351
|
Bravo-Rivera C, Roman-Ortiz C, Montesinos-Cartagena M, Quirk GJ. Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Front Behav Neurosci 2015; 9:184. [PMID: 26236209 PMCID: PMC4502354 DOI: 10.3389/fnbeh.2015.00184] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
Persistent avoidance is a prominent symptom of anxiety disorders and is often resistant to extinction-based therapies. Little is known about the circuitry mediating persistent avoidance. Using a recently described platform-mediated active avoidance task, we assessed activity in several structures with c-Fos immuno-labeling. In Task 1, rats were conditioned to avoid a tone-signaled shock by moving to a safe platform, and then were extinguished over two days. One day later, failure to retrieve extinction correlated with increased activity in the prelimbic prefrontal cortex (PL), ventral striatum (VS), and basal amygdala (BA), and decreased activity in infralimbic prefrontal cortex (IL), consistent with pharmacological inactivation studies. In Task 2, the platform was removed during extinction training and fear (suppression of bar pressing) was extinguished to criterion over 3–5 days. The platform was then returned in a post-extinction test. Under these conditions, avoidance levels were equivalent to Experiment 1 and correlated with increased activity in PL and VS, but there was no correlation with activity in IL or BA. Thus, persistent avoidance can occur independently of deficits in fear extinction and its associated structures.
Collapse
Affiliation(s)
- Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine San Juan, Puerto Rico
| | - Ciorana Roman-Ortiz
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine San Juan, Puerto Rico
| | - Marlian Montesinos-Cartagena
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine San Juan, Puerto Rico
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine San Juan, Puerto Rico
| |
Collapse
|
352
|
Korzus E. Prefrontal Cortex in Learning to Overcome Generalized Fear. J Exp Neurosci 2015; 9:53-6. [PMID: 26244030 PMCID: PMC4505918 DOI: 10.4137/jen.s26227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022] Open
Abstract
Normal brain functioning relies critically on the ability to control appropriate behavioral responses to fearful stimuli. Overgeneralized fear is the major symptom of anxiety disorders including posttraumatic stress disorder. This review describes recent data demonstrating that the medial prefrontal cortex (mPFC) plays a critical role in the refining of cues that drive the acquisition of fear response. Recent studies on molecular mechanisms that underlie the role of mPFC in fear discrimination learning are discussed. These studies suggest that prefrontal N-methyl-D-aspartate receptors expressed in excitatory neurons govern fear discrimination learning via a mechanism involving cAMP response element-binding protein-dependent engagement of acetyltransferase.
Collapse
Affiliation(s)
- Edward Korzus
- Department of Psychology, Neuroscience and Biomedical Sciences Programs, University of California Riverside, CA, USA
| |
Collapse
|
353
|
Long-lasting memory abnormalities following exposure to the mouse defense test battery: An animal model of PTSD. Physiol Behav 2015; 146:67-72. [PMID: 26066724 DOI: 10.1016/j.physbeh.2015.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022]
Abstract
Memory dysfunctions are thought to play a crucial role both in the development and the maintenance of posttraumatic stress disorder (PTSD). Patients suffering from this condition persistently re-experience the traumatic event particularly when exposed to trauma-related cues and they display memory alterations. The objective of the present study was to investigate the long-term effects of a traumatic stress exposure on defensive behaviors and memory performance in mice confronted with a natural threat (i.e. a rat) in the defense test battery (MDTB), a procedure developed by the Blanchard group in the early nineties. The object recognition task,which addresses certain aspects of episodic memory, was used to assess the long-term consequences of stress on memory function. Mice were exposed to the MDTB followed two weeks later by a re-exposure to the test apparatus, but in the absence of the threat stimulus. Two hours after the second exposure to the MDTB apparatus, mice were exposed to the object recognition task (ORT). Another set of animals was used which were either exposed to the first or to the second MDTB session, before being tested in the ORT. Results showed that MDTB exposure produced long-lasting alterations in some defensive behaviors, such as escape attempts from the apparatus, which were increased during the re-exposure session at day 14 compared to non-exposed control mice.While exposure to the MDTB context only did not affect memory performance in the ORT, confrontation with the threat stimulus in the MDTB on day 1 impaired episodic memory two weeks after the stressful event. Finally, mice confronted both with the rat on day 1 and the MDTB context on day 14 displayed intact episodic memory performance in the ORT. We hypothesize that re-exposure to the context following a stressful event resulted in an increase of arousal, which subsequently led to an improvement in cognitive performance, a phenomenon also described in PTSD patients. The MDTB is a typical example of the tremendous efforts of Blanchard's lab to increase the translatability potential of the behavioral models of central nervous system disorders.
