351
|
Palacios EM, Fernandez-Espejo D, Junque C, Sanchez-Carrion R, Roig T, Tormos JM, Bargallo N, Vendrell P. Diffusion tensor imaging differences relate to memory deficits in diffuse traumatic brain injury. BMC Neurol 2011; 11:24. [PMID: 21345223 PMCID: PMC3050687 DOI: 10.1186/1471-2377-11-24] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/23/2011] [Indexed: 11/25/2022] Open
Abstract
Background Memory is one of the most impaired functions after traumatic brain injury (TBI). We used diffusion tensor imaging (DTI) to determine the structural basis of memory deficit. We correlated fractional anisotropy (FA) of the fasciculi connecting the main cerebral regions that are involved in declarative and working memory functions. Methods Fifteen patients with severe and diffuse TBI and sixteen healthy controls matched by age and years of education were scanned. The neuropsychological assessment included: Letter-number sequencing test (LNS), 2-back task, digit span (forwards and backwards) and the Rivermead profilet. DTI was analyzed by a tract-based spatial statics (TBSS) approach. Results Whole brain DTI analysis showed a global decrease in FA values that correlated with the 2-back d-prime index, but not with the Rivermead profile. ROI analysis revealed positive correlations between working memory performance assessed by 2-back d-prime and superior longitudinal fasciculi, corpus callosum, arcuate fasciculi and fornix. Declarative memory assessed by the Rivermead profile scores correlated with the fornix and the corpus callosum. Conclusions Diffuse TBI is associated with a general decrease of white matter integrity. Nevertheless deficits in specific memory domains are related to different patterns of white matter damage.
Collapse
Affiliation(s)
- Eva M Palacios
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Andriessen TMJC, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2011; 14:2381-92. [PMID: 20738443 PMCID: PMC3823156 DOI: 10.1111/j.1582-4934.2010.01164.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13-15) and moderate (GCS 9-12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mechanisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI.
Collapse
|
353
|
Brain cooling-stimulated angiogenesis and neurogenesis attenuated traumatic brain injury in rats. ACTA ACUST UNITED AC 2011; 69:1467-72. [PMID: 21150525 DOI: 10.1097/ta.0b013e3181f31b06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although brain cooling has been reported to be effective in improving the outcome after traumatic brain injury (TBI) in rats, the mechanisms of brain cooling-induced neuroprotective actions remain unclear. This study was to test whether angiogenesis and neurogenesis attenuating TBI could be brain cooling stimulated. METHODS Anesthetized rats, immediately after the onset of TBI, were divided into two groups and given the brain cooling (infusing 5 mL of 4°C saline via the external jugular vein) or no brain cooling (infusing 5 mL of 37°C saline via the external jugular vein). RESULTS Brain cooling without interference with the core temperature in rats significantly attenuated TBI-induced cerebral infarction (90 mm³ vs. 250 mm³) and motor (61 degrees vs. 57 degrees maximal angle) and proprioceptive (14% vs. 42% maximal possible effect) function deficits, significantly reduced TBI-induced neuronal (24 vs. 62 neuronal-specific nuclear [NeuN]-TUNEL double-positive cells) and glial (5 vs. 35 GFAP-TUNEL double-positive cells) apoptosis (increased TUNEL-positive and caspase-3-positive cells), neuronal loss (102 vs. 66 NeuN-positive cells), and gliosis (40 vs. 66 GFAP-positive cells; 66 vs. 89 Iba1-positive cells), and significantly promoted angiogenesis (5-bromodeoxyuridine [BrdU]/endothelial cells vs. 1-BrdU/endothelial cell; 58 vs. 31 vascular endothelial growth factor-positive cells), and neurogenesis (33 vs. 14 BrdU/NeuN positive cells). CONCLUSIONS Brain cooling-stimulated angiogenesis and neurogenesis attenuated a fluid percussion TBI in rats.
