients showed weaker positive connectivity in the left precuneus-left cerebellar lobule IX circuit than the BD patients (p = 0.049). In addition, the BD patients showed weaker positive connectivity in the right dorsolateral prefrontal cortex-left cerebellar lobule Crus Ι circuit compared to the HC (p = 0.002) or the MDD patients (p = 0.013). Receiver operating characteristic curves analyses showed that the altered cerebro-cerebellar connectivities could be used to distinguish the patients from the HC with relatively high accuracy. CONCLUSIONS Our findings suggested that differences in connectivity of cerebro-cerebellar circuits, which are involved in affective or cognitive functioning, significantly contributed to BD and MDD.
Collapse
Affiliation(s)
- Yuan He
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ting-Ting Chang
- Department of Psychology, Research Center for Mind, Brain & Learning, National Chengchi University, Taipei, Taiwan
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyuan Huang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Yao Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Feng Deng
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Chen Niu
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friend Hospital, Yinghua Dongjie 2, Chaoyang District, Beijing, 100029, China.
| | - Ruiwang Huang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Brain Imaging Center, School of Psychology, South China Normal University, Zhongshan Avenue West 55, Tianhe District, Guangzhou, 510631, China.
| |
Collapse
|
385
|
Guillaume A, Fuller JR, Srimal R, Curtis CE. Cortico-cerebellar network involved in saccade adaptation. J Neurophysiol 2018; 120:2583-2594. [PMID: 30207858 PMCID: PMC6295533 DOI: 10.1152/jn.00392.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/10/2023] Open
Abstract
Saccade adaptation is the learning process that ensures that vision and saccades remain calibrated. The central nervous system network involved in these adaptive processes remains unclear because of difficulties in isolating the learning process from the correlated visual and motor processes. Here we imaged the human brain during a novel saccade adaptation paradigm that allowed us to isolate neural signals involved in learning independent of the changes in the amplitude of corrective saccades usually correlated with adaptation. We show that the changes in activation in the ipsiversive cerebellar vermis that track adaptation are not driven by the changes in corrective saccades and thus provide critical supporting evidence for previous findings. Similarly, we find that activation in the dorsomedial wall of the contraversive precuneus mirrors the pattern found in the cerebellum. Finally, we identify dorsolateral and dorsomedial cortical areas in the frontal and parietal lobes that encode the retinal errors following inaccurate saccades used to drive recalibration. Together, these data identify a distributed network of cerebellar and cortical areas and their specific roles in oculomotor learning. NEW & NOTEWORTHY The central nervous system constantly learns from errors and adapts to keep visual targets and saccades in registration. We imaged the human brain while the gain of saccades adapted to a visual target that was displaced while the eye was in motion, inducing retinal error. Activity in the cerebellum and precuneus tracked learning, whereas parts of the dorsolateral and dorsomedial frontal and parietal cortex encoded the retinal error used to drive learning.
Collapse
Affiliation(s)
- Alain Guillaume
- CNRS, Laboratoire de Neurosciences Cognitives, Aix Marseille Université , Marseille , France
- Department of Psychology, New York University , New York, New York
| | - Jason R Fuller
- Department of Psychology, New York University , New York, New York
| | - Riju Srimal
- Center for Neural Science, New York University , New York, New York
| | - Clayton E Curtis
- Department of Psychology, New York University , New York, New York
- Center for Neural Science, New York University , New York, New York
| |
Collapse
|
386
|
Cognitive Deficits in Multiple Sclerosis: Recent Advances in Treatment and Neurorehabilitation. Curr Treat Options Neurol 2018; 20:53. [PMID: 30345468 DOI: 10.1007/s11940-018-0538-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE OF REVIEW This article highlights recent progress in research on treatment and neurorehabilitation of cognitive impairment in multiple sclerosis (MS) including pharmacological interventions, physical exercise, and neuropsychological rehabilitation, both in conventional and technology-assisted settings. RECENT FINDINGS The most consistent evidence in terms of improvement or preservation of circumscribed cognitive scores in MS patients comes from moderately sampled randomized clinical trials on multimodal approaches that combine conventional or computerized neuropsychological training with psychoeducation or cognitive behavioral therapy. Disease-modifying treatments also appear to have beneficial effects in preventing or attenuating cognitive decline, whereas there is little evidence for agents such as donepezil or stimulants. Finally, physical exercise may yield some cognitive improvement in MS patients. Despite substantial and often promising research efforts, there is a lack of validated and widely accepted clinical procedures for cognitive neurorehabilitation in MS. Development of such approaches will require collaborative efforts towards the design of interventions that are fundamentally inspired by cognitive neuroscience, potentially guided by neuroimaging, and composed of conventional neuropsychological training and cognitive behavioral therapy as well as physical exercise and therapeutic video games. Subsequently, large-scale validation will be needed with meaningful outcome measures reflecting transfer to everyday cognitive function and maintenance of training effects.