Collapse
|
354
|
Dong X, Li Y, Kirouac GJ. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on the expression of conditioned fear in rats. Front Behav Neurosci 2015; 9:161. [PMID: 26136671 PMCID: PMC4468823 DOI: 10.3389/fnbeh.2015.00161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA) in the region of the PVT interferes with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 μl of the DORA N-biphenyl-2-yl-1-[(1-methyl-1H-benzimidazol-2yl) sulfanyl] acetyl-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Oral Biology, College of Dentistry, Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba, Canada ; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Gilbert J Kirouac
- Department of Oral Biology, College of Dentistry, Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba, Canada ; Department of Psychiatry, College of Medicine, Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba, Canada
| |
Collapse
|
355
|
Rodriguez-Romaguera J, Do-Monte FH, Tanimura Y, Quirk GJ, Haber SN. Enhancement of fear extinction with deep brain stimulation: evidence for medial orbitofrontal involvement. Neuropsychopharmacology 2015; 40:1726-33. [PMID: 25601229 PMCID: PMC4915256 DOI: 10.1038/npp.2015.20] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces anxiety, fear, and compulsive symptoms in patients suffering from refractory obsessive-compulsive disorder. In a rodent model, DBS-like high-frequency stimulation of VS can either enhance or impair extinction of conditioned fear, depending on the location of electrodes within VS (dorsal vs ventral). As striatal DBS activates fibers descending from the cortex, we reasoned that the differing effects on extinction may reflect differences in cortical sources of fibers passing through dorsal-VS and ventral-VS. In agreement with prior anatomical studies, we found that infralimbic (IL) and anterior insular (AI) cortices project densely through ventral-VS, the site where DBS impaired extinction. Contrary to IL and AI, we found that medial orbitofrontal cortex (mOFC) projects densely through dorsal-VS, the site where DBS enhanced extinction. Furthermore, pharmacological inactivation of mOFC reduced conditioned fear and DBS of dorsal-VS-induced plasticity (pERK) in mOFC neurons. Our results support the idea that VS DBS modulates fear extinction by stimulating specific fibers descending from mOFC and prefrontal cortices.
Collapse
Affiliation(s)
- Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico—School of Medicine, San Juan, PR, Puerto Rico,Department of Anatomy and Neurobiology, University of Puerto Rico—School of Medicine, San Juan, PR, Puerto Rico
| | - Fabricio H Do-Monte
- Department of Psychiatry, University of Puerto Rico—School of Medicine, San Juan, PR, Puerto Rico,Department of Anatomy and Neurobiology, University of Puerto Rico—School of Medicine, San Juan, PR, Puerto Rico
| | - Yoko Tanimura
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico—School of Medicine, San Juan, PR, Puerto Rico,Department of Anatomy and Neurobiology, University of Puerto Rico—School of Medicine, San Juan, PR, Puerto Rico,Department of Psychiatry, University of Puerto Rico—School of Medicine, PO Box 365067, San Juan, PR 00936-5067, Puerto Rico, Tel: +787 999 3058, Fax: +787 999 3057, E-mail:
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
356
|
Rubinstein M, Han S, Tai C, Westenbroek RE, Hunker A, Scheuer T, Catterall WA. Dissecting the phenotypes of Dravet syndrome by gene deletion. Brain 2015; 138:2219-33. [PMID: 26017580 DOI: 10.1093/brain/awv142] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/04/2015] [Indexed: 11/14/2022] Open
Abstract
Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types.