Collapse
|
354
|
Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. ACTA ACUST UNITED AC 2011; 69:1610-8. [PMID: 21150538 DOI: 10.1097/ta.0b013e3181f5a9ed] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffuse traumatic axonal injury (dTAI) is a significant pathologic feature of traumatic brain injury and is associated with substantial mortality and morbidity. It is still a challenge for clinicians to make an early diagnosis of dTAI and generate accurate prognosis and direct therapeutic decisions because most patients rapidly progress to coma after trauma and because specific neurologic symptoms and focal lesions detectable with current routine imaging techniques are absent. To address these issues, many investigations have sought to identify biomarkers of dTAI. METHODS This article is a review of the pertinent medical literature. RESULTS From the perspective of the pathophysiology of dTAI, we reviewed several biomarkers that are associated with structural damage and biochemical cascades in the secondary injury or repair response to traumatic brain injury. Although some biomarkers are not specific to dTAI, they are nevertheless useful in elucidating its pathogenesis, making early diagnosis possible, predicting outcomes, and providing candidate targets for novel therapeutic strategies. CONCLUSIONS The availability of biomarker data, clinical case histories, and radiologic information can improve our current ability to diagnose and monitor pathogenic conditions and predict outcomes in patients with dTAI.
Collapse
|
355
|
Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp 2011; 32:1825-35. [PMID: 21259381 DOI: 10.1002/hbm.21151] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/13/2010] [Accepted: 07/29/2010] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Research suggests that the majority of mild traumatic brain injury (mTBI) patients exhibit both cognitive and emotional dysfunction within the first weeks of injury, followed by symptom resolution 3-6 months postinjury. The neuronal correlates of said dysfunction are difficult to detect with standard clinical neuroimaging, complicating differential diagnosis and early identification of patients who may not recover. This study examined whether resting state functional magnetic resonance imaging (fMRI) provides objective markers of injury and predicts cognitive, emotional, and somatic complaints in mTBI patients semiacutely (<3 weeks postinjury) and in late recovery (3-5 month) phases. METHODS Twenty-seven semiacute mTBI patients and 26 gender, age, and education-matched controls were studied. Fifteen of 27 patients returned for a follow-up visit 3-5 months postinjury. The main dependent variables were spontaneous fluctuations (temporal correlation) in the default-mode (DMN) and fronto-parietal task-related networks as measured by fMRI. RESULTS Significant differences in self-reported cognitive, emotional, and somatic complaints were observed (all P < 0.05), despite normal clinical (T1 and T2) imaging and neuropsychological testing results. Mild TBI patients demonstrated decreased functional connectivity within the DMN and hyper-connectivity between the DMN and lateral prefrontal cortex. Measures of functional connectivity exhibited high levels of sensitivity and specificity for patient classification and predicted cognitive complaints in the semi-acute injury stage. However, no changes in functional connectivity were observed across a 4-month recovery period. CONCLUSIONS Abnormal connectivity between the DMN and frontal cortex may provide objective biomarkers of mTBI and underlie cognitive impairment.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network, Albuquerque, New Mexico 87106, USA.
| | | | | | | | | |
Collapse
|
356
|
Does Neurologic Examination During Inpatient Rehabilitation Help Predict Global Outcome After Nonpenetrating Traumatic Brain Injury? PM R 2011; 3:6-12. [DOI: 10.1016/j.pmrj.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/31/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022]
|
357
|
Abstract
OBJETIVO: Identificar fatores relacionados à amnésia pós-traumática de longa duração. MÉTODO: Estudo prospectivo, longitudinal, com 187 vítimas de trauma cranioencefálico contuso, idade >14 anos, atendidos em hospital de referência para trauma. As variáveis independentes foram: idade, sexo, gravidade do trauma cranioencefálico, local e tipo de lesão, número de lesões encefálicas e uso de medicação com atividade em sistema nervoso central ou corticoides. RESULTADO: O modelo de regressão logística múltipla ajustado pela variável área de lesão (intra/extra axial) evidenciou: Escala de Coma de Glasgow inicial <12 (OR=20,17); Maximum Abbreviated Injury Scale/cabeça >3 (OR=2,80) e uso de Fenitoína (OR=2,60), Midazolan (OR=2,83) ou ambas as drogas (OR=3,83). CONCLUSÃO: O uso do Midazolan e da Fenitoína, além da gravidade do trauma cranioencefálico, destacaram-se como fatores relacionados à amnésia de longa duração.