Collapse
|
387
|
Brissenden JA, Tobyne SM, Osher DE, Levin EJ, Halko MA, Somers DC. Topographic Cortico-cerebellar Networks Revealed by Visual Attention and Working Memory. Curr Biol 2018; 28:3364-3372.e5. [PMID: 30344119 DOI: 10.1016/j.cub.2018.08.059] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/03/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
Substantial portions of the cerebellum appear to support non-motor functions; however, previous investigations of cerebellar involvement in cognition have revealed only a coarse degree of specificity. Although somatotopic maps have been observed within cerebellum, similar precision within cortico-cerebellar networks supporting non-motor functions has not previously been reported. Here, we find that human cerebellar lobule VIIb/VIIIa differentially codes key aspects of visuospatial cognition. Ipsilateral visuospatial representations were observed during both a visual working memory and an attentionally demanding visual receptive field-mapping fMRI task paradigm. Moreover, within lobule VIIb/VIIIa, we observed a functional dissociation between spatial coding and visual working memory processing. Visuospatial representations were found in the dorsomedial portion of lobule VIIb/VIIIa, and load-dependent visual working memory processing was shifted ventrolaterally. A similar functional gradient for spatial versus load processing was found in posterior parietal cortex. This cerebral cortical organization was well predicted by functional connectivity with spatial and load regions of cerebellar lobule VIIb/VIIIa. Collectively, our findings indicate that recruitment by visuospatial attentional functions within cerebellar lobule VIIb/VIIIa is highly specific. Furthermore, the topographic arrangement of these functions is mirrored in frontal and parietal cortex. These findings motivate a closer examination of cortico-cerebellar functional specialization across a broad range of cognitive domains.
Collapse
Affiliation(s)
- James A Brissenden
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
| | - Sean M Tobyne
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
| | - David E Osher
- Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Emily J Levin
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA
| | - Mark A Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
388
|
Ibáñez A, García AM. Commentary: Cerebellar atrophy and its contribution to cognition in frontotemporal dementias. Front Aging Neurosci 2018; 10:300. [PMID: 30327599 PMCID: PMC6174214 DOI: 10.3389/fnagi.2018.00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Agustín Ibáñez
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile.,Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Facultad de Educación, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
389
|
Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B, Bakshinskaya DE, Wang SSH. Normal cognitive and social development require posterior cerebellar activity. eLife 2018; 7:36401. [PMID: 30226467 PMCID: PMC6195348 DOI: 10.7554/elife.36401] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/15/2018] [Indexed: 11/14/2022] Open
Abstract
Cognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II). Perturbation in adult life altered only a subset of phenotypes. Both adult and juvenile disruption left gait metrics largely unaffected. Contributions to phenotypes increased with the amount of lobule inactivated. Using an anterograde transsynaptic tracer, we found that posterior cerebellum made strong connections with prelimbic, orbitofrontal, and anterior cingulate cortex. These findings provide anatomical substrates for the clinical observation that cerebellar injury increases the risk of autism.