Collapse
Affiliation(s)
- Moran Rubinstein
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Sung Han
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Chao Tai
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Ruth E Westenbroek
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Avery Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| |
Collapse
|
357
|
Grosso A, Cambiaghi M, Concina G, Sacco T, Sacchetti B. Auditory cortex involvement in emotional learning and memory. Neuroscience 2015; 299:45-55. [PMID: 25943482 DOI: 10.1016/j.neuroscience.2015.04.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/16/2023]
Abstract
Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged.
Collapse
Affiliation(s)
- A Grosso
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - M Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - G Concina
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - T Sacco
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - B Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy; National Institute of Neuroscience, Italy.
| |
Collapse
|
358
|
Routtenberg A. Is the place cell a "supple" engram? Hippocampus 2015; 25:753-5. [PMID: 25787962 DOI: 10.1002/hipo.22446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 01/29/2023]
Abstract
This short note, which honors Nobelists O'Keefe and the Mosers, asks how the patterning of inputs to a single place cell regulates its firing. Because the combination of inputs to a single CA1 place cell is very large, the generally accepted view is rejected that inputs to a place cell are relatively restricted, near identical repetition upon re-presentation of the environment. The alternative proposed here is that when any 100 excitatory inputs are fired activating a subset combination, which is a large number, selected from the 30,000 synapses, this leads to CA1 cell firing. The selection of the combination of inputs is a very large number it nonetheless leads to the conclusion that even though the same cell dutifully fires when the animal is in an identical location, the inputs that fire the place cell are nonetheless obligatorily non-identical. This CA1 input combinatorial proposal may help us understand the physiological underpinnings of the memory mechanism arising from supple synapses (Routtenberg (2013), Hippocampus 23:202-206).
Collapse
Affiliation(s)
- Aryeh Routtenberg
- Departments of Psychology, Neurobiology and Physiology, Northwestern University, Evanston, Illinois
| |
Collapse
|
359
|
|
360
|
The paraventricular thalamus controls a central amygdala fear circuit. Nature 2015; 519:455-9. [PMID: 25600269 PMCID: PMC4376633 DOI: 10.1038/nature13978] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behavior. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors1-3. However, the role of PVT in the establishment of adaptive behavioral responses remains unclear. Here we show in mice that PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression4,5. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM+) CeL neurons, which has previously been shown to store fear memory6. Consistently, we found that PVT neurons preferentially innervate SOM+ neurons in the CeL, and stimulation of PVT afferents facilitated SOM+ neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression5,6. Notably, PVT modulation of SOM+ CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in PVT or Trkb in SOM+ CeL neurons impaired fear conditioning, while infusion of BDNF into CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT–CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behavior.
Collapse
|
361
|
Abstract
RATIONALE There is a high degree of comorbidity between alcohol use disorder and post-traumatic stress disorder (PTSD), but little is known about the interactions of ethanol with traumatic memories. OBJECTIVES Using auditory fear conditioning in rats, we asked if repeated exposure to ethanol could modify the retrieval of fear memories acquired prior to ethanol exposure. METHODS Following auditory fear conditioning, Sprague-Dawley rats were given daily injections of ethanol (1.5 g/kg) or saline over 5 days. Two days later, they were given 20 trials of extinction training and then tested for extinction memory the following day. In a separate experiment, conditioned rats were given repeated ethanol injections and processed for c-Fos immunohistochemistry following a fear retrieval session. RESULTS Two days following the cessation of ethanol, the magnitude of conditioned fear responses (freezing and suppression of bar pressing) was significantly increased. This increase persisted the following day. Waiting 10 days following cessation of ethanol eliminated the effect on fear retrieval. In rats conditioned with low shock levels, repeated exposure to ethanol converted a sub-threshold fear memory into a supra-threshold fear memory. It also increased c-Fos expression in the prelimbic prefrontal cortex, paraventricular thalamus, and the central and basolateral nuclei of the amygdala, areas implicated in the retrieval of fear memories. CONCLUSIONS These results suggest that repeated exposure to ethanol may exacerbate pre-existing traumatic memories.
Collapse
|