351
|
Pick E, Berman TS. Formation of alternative proteasomes: same lady, different cap? FEBS Lett 2013; 587:389-93. [PMID: 23333296 DOI: 10.1016/j.febslet.2013.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 11/29/2022]
Abstract
The 26S proteasome is thought to be a homogenous complex, consisting of a 20S proteolytic core and a 19S regulatory particle that is required for its activation. Two groups have recently reported the activation of archeal 20S by a p97-related double-ring AAA+ ATPase complex, in a similar fashion to that reported for 19S. Since p97 is found in eukaryotes, the existence of a parallel setting in higher organisms is intriguing. Herein, we present supporting data and hypothesize that in eukaryotes, p97 and CSN form a promiscuous, hence hard-to-detect, "alternative cap", enabling the prompt and precise elimination of particular substrates.
Collapse
Affiliation(s)
- Elah Pick
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 36006, Israel.
| | | |
Collapse
|
352
|
Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochem J 2013; 448:55-65. [PMID: 22906049 PMCID: PMC3481250 DOI: 10.1042/bj20120542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin–proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein. The structure helps to define a core structural motif for the PCI domain and identifies potential sites through which Rpn12 might form protein–protein interactions. We demonstrate that mutating residues at one of these sites impairs Rpn12 binding to Rpn10 in vitro and reduces Rpn10 incorporation into proteasomes in vivo.
Collapse
|
353
|
Stoehr G, Schaab C, Graumann J, Mann M. A SILAC-based approach identifies substrates of caspase-dependent cleavage upon TRAIL-induced apoptosis. Mol Cell Proteomics 2013; 12:1436-50. [PMID: 23319142 PMCID: PMC3650350 DOI: 10.1074/mcp.m112.024679] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The extracellular ligand-induced extrinsic pathway of apoptosis is executed via caspase protease cascades that activate downstream effectors by means of site-directed proteolysis. Here we identify proteome changes upon the induction of apoptosis by the cytokine tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in a Jurkat T cell line. We detected caspase-dependent cleavage substrates by quantifying protein intensities before and after TRAIL induction in SDS gel slices. Apoptotic protein cleavage events are identified by a characteristic stable isotope labeling with amino acids in cell culture (SILAC) ratio pattern across gel slices that results from differential migration of the cleaved and uncleaved proteins. We applied a statistical test to define apoptotic substrates in the proteome. Our approach identified more than 650 of these cleaved proteins in response to TRAIL-induced apoptosis, including many previously unknown substrates and cleavage sites. Inhibitor treatment combined with triple SILAC demonstrated that the detected cleavage events were caspase dependent. Proteins located in the lumina of organelles such as mitochondria and endoplasmic reticulum were significantly underrepresented in the substrate population. Interestingly, caspase cleavage is generally observed in not only one but several members of stable complexes, but often with lower stoichiometry. For instance, all five proteins of the condensin I complex were cleaved upon TRAIL treatment. The apoptotic substrate proteome data can be accessed and visualized in the MaxQB database and might prove useful for basic and clinical research into TRAIL-induced apoptosis. The technology described here is extensible to a wide range of other proteolytic cleavage events.
Collapse
Affiliation(s)
- Gabriele Stoehr
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
354
|
Liu CW, Jacobson AD. Functions of the 19S complex in proteasomal degradation. Trends Biochem Sci 2013; 38:103-10. [PMID: 23290100 DOI: 10.1016/j.tibs.2012.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/26/2022]
Abstract
The 26S proteasome degrades ubiquitylated proteins. It consists of the 20S proteasome and the PA700/19S complex. PA700 plays essential roles in processing ubiquitylated substrates; it can bind, deubiquitylate, and unfold ubiquitylated proteins, which then translocate into the proteolytic chamber of the 20S proteasome for degradation. Here, we summarize the current knowledge of PA700-mediated substrate binding and deubiquitylation, and provide models to explain how substrate binding and deubiquitylation could regulate proteasomal degradation. We also discuss the features and potential therapeutic uses of the two recently identified small molecule inhibitors of the proteasome-residing deubiquitylating enzymes.
Collapse
Affiliation(s)
- Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA.
| | | |
Collapse
|
355
|
Abstract
The chaperone-related, ubiquitin-selective AAA (ATPase associated with a variety of cellular activities) protein Cdc48 (also known as TER94, p97 and VCP) is a key regulator of intracellular proteolysis in eukaryotes. It uses the energy derived from ATP hydrolysis to segregate ubiquitylated proteins from stable assemblies with proteins, membranes and chromatin. Originally characterized as essential factor in proteasomal degradation pathways, Cdc48 was recently found to control lysosomal protein degradation as well. Moreover, impaired lysosomal proteolysis due to mutational inactivation of Cdc48 causes protein aggregation diseases in humans. This review introduces the major systems of intracellular proteolysis in eukaryotes and the role of protein ubiquitylation. It then discusses in detail structure, mechanism and cellular functions of Cdc48 with an emphasis on protein degradation pathways in yeast.