Collapse
Affiliation(s)
- Aleksandra Badura
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Molecular Biology, Princeton University, Princeton, United States.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Julia W Metzger
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Thomas J Pisano
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States.,Robert Wood Johnson Medical School, New Brunswick, United States
| | - Ben Deverett
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States.,Robert Wood Johnson Medical School, New Brunswick, United States
| | - Dariya E Bakshinskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
390
|
Cetin FH, Cetin F, Isik Y, Guney E, Alp F, Aksoy A. Attention deficit hyperactivity disorder and anti-Purkinje autoantibodies: no link? PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1517467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Fatih Hilmi Cetin
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Feyza Cetin
- Department of Clinical Microbiology, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Yasemen Isik
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Esra Guney
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Feyza Alp
- Department of Clinical Microbiology, Konya Hospital, Konya, Turkey
| | - Altan Aksoy
- Department of Clinical Microbiology, Ankara Hospital, Ankara, Turkey
| |
Collapse
|
391
|
Distractor Inhibition in Autism Spectrum Disorder: Evidence of a Selective Impairment for Individuals with Co-occurring Motor Difficulties. J Autism Dev Disord 2018; 49:669-682. [DOI: 10.1007/s10803-018-3744-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
392
|
Indelicato E, Nachbauer W, Karner E, Eigentler A, Wagner M, Unterberger I, Poewe W, Delazer M, Boesch S. The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur J Neurol 2018; 26:66-e7. [PMID: 30063100 DOI: 10.1111/ene.13765] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE CACNA1A encodes the α1 subunit of the neuronal calcium channel P/Q. CACNA1A mutations underlie three allelic disorders: familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). A clear-cut genotype-phenotype correlation is often lacking since clinical manifestations may overlap. Several case reports have described cognitive and behavioral features in CACNA1A disorders, but studies in larger case series are lacking. METHODS Genetically confirmed CACNA1A cases were retrieved from the database of the ataxia outpatient clinic of the Department of Neurology at Innsbruck Medical University. Clinical charts and neuropsychological test results were retrospectively analyzed. In addition, a review of the literature including only genetically confirmed cases was performed. RESULTS Forty-four CACNA1A cases were identified in our database. Delayed psychomotor milestones and poor school performance were described in seven (four FHM1, three EA2) and eight (three FHM1, five EA2) patients, respectively. Psychiatric comorbidities were diagnosed in eight patients (two FHM1, six EA2). Neuropsychological testing was available for 23 patients (11 FHM1, 10 EA2, two SCA6). Various cognitive deficits were documented in 21 cases (all patients except one SCA6). Impairments were predominantly seen in figural memory, visuoconstructive abilities and verbal fluency. In the literature, an early psychomotor delay is described in several children with EA2 and FHM1, whilst reports of cognitive and psychiatric findings from adult cases are scarce. CONCLUSIONS Neuropsychiatric manifestations are common in episodic CACNA1A disorders. In the case of otherwise unexplained developmental delay and a positive family history, CACNA1A mutations should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- E Indelicato
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - W Nachbauer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - E Karner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - A Eigentler
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - M Wagner
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria
| | - I Unterberger
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - W Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - M Delazer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - S Boesch
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
393
|
Watanabe H, Riku Y, Hara K, Kawabata K, Nakamura T, Ito M, Hirayama M, Yoshida M, Katsuno M, Sobue G. Clinical and Imaging Features of Multiple System Atrophy: Challenges for an Early and Clinically Definitive Diagnosis. J Mov Disord 2018; 11:107-120. [PMID: 30086614 PMCID: PMC6182302 DOI: 10.14802/jmd.18020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult-onset, progressive neurodegenerative disorder. Patients with MSA show various phenotypes during the course of their illness, including parkinsonism, cerebellar ataxia, autonomic failure, and pyramidal signs. Patients with MSA sometimes present with isolated autonomic failure or motor symptoms/ signs. The median duration from onset to the concomitant appearance of motor and autonomic symptoms is approximately 2 years but can range up to 14 years. As the presence of both motor and autonomic symptoms is essential for the current diagnostic criteria, early diagnosis is difficult when patients present with isolated autonomic failure or motor symptoms/signs. In contrast, patients with MSA may show severe autonomic failure and die before the presentation of motor symptoms/signs, which are currently required for the diagnosis of MSA. Recent studies have also revealed that patients with MSA may show nonsupporting features of MSA such as dementia, hallucinations, and vertical gaze palsy. To establish early diagnostic criteria and clinically definitive categorization for the successful development of disease-modifying therapy or symptomatic interventions for MSA, research should focus on the isolated phase and atypical symptoms to develop specific clinical, imaging, and fluid biomarkers that satisfy the requirements for objectivity, for semi- or quantitative measurements, and for uncomplicated, worldwide availability. Several novel techniques, such as automated compartmentalization of the brain into multiple parcels for the quantification of gray and white matter volumes on an individual basis and the visualization of α-synuclein and other candidate serum and cerebrospinal fluid biomarkers, may be promising for the early and clinically definitive diagnosis of MSA.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
