351
|
Dudek J, Rehling P, van der Laan M. Mitochondrial protein import: common principles and physiological networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:274-85. [PMID: 22683763 DOI: 10.1016/j.bbamcr.2012.05.028] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 11/28/2022]
Abstract
Most mitochondrial proteins are encoded in the nucleus. They are synthesized as precursor forms in the cytosol and must be imported into mitochondria with the help of different protein translocases. Distinct import signals within precursors direct each protein to the mitochondrial surface and subsequently onto specific transport routes to its final destination within these organelles. In this review we highlight common principles of mitochondrial protein import and address different mechanisms of protein integration into mitochondrial membranes. Over the last years it has become clear that mitochondrial protein translocases are not independently operating units, but in fact closely cooperate with each other. We discuss recent studies that indicate how the pathways for mitochondrial protein biogenesis are embedded into a functional network of various other physiological processes, such as energy metabolism, signal transduction, and maintenance of mitochondrial morphology. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jan Dudek
- Abteilung Biochemie II, Universität Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
352
|
Abstract
Mitochondria perform diverse yet interconnected functions, producing ATP and many biosynthetic intermediates while also contributing to cellular stress responses such as autophagy and apoptosis. Mitochondria form a dynamic, interconnected network that is intimately integrated with other cellular compartments. In addition, mitochondrial functions extend beyond the boundaries of the cell and influence an organism's physiology by regulating communication between cells and tissues. It is therefore not surprising that mitochondrial dysfunction has emerged as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders. We provide a current view of how mitochondrial functions impinge on health and disease.
Collapse
Affiliation(s)
- Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
353
|
Stojanovski D, Bragoszewski P, Chacinska A. The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1142-50. [PMID: 22579494 DOI: 10.1016/j.bbamcr.2012.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
Many newly synthesized proteins obtain disulfide bonds in the bacterial periplasm, the endoplasmic reticulum (ER) and the mitochondrial intermembrane space. The acquisition of disulfide bonds is critical for the folding, assembly and activity of these proteins. Spontaneous oxidation of thiol groups is inefficient in vivo, therefore cells have developed machineries that catalyse the oxidation of substrate proteins. The identification of the machinery that mediates this process in the intermembrane space of mitochondria, known as MIA (mitochondrial intermembrane space assembly), provided a unique mechanism of protein transport. The MIA machinery introduces disulfide bonds into incoming intermembrane space precursors and thus tightly couples the process of precursor translocation to precursor oxidation. We discuss our current understanding of the MIA pathway and the mechanisms that oversee thiol-exchange reactions in mitochondria.
Collapse
Affiliation(s)
- Diana Stojanovski
- La Trobe Institute for Molecular Sciences, 3086 Melbourne, Australia
| | | | | |
Collapse
|
354
|
Körner C, Barrera M, Dukanovic J, Eydt K, Harner M, Rabl R, Vogel F, Rapaport D, Neupert W, Reichert AS. The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol Biol Cell 2012; 23:2143-55. [PMID: 22496419 PMCID: PMC3364178 DOI: 10.1091/mbc.e11-10-0831] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms determining mitochondrial architecture are largely unclear. The C-terminal domain of Fcj1 and the TOB complex are shown to interact. Both are important for determining cristae morphology. The results explain how crista junctions are positioned at the outer membrane, assigning novel functions to both Fcj1 and the TOB complex. Crista junctions (CJs) are tubular invaginations of the inner membrane of mitochondria that connect the inner boundary with the cristae membrane. These architectural elements are critical for mitochondrial function. The yeast inner membrane protein Fcj1, called mitofilin in mammals, was reported to be preferentially located at CJs and crucial for their formation. Here we investigate the functional roles of individual domains of Fcj1. The most conserved part of Fcj1, the C-terminal domain, is essential for Fcj1 function. In its absence, formation of CJ is strongly impaired and irregular, and stacked cristae are present. This domain interacts with full-length Fcj1, suggesting a role in oligomer formation. It also interacts with Tob55 of the translocase of outer membrane β-barrel proteins (TOB)/sorting and assembly machinery (SAM) complex, which is required for the insertion of β-barrel proteins into the outer membrane. The association of the TOB/SAM complex with contact sites depends on the presence of Fcj1. The biogenesis of β-barrel proteins is not significantly affected in the absence of Fcj1. However, down-regulation of the TOB/SAM complex leads to altered cristae morphology and a moderate reduction in the number of CJs. We propose that the C-terminal domain of Fcj1 is critical for the interaction of Fcj1 with the TOB/SAM complex and thereby for stabilizing CJs in close proximity to the outer membrane. These results assign novel functions to both the C-terminal domain of Fcj1 and the TOB/SAM complex.
