351
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
352
|
Affiliation(s)
- Rothwelle Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | | |
Collapse
|
353
|
Szafron LM, Balcerak A, Grzybowska EA, Pienkowska-Grela B, Felisiak-Golabek A, Podgorska A, Kulesza M, Nowak N, Pomorski P, Wysocki J, Rubel T, Dansonka-Mieszkowska A, Konopka B, Lukasik M, Kupryjanczyk J. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues. PLoS One 2015; 10:e0127475. [PMID: 25978564 PMCID: PMC4433331 DOI: 10.1371/journal.pone.0127475] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/15/2015] [Indexed: 12/13/2022] Open
Abstract
CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.
Collapse
Affiliation(s)
- Lukasz Michal Szafron
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- * E-mail:
| | - Anna Balcerak
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Ewa Anna Grzybowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Anna Felisiak-Golabek
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Agnieszka Podgorska
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Natalia Nowak
- Neurobiology Center, Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Pawel Pomorski
- Multimodal Laboratory of Cell Adhesion and Motility, NanoBioGeo Consortium, Nencki Institute of Experimental Biology, Warsaw, Poland
- Department of Biochemistry, Laboratory Of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Juliusz Wysocki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tymon Rubel
- The Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Bozena Konopka
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Martyna Lukasik
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
354
|
Taki FA, Pan X, Zhang B. Revisiting Chaos Theorem to Understand the Nature of miRNAs in Response to Drugs of Abuse. J Cell Physiol 2015; 230:2857-68. [PMID: 25966899 DOI: 10.1002/jcp.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
Just like Matryoshka dolls, biological systems follow a hierarchical order that is based on dynamic bidirectional communication among its components. In addition to the convoluted inter-relationships, the complexity of each component spans several folds. Therefore, it becomes rather challenging to investigate phenotypes resulting from these networks as it requires the integration of reductionistic and holistic approaches. One dynamic system is the transcriptome which comprises a variety of RNA species. Some, like microRNAs, have recently received a lot of attention. miRNAs are very pleiotropic and have been considered as therapeutic and diagnostic candidates in the biomedical fields. In this review, we survey miRNA profiles in response to drugs of abuse (DA) using 118 studies. After providing a summary of miRNAs related to substance use disorders (SUD), general patterns of miRNA signatures are compared among studies for single or multiple drugs of abuse. Then, current challenges and drawbacks in the field are discussed. Finally, we provide support for considering miRNAs as a chaotic system in normal versus disrupted states particularly in SUD and propose an integrative approach for studying and analyzing miRNA data.
Collapse
Affiliation(s)
- Faten A Taki
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
355
|
Dahlmann TA, Kück U. Dicer-Dependent Biogenesis of Small RNAs and Evidence for MicroRNA-Like RNAs in the Penicillin Producing Fungus Penicillium chrysogenum. PLoS One 2015; 10:e0125989. [PMID: 25955857 PMCID: PMC4425646 DOI: 10.1371/journal.pone.0125989] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs (sRNAs) that regulate gene expression in a wide range of eukaryotes. In this study, we analyzed regulatory sRNAs in Penicillium chrysogenum, the industrial producer of the β-lactam antibiotic penicillin. To identify sRNAs and microRNA-like RNAs (milRNAs) on a global approach, two sRNA sequencing libraries were constructed. One library was created with pooled total RNA, obtained from twelve differently grown cultures (RNA Mix), and the other with total RNA from a single submerged cultivation (∆ku70FRT2). Illumina sequencing of both RNA libraries produced 84,322,825 mapped reads. To distinguish between Dicer-dependent and independent sRNA formation, we further constructed two single dicer gene mutants (∆dcl2 and ∆dcl1) and a dicer double mutant (∆dcl2∆dcl1) and analyzed an sRNA library from the Dicer-deficient double-mutant. We identified 661 Dicer-dependent loci and in silico prediction revealed 34 milRNAs. Northern blot hybridization of two milRNAs provided evidence for mature milRNAs that are processed either in a complete or partial Dicer-dependent manner from an RNA precursor. Identified milRNAs share typical characteristics of previously discovered fungal milRNAs, like a strong preference for a 5' uracil and the typical length distribution. The detection of potential milRNA target sites in the genome suggests that milRNAs might play a role in posttranscriptional gene regulation. Our data will further increase our knowledge of sRNA dependent gene regulation processes, which is an important prerequisite to develop more effective strategies for improving industrial fermentations with P. chrysogenum.
Collapse
Affiliation(s)
- Tim A. Dahlmann
- Christian Doppler Laboratory for “Fungal Biotechnology”, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ulrich Kück
- Christian Doppler Laboratory for “Fungal Biotechnology”, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
- * E-mail:
| |
Collapse
|
356
|
Sudarkina OY, Filippenkov IB, Brodsky IB, Limborska SA, Dergunova LV. Comparative analysis of sphingomyelin synthase 1 gene expression at the transcriptional and translational levels in human tissues. Mol Cell Biochem 2015; 406:91-9. [PMID: 25912551 DOI: 10.1007/s11010-015-2427-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
Abstract
Sphingomyelin synthase 1 (SMS1) catalyses the biosynthesis of sphingomyelin in eukaryotic cells. We have previously determined the structure of the SGMS1 gene encoding this enzyme and a number of its alternative transcripts. Here, we describe a study of the expression of the full-length SMS1 protein and the sum of the alternative transcripts encoding this protein in human tissues. The SMS1 protein and mRNA levels in tissues differed significantly and were not correlated, implying the active post-transcriptional regulation of SMS1 protein expression. The putative truncated isoforms of the SMS1 protein, which are encoded by a number of alternative transcripts, were not detected by immunoblotting and thus may be absent or present in only small amounts.