394
|
Guell X, Schmahmann JD, Gabrieli JDE, Ghosh SS. Functional gradients of the cerebellum. eLife 2018; 7:36652. [PMID: 30106371 PMCID: PMC6092123 DOI: 10.7554/elife.36652] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/02/2018] [Indexed: 01/18/2023] Open
Abstract
A central principle for understanding the cerebral cortex is that macroscale anatomy reflects a functional hierarchy from primary to transmodal processing. In contrast, the central axis of motor and nonmotor macroscale organization in the cerebellum remains unknown. Here we applied diffusion map embedding to resting-state data from the Human Connectome Project dataset (n = 1003), and show for the first time that cerebellar functional regions follow a gradual organization which progresses from primary (motor) to transmodal (DMN, task-unfocused) regions. A secondary axis extends from task-unfocused to task-focused processing. Further, these two principal gradients revealed novel functional properties of the well-established cerebellar double motor representation (lobules I-VI and VIII), and its relationship with the recently described triple nonmotor representation (lobules VI/Crus I, Crus II/VIIB, IX/X). Functional differences exist not only between the two motor but also between the three nonmotor representations, and second motor representation might share functional similarities with third nonmotor representation.
Collapse
Affiliation(s)
- Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Jeremy D Schmahmann
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Ataxia Unit, Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - John DE Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Satrajit S Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Otolaryngology, Harvard Medical School, Boston, United States
| |
Collapse
|
395
|
Salegio EA, Campagna MV, Allen PC, Stockinger DE, Song Y, Hwa GGC. Targeted Delivery and Tolerability of MRI-Guided CED Infusion into the Cerebellum of Nonhuman Primates. Hum Gene Ther Methods 2018; 29:169-176. [PMID: 29953257 DOI: 10.1089/hgtb.2018.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study explored the feasibility of intraparenchymal delivery (gadoteridol and/or Serotype 5 Adeno-Associated Viral Vector-enhanced Green Fluorescent Protein [AAV5-eGFP]) into the cerebellum of nonhuman primates using real-time magnetic resonance imaging-guided convection enhanced delivery (MRI-CED) technology. All animals tolerated the neurosurgical procedure without any clinical sequela. Gene expression was detected within the cerebellar parenchyma at the site of infusion and resulted in transduction of neuronal cell bodies and fibers. Histopathology indicated localized damage along the stem of the cannula tract. These findings demonstrate the potential of real-time MRI-CED to deliver therapeutics into the cerebellum, which has extensive reciprocal connections and may be used as a target for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yuanquan Song
- 2 Raymond G. Perelman Center for Cellular and Molecular Therapeutics , The Children's Hospital of Philadelphia, Philadelphia, PA.,3 Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, PA
| | | |
Collapse
|
396
|
Xiao L, Bornmann C, Hatstatt-Burklé L, Scheiffele P. Regulation of striatal cells and goal-directed behavior by cerebellar outputs. Nat Commun 2018; 9:3133. [PMID: 30087345 PMCID: PMC6081479 DOI: 10.1038/s41467-018-05565-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/13/2018] [Indexed: 11/22/2022] Open
Abstract
The cerebellum integrates descending motor commands and sensory information to generate predictions and detect errors during ongoing behaviors. Cerebellar computation has been proposed to control motor but also non-motor behaviors, including reward expectation and cognitive flexibility. However, the organization and functional contribution of cerebellar output channels are incompletely understood. Here, we elaborate the cell-type specificity of a broad connectivity matrix from the deep cerebellar nuclei (DCN) to the dorsal striatum in mice. Cerebello-striatal connections arise from all deep cerebellar subnuclei and are relayed through intralaminar thalamic nuclei (ILN). In the dorsal striatum, these connections target medium spiny neurons, but also ChAT-positive interneurons, a class of tonically active interneurons implicated in shifting and updating behavioral strategies. Chemogenetic silencing of cerebello-striatal connectivity modifies function of striatal ChAT-positive interneurons. We propose that cerebello-striatal connections relay cerebellar computation to striatal circuits for goal-directed behaviors. Cerebellar outputs contribute to motor as well as cognitive behaviors. Here, the authors elucidate the connectivity between deep cerebellar nuclei and specific cell types in the striatum via the intralaminar thalamic nucleus and the participation of this circuit in striatum-dependent behavior.