Collapse
Affiliation(s)
- Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| |
Collapse
|
356
|
Wright PC, Jaffe S, Noirel J, Zou X. Opportunities for protein interaction network-guided cellular engineering. IUBMB Life 2012; 65:17-27. [DOI: 10.1002/iub.1114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/23/2023]
|
357
|
Fabre B, Lambour T, Delobel J, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross-linking and quantitative proteomics. Mol Cell Proteomics 2012; 12:687-99. [PMID: 23242550 DOI: 10.1074/mcp.m112.023317] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins-which modulate proteasome activity, stability, localization, or substrate uptake-rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS/Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
358
|
Kim YC, Li X, Thompson D, DeMartino GN. ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome. J Biol Chem 2012; 288:3334-45. [PMID: 23212908 DOI: 10.1074/jbc.m112.424788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of ATP binding by six different ATPase subunits (Rpt1-6) in the cellular assembly and molecular functions of mammalian 26 S proteasome. Four Rpt subunits (Rpt1-4) with ATP binding mutations were incompetent for cellular assembly into 26 S proteasome. In contrast, analogous mutants of Rpt5 and Rpt6 were incorporated normally into 26 S proteasomes in both intact cells and an in vitro assembly assay. Surprisingly, purified 26 S proteasomes containing either mutant Rpt5 or Rpt6 had normal basal ATPase activity and substrate gate opening for hydrolysis of short peptides. However, these mutant 26 S proteasomes were severely defective for ATP-dependent in vitro degradation of ubiquitylated and non-ubiquitylated proteins and did not display substrate-stimulated ATPase and peptidase activities characteristic of normal proteasomes. These results reveal differential roles of ATP binding by various Rpt subunits in proteasome assembly and function. They also indicate that substrate-stimulated ATPase activity and gating depend on the concerted action of a full complement of Rpt subunits competent for ATP binding and that this regulation is essential for normal proteolysis. Thus, protein substrates appear to promote their own degradation by stimulating proteasome functions involved in proteolysis.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
359
|
Matyskiela ME, Martin A. Design principles of a universal protein degradation machine. J Mol Biol 2012; 425:199-213. [PMID: 23147216 DOI: 10.1016/j.jmb.2012.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/26/2012] [Accepted: 11/01/2012] [Indexed: 11/20/2022]
Abstract
The 26S proteasome is a 2.5-MDa, 32-subunit ATP-dependent protease that is responsible for the degradation of ubiquitinated protein targets in all eukaryotic cells. This proteolytic machine consists of a barrel-shaped peptidase capped by a large regulatory particle, which contains a heterohexameric AAA+ unfoldase as well as several structural modules of previously unknown function. Recent electron microscopy (EM) studies have allowed major breakthroughs in understanding the architecture of the regulatory particle, revealing that the additional modules provide a structural framework to position critical, ubiquitin-interacting subunits and thus allow the 26S proteasome to function as a universal degradation machine for a wide variety of protein substrates. The EM studies have also uncovered surprising asymmetries in the spatial arrangement of proteasome subunits, yet the functional significance of these architectural features remains unclear. This review will summarize the recent findings on 26S proteasome structure and discuss the mechanistic implications for substrate binding, deubiquitination, unfolding, and degradation.
Collapse
Affiliation(s)
- Mary E Matyskiela
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
360
|
Margaret Sunitha S, Mercer JA, Spudich JA, Sowdhamini R. Integrative structural modelling of the cardiac thin filament: energetics at the interface and conservation patterns reveal a spotlight on period 2 of tropomyosin. Bioinform Biol Insights 2012; 6:203-23. [PMID: 23071391 PMCID: PMC3468436 DOI: 10.4137/bbi.s9798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiomyopathies are a major health problem, with inherited cardiomyopathies, many of which are caused by mutations in genes encoding sarcomeric proteins, constituting an ever-increasing fraction of cases. To begin to study the mechanisms by which these mutations cause disease, we have employed an integrative modelling approach to study the interactions between tropomyosin and actin. Starting from the existing blocked state model, we identified a specific zone on the actin surface which is highly favourable to support tropomyosin sliding from the blocked/closed states to the open state. We then analysed the predicted actin-tropomyosin interface regions for the three states. Each quasi-repeat of tropomyosin was studied for its interaction strength and evolutionary conservation to focus on smaller surface zones. Finally, we show that the distribution of the known cardiomyopathy mutations of α-tropomyosin is consistent with our model. This analysis provides structural insights into the possible mode of interactions between tropomyosin and actin in the open state for the first time.