Collapse
Affiliation(s)
- Christian Körner
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität, and Center for Integrated Protein Science München, 81377 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Nguyen TT, Lewandowska A, Choi JY, Markgraf DF, Junker M, Bilgin M, Ejsing CS, Voelker DR, Rapoport TA, Shaw JM. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 2012; 13:880-90. [PMID: 22409400 PMCID: PMC3648210 DOI: 10.1111/j.1600-0854.2012.01352.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/27/2022]
Abstract
In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol 2012; 22:185-92. [DOI: 10.1016/j.tcb.2012.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/18/2022]
|
357
|
Park JS, Neiman AM. VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae. J Cell Sci 2012; 125:3004-11. [PMID: 22442115 DOI: 10.1242/jcs.105114] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hereditary disorders chorea acanthocytosis and Cohen syndrome are caused by mutations in different members of a family of genes that are orthologs of yeast VPS13. In vegetatively growing yeast, VPS13 is involved in the delivery of proteins to the vacuole. During sporulation, VPS13 is important for formation of the prospore membrane that encapsulates the daughter nuclei to give rise to spores. We report that VPS13 is required for multiple aspects of prospore membrane morphogenesis. VPS13 (1) promotes expansion of the prospore membrane through regulation of phosphatidylinositol phosphates, which in turn activate the phospholipase D, Spo14; (2) is required for a late step in cytokinesis that gives rise to spores; and (3) regulates a membrane-bending activity that generates intralumenal vesicles. These results demonstrate that Vps13 plays a broader role in membrane biology than previously known, which could have important implications for the functions of VPS13 orthologs in humans.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
358
|
The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion. Mol Cell Biol 2012; 32:1762-75. [PMID: 22431520 DOI: 10.1128/mcb.00050-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Nrd1-Nab3 pathway directs the termination and processing of short RNA polymerase II transcripts. Despite the potential for Nrd1-Nab3 to affect the transcription of both coding and noncoding RNAs, little is known about how the Nrd1-Nab3 pathway interacts with other pathways in the cell. Here we present the results of a high-throughput synthetic lethality screen for genes that interact with NRD1 and show roles for Nrd1 in the regulation of mitochondrial abundance and cell size. We also provide genetic evidence of interactions between the Nrd1-Nab3 and Ras/protein kinase A (PKA) pathways. Whereas the Ras pathway promotes the transcription of genes involved in growth and glycolysis, the Nrd1-Nab3 pathway appears to have a novel role in the rapid suppression of some genes when cells are shifted to poor growth conditions. We report the identification of new mRNA targets of the Nrd1-Nab3 pathway that are rapidly repressed in response to glucose depletion. Glucose depletion also leads to the dephosphorylation of Nrd1 and the formation of novel nuclear speckles that contain Nrd1 and Nab3. Taken together, these results indicate a role for Nrd1-Nab3 in regulating the cellular response to nutrient availability.
Collapse
|
359
|
Tamura Y, Onguka O, Hobbs AEA, Jensen RE, Iijima M, Claypool SM, Sesaki H. Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking. J Biol Chem 2012; 287:15205-18. [PMID: 22403410 DOI: 10.1074/jbc.m111.338665] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.