Collapse
Affiliation(s)
- Le Xiao
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | | | | |
Collapse
|
397
|
Ramanoël S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, Krainik A, Jaillard A, Baciu M. Gray Matter Volume and Cognitive Performance During Normal Aging. A Voxel-Based Morphometry Study. Front Aging Neurosci 2018; 10:235. [PMID: 30123123 PMCID: PMC6085481 DOI: 10.3389/fnagi.2018.00235] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Normal aging is characterized by decline in cognitive functioning in conjunction with extensive gray matter (GM) atrophy. A first aim of this study was to determine GM volume differences related to aging by comparing two groups of participants, middle-aged group (MAG, mean age 41 years, N = 16) and older adults (OG, mean age 71 years, N = 14) who underwent an magnetic resonance images (MRI) voxel-based morphometry (VBM) evaluation. The VBM analyses included two optimized pipelines, for the cortex and for the cerebellum. Participants were also evaluated on a wide range of cognitive tests assessing both domain-general and language-specific processes, in order to examine how GM volume differences between OG and MAG relate to cognitive performance. Our results show smaller bilateral GM volume in the OG relative to the MAG, in several cerebral and right cerebellar regions involved in language and executive functions. Importantly, our results also revealed smaller GM volume in the right cerebellum in OG relative to MAG, supporting the idea of a complex cognitive role for this structure. This study provides a broad picture of cerebral, but also cerebellar and cognitive changes associated with normal aging.
Collapse
Affiliation(s)
- Stephen Ramanoël
- INSERM/CNRS, Institut Vision, Sorbonne University, Pierre and Marie Curie Universities (UPMC) Paris 06, Paris, France
| | - Elena Hoyau
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Louise Kauffmann
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
- CNRS, Grenoble INP, GIPSA-lab, University of Grenoble Alpes, Grenoble, France
| | - Félix Renard
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
| | - Cédric Pichat
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Naïla Boudiaf
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Alexandre Krainik
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Assia Jaillard
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
398
|
Haralanov S, Haralanova E, Milushev E, Shkodrova D, Claussen CF. Objective and quantitative equilibriometric evaluation of individual locomotor behaviour in schizophrenia: Translational and clinical implications. J Eval Clin Pract 2018; 24:815-825. [PMID: 29665225 DOI: 10.1111/jep.12917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/21/2023]
Abstract
Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the translational and clinical implications of the new approach and its future perspectives.