Collapse
Affiliation(s)
- S Margaret Sunitha
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | | | | | | |
Collapse
|
361
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
362
|
Rappsilber J. Cross-linking/mass spectrometry as a new field and the proteomics information mountain of tomorrow. Expert Rev Proteomics 2012; 9:485-7. [PMID: 23194264 PMCID: PMC3926187 DOI: 10.1586/epr.12.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The European Proteomics Association (EuPA) 2012 Scientific Congress 'New Horizons and Applications for Proteomics', hosted by the British Society for Proteome Research (BSPR) Glasgow, Scotland, UK, 12 July 2012 Cross-linking/mass spectrometry ended decades of method developments and entered the era of applications at this year's European Proteomics Association meeting. The train has started moving, with successful applications of this tool by multiple pioneering laboratories addressing biological and structural problems. Proteomics, on the other side, sees ever increasing data volumes, leading to questions as to how to store the data mountain publically, use it and convert it into testable hypotheses. The European Proteomics Association meeting has been complementary to the American Society for Mass Spectrometry meeting in many ways, also thanks to its more manageable size and the vision of the organizers in inviting some of Europe's best emerging minds.
Collapse
Affiliation(s)
- Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK.
| |
Collapse
|
363
|
Enchev RI, Scott DC, da Fonseca PCA, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep 2012; 2:616-27. [PMID: 22959436 PMCID: PMC3703508 DOI: 10.1016/j.celrep.2012.08.019] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022] Open
Abstract
Skp1-Cul1-Fbox (SCF) E3 ligases are activated by ligation to the ubiquitin-like protein Nedd8, which is reversed by the deneddylating Cop9 signalosome (CSN). However, CSN also promotes SCF substrate turnover through unknown mechanisms. Through biochemical and electron microscopy analyses, we determined molecular models of CSN complexes with SCF(Skp2/Cks1) and SCF(Fbw7) and found that CSN occludes both SCF functional sites-the catalytic Rbx1-Cul1 C-terminal domain and the substrate receptor. Indeed, CSN binding prevents SCF interactions with E2 enzymes and a ubiquitination substrate, and it inhibits SCF-catalyzed ubiquitin chain formation independent of deneddylation. Importantly, CSN prevents neddylation of the bound cullin, unless binding of a ubiquitination substrate triggers SCF dissociation and neddylation. Taken together, the results provide a model for how reciprocal regulation sensitizes CSN to the SCF assembly state and inhibits a catalytically competent SCF until a ubiquitination substrate drives its own degradation by displacing CSN, thereby promoting cullin neddylation and substrate ubiquitination.
Collapse
Affiliation(s)
- Radoslav I. Enchev
- ETH-Zurich, Institute of Biochemistry, Department of Biology, Schafmattstr. 18, CH-8093 Zurich, Switzerland
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Daniel C. Scott
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Paula C. A. da Fonseca
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Anne Schreiber
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Julie K. Monda
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brenda A. Schulman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthias Peter
- ETH-Zurich, Institute of Biochemistry, Department of Biology, Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | - Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
364
|
Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmström L, Aebersold R. Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry. Science 2012; 337:1348-52. [PMID: 22984071 DOI: 10.1126/science.1221483] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franz Herzog
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Abstract
The 26S proteasome operates at the executive end of the ubiquitin-proteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.
Collapse
|
366
|
Lander GC, Saibil HR, Nogales E. Go hybrid: EM, crystallography, and beyond. Curr Opin Struct Biol 2012; 22:627-35. [PMID: 22835744 DOI: 10.1016/j.sbi.2012.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/21/2012] [Accepted: 07/09/2012] [Indexed: 01/30/2023]
Abstract
A mechanistic understanding of the molecular transactions that govern cellular function requires knowledge of the dynamic organization of the macromolecular machines involved in these processes. Structural biologists employ a variety of biophysical methods to study large macromolecular complexes, but no single technique is likely to provide a complete description of the structure-function relationship of all the constituent components. Since structural studies generally only provide snapshots of these dynamic machines as they accomplish their molecular functions, combining data from many methodologies is crucial to our understanding of molecular function.