Collapse
|
358
|
Koh SE. Animal Models of Traumatic Brain Injury. BRAIN & NEUROREHABILITATION 2011. [DOI: 10.12786/bn.2011.4.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seong-Eun Koh
- Department of Rehabilitation Medicine, Konkuk University Medical Center & School of Medicine, Konkuk University, Korea
| |
Collapse
|
359
|
Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, Patel MC, Counsell SJ, Sharp DJ. White matter damage and cognitive impairment after traumatic brain injury. Brain 2010; 134:449-63. [PMID: 21193486 PMCID: PMC3030764 DOI: 10.1093/brain/awq347] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury and white matter damage is likely to be complex. We applied a flexible technique—tract-based spatial statistics—to explore whether damage to specific white matter tracts is associated with particular patterns of cognitive impairment. The commonly affected domains of memory, executive function and information processing speed were investigated in 28 patients in the post-acute/chronic phase following traumatic brain injury and in 26 age-matched controls. Analysis of fractional anisotropy and diffusivity maps revealed widespread differences in white matter integrity between the groups. Patients showed large areas of reduced fractional anisotropy, as well as increased mean and axial diffusivities, compared with controls, despite the small amounts of cortical and white matter damage visible on standard imaging. A stratified analysis based on the presence or absence of microbleeds (a marker of diffuse axonal injury) revealed diffusion tensor imaging to be more sensitive than gradient-echo imaging to white matter damage. The location of white matter abnormality predicted cognitive function to some extent. The structure of the fornices was correlated with associative learning and memory across both patient and control groups, whilst the structure of frontal lobe connections showed relationships with executive function that differed in the two groups. These results highlight the complexity of the relationships between white matter structure and cognition. Although widespread and, sometimes, chronic abnormalities of white matter are identifiable following traumatic brain injury, the impact of these changes on cognitive function is likely to depend on damage to key pathways that link nodes in the distributed brain networks supporting high-level cognitive functions.
Collapse
|
360
|
Palmer HS, Garzon B, Xu J, Berntsen EM, Skandsen T, Håberg AK. Reduced fractional anisotropy does not change the shape of the hemodynamic response in survivors of severe traumatic brain injury. J Neurotrauma 2010; 27:853-62. [PMID: 20199173 DOI: 10.1089/neu.2009.1225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hemodynamic response (HDR) function is the basis for standard functional magnetic resonance imaging (fMRI) analysis. HDR is influenced by white matter inflammation. Traumatic brain injury (TBI) is frequently accompanied by diffuse white matter injury, but the effect of this on the HDR has not been investigated. The aims of the present study were to describe the HDR in visual cortex and examine its relationship with the microstructure of the optic radiation in severe TBI survivors and controls. Ten severe TBI survivors without visual impairments, but with known diffuse axonal injury, and 9 matched controls underwent diffusion tensor imaging (DTI) and fMRI. From the fMRI time series obtained during brief randomized visual stimuli, blood oxygenation level-dependent (BOLD) signal changes for each subject were estimated in V1, and group HDR curves were produced. Standard between-group analysis of BOLD activation in V1 + V2 was performed. For each individual the optic radiations were identified and fractional anisotropy (FA) plus mean apparent diffusion coefficient (ADC(mean)) values for these tracts were calculated. Group HDR curves from the visual cortex were fully transposable between TBI survivors and controls, despite a significant reduction in FA in the optic radiation in TBI survivors. A significant correlation between BOLD signal in the visual cortex and FA values in the optical tract was present in controls, but not in TBI survivors. Between-group comparisons showed that TBI survivors had increased areas of activation in V1 and V2. The HDR appears to be intact in traumatic white matter damage, supporting the validity of using standard fMRI methodology to study neuroplasticity in TBI.