Collapse
Affiliation(s)
- Svetlozar Haralanov
- Department of Psychiatry and Medical Psychology, Medical University, Sofia, Bulgaria.,University Hospital of Neurology and Psychiatry "St. Naum", Sofia, Bulgaria.,International Neuroscience Research Institute, Bad Kissingen, Germany
| | - Evelina Haralanova
- Department of Psychiatry and Medical Psychology, Medical University, Sofia, Bulgaria.,University Hospital of Neurology and Psychiatry "St. Naum", Sofia, Bulgaria.,International Neuroscience Research Institute, Bad Kissingen, Germany
| | - Emil Milushev
- Department of Neurology, Medical University, Sofia, Bulgaria.,University Hospital of Neurology and Psychiatry "St. Naum", Sofia, Bulgaria
| | - Diana Shkodrova
- Centre for Mental Health "Prof. Nikola Shipkovenski", Sofia, Bulgaria.,International Neuroscience Research Institute, Bad Kissingen, Germany
| | | |
Collapse
|
399
|
Connally EL, Ward D, Pliatsikas C, Finnegan S, Jenkinson M, Boyles R, Watkins KE. Separation of trait and state in stuttering. Hum Brain Mapp 2018; 39:3109-3126. [PMID: 29624772 PMCID: PMC6055715 DOI: 10.1002/hbm.24063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/21/2018] [Accepted: 03/19/2018] [Indexed: 01/22/2023] Open
Abstract
Stuttering is a disorder in which the smooth flow of speech is interrupted. People who stutter show structural and functional abnormalities in the speech and motor system. It is unclear whether functional differences reflect general traits of the disorder or are specifically related to the dysfluent speech state. We used a hierarchical approach to separate state and trait effects within stuttering. We collected sparse-sampled functional MRI during two overt speech tasks (sentence reading and picture description) in 17 people who stutter and 16 fluent controls. Separate analyses identified indicators of: (1) general traits of people who stutter; (2) frequency of dysfluent speech states in subgroups of people who stutter; and (3) the differences between fluent and dysfluent states in people who stutter. We found that reduced activation of left auditory cortex, inferior frontal cortex bilaterally, and medial cerebellum were general traits that distinguished fluent speech in people who stutter from that of controls. The stuttering subgroup with higher frequency of dysfluent states during scanning (n = 9) had reduced activation in the right subcortical grey matter, left temporo-occipital cortex, the cingulate cortex, and medial parieto-occipital cortex relative to the subgroup who were more fluent (n = 8). Finally, during dysfluent states relative to fluent ones, there was greater activation of inferior frontal and premotor cortex extending into the frontal operculum, bilaterally. The above differences were seen across both tasks. Subcortical state effects differed according to the task. Overall, our data emphasise the independence of trait and state effects in stuttering.
Collapse
Affiliation(s)
- Emily L Connally
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - David Ward
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUnited Kingdom
| | - Christos Pliatsikas
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUnited Kingdom
| | - Sarah Finnegan
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rowan Boyles
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
400
|
Arnold Anteraper S, Guell X, D'Mello A, Joshi N, Whitfield-Gabrieli S, Joshi G. Disrupted Cerebrocerebellar Intrinsic Functional Connectivity in Young Adults with High-Functioning Autism Spectrum Disorder: A Data-Driven, Whole-Brain, High-Temporal Resolution Functional Magnetic Resonance Imaging Study. Brain Connect 2018; 9:48-59. [PMID: 29896995 DOI: 10.1089/brain.2018.0581] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examines the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. High temporal resolution fMRI using simultaneous multi-slice acquisition aided unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc. MVPA revealed two clusters (Crus I/II and lobule IX) of abnormal connectivity in the cerebellum that are consistent with the notion of a triple representation of nonmotor processing in the cerebellum. Whole-brain seed-based RsFc analyses informed by these clusters showed significant under connectivity between the cerebellar and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in HF-ASD. The description of functional connectivity abnormalities reported in this study using whole-brain, data-driven analyses has the potential to crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.
Collapse
Affiliation(s)
- Sheeba Arnold Anteraper
- 1 A.A. Martinos Imaging Center, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,2 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts
| | - Xavier Guell
- 3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,4 Cognitive Neuroscience Research Unit, Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Anila D'Mello
- 3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Neha Joshi
- 5 Weston High School, Weston, Massachusetts
| | - Susan Whitfield-Gabrieli
- 1 A.A. Martinos Imaging Center, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gagan Joshi
- 2 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts.,3 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.,6 Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|