Collapse
Affiliation(s)
- Yasushi Tamura
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
360
|
Becker T, Böttinger L, Pfanner N. Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci 2012; 37:85-91. [PMID: 22178138 DOI: 10.1016/j.tibs.2011.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 01/24/2023]
Abstract
Mitochondria, the powerhouses of the cell, import most of their proteins from the cytosol. It was originally assumed that mitochondria imported precursor proteins via a general pathway but recent studies have revealed a remarkable variety of import pathways and mechanisms. Currently, five different protein import pathways can be distinguished. However, the import machineries cooperate with each other and are connected to other systems that function in the respiratory chain, mitochondrial membrane organization, protein quality control and endoplasmic reticulum-mitochondria junctions. In this Opinion, we propose that mitochondrial protein import should not be seen as an independent task of the organelle and that a network of cooperating machineries is responsible for major mitochondrial functions.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
361
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
362
|
Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol Cell Biol 2012; 32:1173-88. [PMID: 22252321 DOI: 10.1128/mcb.06388-11] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria possess an outer membrane (OMM) and an inner membrane (IMM), which folds into invaginations called cristae. Lipid composition, membrane potential, and proteins in the IMM influence organization of cristae. Here we show an essential role of the OMM protein Sam50 in the maintenance of the structure of cristae. Sam50 is a part of the sorting and assembly machinery (SAM) necessary for the assembly of β-barrel proteins in the OMM. We provide evidence that the SAM components exist in a large protein complex together with the IMM proteins mitofilin and CHCHD3, which we term the mitochondrial intermembrane space bridging (MIB) complex. Interactions between OMM and IMM components of the MIB complex are crucial for the preservation of cristae. After destabilization of the MIB complex, we observed deficiency in the assembly of respiratory chain complexes. Long-term depletion of Sam50 influences the amounts of proteins from all large respiratory complexes that contain mitochondrially encoded subunits, pointing to a connection between the structural integrity of cristae, assembly of respiratory complexes, and/or the maintenance of mitochondrial DNA (mtDNA).
Collapse
|
363
|
Wilkens V, Kohl W, Busch K. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J Cell Sci 2012; 126:103-16. [DOI: 10.1242/jcs.108852] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are involved in cellular energy supply, signaling and apoptosis. Their ability to fuse and divide provides functional and morphological flexibility and is a key feature in mitochondrial quality maintenance. To study the impact of mitochondrial fusion/fission on the reorganization of inner membrane proteins, OXPHOS complexes in mitochondria of different HeLa cells were tagged with fluorescent proteins (GFP and RFP-HA, respectively), and cells were fused by PEG treatment. Redistribution of the tagged OXPHOS complexes was then followed by means of immuno electron microscopy, two color superresolution fluorescence microscopy and single molecule tracking. In contrast to outer membrane and matrix proteins, which mix fast and homogeneously upon mitochondrial fusion, the mixing of inner membrane proteins was decelerated. Our data suggest that in principle (i) with respect to their composition cristae are preserved during fusion of mitochondria and (ii) cristae with mixed OXPHOS complexes are only slowly and successively formed by restricted diffusion of inner membrane proteins into existing cristae. The resulting transitory mosaic appearance of the inner mitochondrial membrane in terms of composition illuminates mitochondrial heterogeneity and potentially is linked to local differences in function and membrane potential.
Collapse
|
364
|
Abstract
Depending on the organism, mitochondria consist approximately of 500-1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which-together with many nuclear-encoded proteins-form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.
Collapse
|
365
|
Chenette EJ. Mapping the mitochondria. Nat Cell Biol 2011. [DOI: 10.1038/ncb2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
366
|
Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 2011; 23:247-57. [PMID: 22114354 PMCID: PMC3258170 DOI: 10.1091/mbc.e11-09-0774] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MINOS1/Mio10, a conserved mitochondrial protein, is required for mitochondrial inner membrane organization and cristae morphology. MINOS1/Mio10 is a novel constituent of the mitofilin/Fcj1 complex of the inner membrane, linking the morphology phenotype of the mutant to the activity of the mitochondrial inner membrane organizing complex. The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.
Collapse
Affiliation(s)
- Alwaleed K Alkhaja
- Department of Biochemistry II, University of Göttingen Medical School, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Short B. Locating a mitochondrial scaffold on the map. J Biophys Biochem Cytol 2011. [PMCID: PMC3198164 DOI: 10.1083/jcb.1952if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A high-density genetic interaction map reveals a complex that organizes the mitochondrial inner membrane.
Collapse
|