Collapse
Affiliation(s)
- Olga Yu Sudarkina
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia,
| | | | | | | | | |
Collapse
|
357
|
Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proc Natl Acad Sci U S A 2015; 112:3770-5. [PMID: 25775553 DOI: 10.1073/pnas.1500008112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Six members of the microRNA-17 (miR-17) family were mapped to three different chromosomes, although they share the same seed sequence and are predicted to target common genes, among which are those encoding hypoxia-inducible factor-1α (HIF1A) and VEGFA. Here, we evaluated the in vivo expression profile of the miR-17 family in the murine retinopathy of prematurity (ROP) model, whereby Vegfa expression is highly enhanced at the early stage of retinal neovascularization, and we found simultaneous reduction of all miR-17 family members at this stage. Using gene reporter assays, we observed binding of these miRs to specific sites in the 3' UTRs of Hif1a and Vegfa. Furthermore, overexpression of these miRs decreased HIF1A and VEGFA expression in vitro. Our data indicate that this miR-17 family elicits a regulatory synergistic down-regulation of Hif1a and Vegfa expression in this biological model. We propose the existence of a coordinated regulatory network, in which diverse miRs are synchronously regulated to target the Hif1a transcription factor, which in turn, potentiates and reinforces the regulatory effects of the miRs on Vegfa to trigger and sustain a significant physiological response.
Collapse
|
358
|
Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol 2015; 11:601-11. [PMID: 25739314 DOI: 10.1517/17425255.2015.1021687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Adverse drug reactions present significant challenges that impact pharmaceutical development and are major burdens to public health services worldwide. In response to this need, the field of toxicology is rapidly expanding to identify key pathways involved in drug toxicity. AREAS COVERED MicroRNAs (miRNAs) are a class of small evolutionary conserved endogenous non-coding RNAs that regulate the translation of protein-coding genes. A wide range of toxicants alter miRNA levels in target organs and these altered miRNAs can also be detected in easily accessible biological fluids. This, combined with an early miRNA response to toxic insults and miRNA stability, substantiates the potential for these small molecules to be useful biomarkers for drug safety assessment. EXPERT OPINION miRNAs are early indicators and useful tools to detect drug-induced toxicity. Incorporation of miRNA profiling into the drug safety testing process will complement currently used techniques and may substantially enhance drug safety. With the increasing interests in translational research, the field of miRNA biomarker research will continue to expand and become an important part of the investigation of human drug toxicity.
Collapse
Affiliation(s)
- April K Marrone
- FDA-National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|
359
|
Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015; 22:20-8. [PMID: 25565029 PMCID: PMC4450863 DOI: 10.1038/nsmb.2931] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
Since its relatively recent discovery, RNA interference (RNAi) has emerged as a potent, specific and ubiquitous means of gene regulation. Through a number of pathways that are conserved in eukaryotes from yeast to humans, small noncoding RNAs direct molecular machinery to silence gene expression. In this Review, we focus on mechanisms and structures that govern RNA silencing in higher organisms. In addition to highlighting recent advances, we discuss parallels and differences among RNAi pathways. Together, the studies reviewed herein reveal the versatility and programmability of RNA-induced silencing complexes and emphasize the importance of both upstream biogenesis and downstream silencing factors.
Collapse
Affiliation(s)
- Jonathan J. Ipsaro
- W. M. Keck Structural Biology Laboratory Howard Hughes Medical Institute Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory Howard Hughes Medical Institute Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724
| |
Collapse
|
360
|
Duran-Figueroa N, Badillo-Corona JA, Naisbitt DJ, Castrejon-Flores JL. Towards the development of mechanism-based biomarkers to diagnose drug hypersensitivity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00238e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T-cells are activated by different mechanisms in the presence of drugs, metabolites or haptens, and they release several molecules that can be used in the diagnosis of drug hypersensitivity.
Collapse
Affiliation(s)
- N. Duran-Figueroa
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| | - J. A. Badillo-Corona
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| | - D. J. Naisbitt
- MRC Centre for Drug Safety Science
- Department of Pharmacology
- University of Liverpool
- Liverpool
- UK
| | - J. L. Castrejon-Flores
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| |
Collapse
|
361
|
Affiliation(s)
- A H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
362
|
Lu WT, Bushell M. Old case, new leads: miRNA links Kaposi's sarcoma-associated herpesvirus with sepsis. Cell Death Dis 2014; 5:e1560. [PMID: 25476908 PMCID: PMC4454161 DOI: 10.1038/cddis.2014.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- W-T Lu
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Bushell
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|