Terada T, Inui KI. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A).
Biochem Pharmacol 2007;
75:1689-96. [PMID:
18262170 DOI:
10.1016/j.bcp.2007.12.008]
[Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/11/2023]
Abstract
Vectorial secretion of cationic compounds across tubular epithelial cells is an important function of the kidney. This uni-directed transport is mediated by two cooperative functions, which are membrane potential-dependent organic cation transporters at the basolateral membranes and H+/organic cation antiporters at the brush-border membranes. More than 10 years ago, the basolateral organic cation transporters (OCT1-3/SLC22A1-3) were isolated, and molecular understandings for the basolateral entry of cationic drugs have been greatly advanced. However, the molecular nature of H+/organic cation antiport systems remains unclear. Recently, mammalian orthologues of the multidrug and toxin extrusion (MATE) family of bacteria have been isolated and clarified to function as H+/organic cation antiporters. In this commentary, the molecular characteristics and pharmacokinetic roles of mammalian MATEs are critically overviewed focusing on the renal secretion of cationic drugs.
Collapse