Collapse
Affiliation(s)
- Gabriel C Lander
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
367
|
Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P. Studying protein complexes by the yeast two-hybrid system. Methods 2012; 58:392-9. [PMID: 22841565 DOI: 10.1016/j.ymeth.2012.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 01/13/2023] Open
Abstract
Protein complexes are typically analyzed by affinity purification and subsequent mass spectrometric analysis. However, in most cases the structure and topology of the complexes remains elusive from such studies. Here we investigate how the yeast two-hybrid system can be used to analyze direct interactions among proteins in a complex. First we tested all pairwise interactions among the seven proteins of Escherichia coli DNA polymerase III as well as an uncharacterized complex that includes MntR and PerR. Four and seven interactions were identified in these two complexes, respectively. In addition, we review Y2H data for three other complexes of known structure which serve as "gold-standards", namely Varicella Zoster Virus (VZV) ribonucleotide reductase (RNR), the yeast proteasome, and bacteriophage lambda. Finally, we review an Y2H analysis of the human spliceosome which may serve as an example for a dynamic mega-complex.
Collapse
|
368
|
Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508-23. [PMID: 22820888 DOI: 10.1038/nrm3394] [Citation(s) in RCA: 520] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
369
|
False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nat Methods 2012; 9:901-3. [DOI: 10.1038/nmeth.2103] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/23/2012] [Indexed: 11/09/2022]
|
370
|
Abstract
The PCI fold is based on a stack of α-helices topped with a winged-helix domain and is found in a range of proteins that form central parts of large complexes such as the proteasome lid, the COP9 signalosome, elongation factor eIF3, and the TREX-2 complex. Recent structural determinations have given intriguing insight into how these folds function both to facilitate the generation of larger proteinaceous assembles and also to interact functionally with nucleic acids.
Collapse
Affiliation(s)
- Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | | |
Collapse
|
371
|
Dreyfus T, Doye V, Cazals F. Assessing the reconstruction of macromolecular assemblies with toleranced models. Proteins 2012; 80:2125-36. [DOI: 10.1002/prot.24092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 11/08/2022]
|
372
|
Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Ludtke S, Chiu W, Hartl FU, Aebersold R, Frydman J. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 2012; 20:814-25. [PMID: 22503819 PMCID: PMC3350567 DOI: 10.1016/j.str.2012.03.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 01/27/2023]
Abstract
TRiC/CCT is a highly conserved and essential chaperonin that uses ATP cycling to facilitate folding of approximately 10% of the eukaryotic proteome. This 1 MDa hetero-oligomeric complex consists of two stacked rings of eight paralogous subunits each. Previously proposed TRiC models differ substantially in their subunit arrangements and ring register. Here, we integrate chemical crosslinking, mass spectrometry, and combinatorial modeling to reveal the definitive subunit arrangement of TRiC. In vivo disulfide mapping provided additional validation for the crosslinking-derived arrangement as the definitive TRiC topology. This subunit arrangement allowed the refinement of a structural model using existing X-ray diffraction data. The structure described here explains all available crosslink experiments, provides a rationale for previously unexplained structural features, and reveals a surprising asymmetry of charges within the chaperonin folding chamber.
Collapse
Affiliation(s)
- Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Leonie Mönkemeyer
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Thomas Walzthoeni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich 8057 Zurich, Switzerland
| | - Bryan Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Yao Cong
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - Boxue Ma
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - Steve Ludtke
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
373
|
Kao A, Randall A, Yang Y, Patel VR, Kandur W, Guan S, Rychnovsky SD, Baldi P, Huang L. Mapping the structural topology of the yeast 19S proteasomal regulatory particle using chemical cross-linking and probabilistic modeling. Mol Cell Proteomics 2012; 11:1566-77. [PMID: 22550050 DOI: 10.1074/mcp.m112.018374] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structural characterization of proteasome complexes is an essential step toward understanding the ubiquitin-proteasome system. Currently, high resolution structures are not available for the 26S proteasome holocomplex as well as its subcomplex, the 19S regulatory particle (RP). Here we have employed a novel integrated strategy combining chemical cross-linking with multistage tandem mass spectrometry to define the proximity of subunits within the yeast 19S RP to elucidate its topology. This has resulted in the identification of 174 cross-linked peptides of the yeast 19S RP, representing 43 unique lysine-lysine linkages within 24 nonredundant pair-wise subunit interactions. To map the spatial organization of the 19S RP, we have developed and utilized a rigorous probabilistic framework to derive maximum likelihood (ML) topologies based on cross-linked peptides determined from our analysis. Probabilistic modeling of the yeast 19S AAA-ATPase ring (i.e., Rpt1-6) has produced an ML topology that is in excellent agreement with known topologies of its orthologs. In addition, similar analysis was carried out on the 19S lid subcomplex, whose predicted ML topology corroborates recently reported electron microscopy studies. Together, we have demonstrated the effectiveness and potential of probabilistic modeling for unraveling topologies of protein complexes using cross-linking data. This report describes the first study of the 19S RP topology using a new integrated strategy combining chemical cross-linking, mass spectrometry, and probabilistic modeling. Our results have provided a solid foundation to advance our understanding of the 19S RP architecture at peptide level resolution. Furthermore, our methodology developed here is a valuable proteomic tool that can be generalized for elucidating the structures of protein complexes.
Collapse
Affiliation(s)
- Athit Kao
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Lewitzky M, Simister PC, Feller SM. Beyond 'furballs' and 'dumpling soups' - towards a molecular architecture of signaling complexes and networks. FEBS Lett 2012; 586:2740-50. [PMID: 22710161 DOI: 10.1016/j.febslet.2012.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
The molecular architectures of intracellular signaling networks are largely unknown. Understanding their design principles and mechanisms of processing information is essential to grasp the molecular basis of virtually all biological processes. This is particularly challenging for human pathologies like cancers, as essentially each tumor is a unique disease with vastly deranged signaling networks. However, even in normal cells we know almost nothing. A few 'signalosomes', like the COP9 and the TCR signaling complexes have been described, but detailed structural information on their architectures is largely lacking. Similarly, many growth factor receptors, for example EGF receptor, insulin receptor and c-Met, signal via huge protein complexes built on large platform proteins (Gab, Irs/Dok, p130Cas[BCAR1], Frs families etc.), which are structurally not well understood. Subsequent higher order processing events remain even more enigmatic. We discuss here methods that can be employed to study signaling architectures, and the importance of too often neglected features like macromolecular crowding, intrinsic disorder in proteins and the sophisticated cellular infrastructures, which need to be carefully considered in order to develop a more mature understanding of cellular signal processing.
Collapse
Affiliation(s)
- Marc Lewitzky
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom.
| | | | | |
Collapse
|
375
|
Erales J, Hoyt MA, Troll F, Coffino P. Functional asymmetries of proteasome translocase pore. J Biol Chem 2012; 287:18535-43. [PMID: 22493437 DOI: 10.1074/jbc.m112.357327] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.
Collapse
Affiliation(s)
- Jenny Erales
- Department of Microbiology and Immunology, University of California, San Francisco, California 94127, USA
| | | | | | | |
Collapse
|
376
|
Abstract
Molecular structures can serve to either validate or rule out existing hypotheses, and they can also spawn new, deeper proposals about biochemical mechanism. In this issue of Structure, Schönegge et al. use single-particle cryo-electron microscopy and flexible docking to examine the function of human tripeptidyl peptidase II, including the role of conformational changes in enzyme activation.
Collapse
Affiliation(s)
- Robert M Glaeser
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
377
|
Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 2012; 109:E1001-10. [PMID: 22460800 DOI: 10.1073/pnas.1116538109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1-Rpt2-Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3-Rpt1-Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.
Collapse
|
378
|
|
379
|
Russel D, Lasker K, Webb B, Velázquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 2012; 10:e1001244. [PMID: 22272186 PMCID: PMC3260315 DOI: 10.1371/journal.pbio.1001244] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A set of software tools for building and distributing models of macromolecular assemblies uses an integrative structure modeling approach, which casts the building of models as a computational optimization problem where information is encoded into a scoring function used to evaluate candidate models.
Collapse
Affiliation(s)
- Daniel Russel
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
| | - Keren Lasker
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
- Raymond and Beverly Sackler Faculty of Exact Sciences, Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Ben Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
| | - Javier Velázquez-Muriel
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
| | - Elina Tjioe
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
| | - Bret Peterson
- Google, Mountain View, California, United States of America
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
380
|
Stengel F, Aebersold R, Robinson CV. Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 2011; 11:R111.014027. [PMID: 22180098 PMCID: PMC3316738 DOI: 10.1074/mcp.r111.014027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein assemblies are critical for cellular function and understanding their physical organization is the key aim of structural biology. However, applying conventional structural biology approaches is challenging for transient, dynamic, or polydisperse assemblies. There is therefore a growing demand for hybrid technologies that are able to complement classical structural biology methods and thereby broaden our arsenal for the study of these important complexes. Exciting new developments in the field of mass spectrometry and proteomics have added a new dimension to the study of protein-protein interactions and protein complex architecture. In this review, we focus on how complementary mass spectrometry-based techniques can greatly facilitate structural understanding of protein assemblies.
Collapse
Affiliation(s)
- Florian Stengel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA United Kingdom
| | | | | |
Collapse
|