Collapse
Affiliation(s)
- Helen S Palmer
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
361
|
|
362
|
Warner MA, Marquez de la Plata C, Spence J, Wang JY, Harper C, Moore C, Devous M, Diaz-Arrastia R. Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J Neurotrauma 2010; 27:2121-30. [PMID: 20874032 DOI: 10.1089/neu.2010.1429] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diffuse traumatic axonal injury (TAI) is a type of traumatic brain injury (TBI) characterized predominantly by white matter damage. While TAI is associated with cerebral atrophy, the relationship between gray matter volumes and TAI of afferent or efferent axonal pathways remains unknown. Moreover, it is unclear if deficits in cognition are associated with post-traumatic brain volumes in particular regions. The goal of this study was to determine the relationship between markers of TAI and volumes of cortical and subcortical structures, while also assessing the relationship between cognitive outcomes and regional brain volumes. High-resolution magnetic resonance imaging scans were performed in 24 patients with TAI within 1 week of injury and were repeated 8 months later. Diffusion tensor imaging (DTI) tractography was used to reconstruct prominent white matter tracts and calculate their fractional anisotropy (FA) and mean diffusivity (MD) values. Regional brain volumes were computed using semi-automated morphometric analysis. Pearson's correlation coefficients were used to assess associations between brain volumes, white matter integrity (i.e., FA and MD), and neuropsychological outcomes. Post-traumatic volumes of many gray matter structures were associated with chronic damage to related white matter tracts, and less strongly associated with measures of white matter integrity in the acute scans. For example, left and right hippocampal volumes correlated with FA in the fornix body (r = 0.600, p = 0.001; r = 0.714, p < 0.001, respectively). In addition, regional brain volumes were associated with deficits in corresponding neuropsychological domains. Our results suggest that TAI may be a primary mechanism of post-traumatic atrophy, and provide support for regional morphometry as a biomarker for cognitive outcome after injury.
Collapse
Affiliation(s)
- Matthew A Warner
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9036, USA
| | | | | | | | | | | | | | | |
Collapse
|
363
|
Arciniegas DB, Frey KL, Newman J, Wortzel HS. Evaluation and Management of Posttraumatic Cognitive Impairments. Psychiatr Ann 2010; 40:540-552. [PMID: 21270968 DOI: 10.3928/00485713-20101022-05] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychiatrists are increasingly called upon to care for individuals with cognitive, emotional, and behavioral disturbances after TBI, especially in settings serving military service personnel and Veterans. In both the early and late post-injury periods, cognitive impairments contribute to disability among persons with TBI and are potentially substantial sources of suffering for persons with TBI and their families. In this article, the differential diagnosis, evaluation, and management of posttraumatic cognitive complaints is reviewed. The importance of pre-treatment evaluation as well as consideration of non-cognitive contributors to cognitive problems and functional limitations is emphasized first. The course of recovery after TBI, framed as a progression through posttraumatic encephalopathy, is reviewed next and used to anchor the evaluation and treatment of posttraumatic cognitive impairments in relation to injury severity as well as time post-injury. Finally, pharmacologic and rehabilitative interventions that may facilitate cognitive and functional recovery at each stage of posttraumatic encephalopathy are presented.
Collapse
Affiliation(s)
- David B Arciniegas
- Neurobehavioral Disorders Program, Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO
| | | | | | | |
Collapse
|
364
|
Strangman GE, O'Neil-Pirozzi TM, Supelana C, Goldstein R, Katz DI, Glenn MB. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Front Hum Neurosci 2010; 4:182. [PMID: 21048895 PMCID: PMC2967347 DOI: 10.3389/fnhum.2010.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/07/2010] [Indexed: 01/28/2023] Open
Abstract
Cognitive deficits following traumatic brain injury (TBI) commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS). Primary outcome measures (HVLT, RBMT) were collected at the time of the MRI scan, immediately following therapy, and again at 1-month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores). We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.
Collapse
Affiliation(s)
- Gary E Strangman
- Department of Psychiatry, Harvard Medical School Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
365
|
Wu TC, Wilde EA, Bigler ED, Li X, Merkley TL, Yallampalli R, McCauley SR, Schnelle KP, Vasquez AC, Chu Z, Hanten G, Hunter JV, Levin HS. Longitudinal changes in the corpus callosum following pediatric traumatic brain injury. Dev Neurosci 2010; 32:361-73. [PMID: 20948181 DOI: 10.1159/000317058] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/11/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Atrophy of the corpus callosum (CC) is a documented consequence of moderate-to-severe traumatic brain injury (TBI), which has been expressed as volume loss using quantitative magnetic resonance imaging (MRI). Other advanced imaging modalities such as diffusion tensor imaging (DTI) have also detected white matter microstructural alteration following TBI in the CC. The manner and degree to which macrostructural changes such as volume and microstructural changes develop over time following pediatric TBI, and their relation to a measure of processing speed is the focus of this longitudinal investigation. As such, DTI and volumetric changes in the CC in participants with TBI and a comparison group at approximately 3 and 18 months after injury as well as their relation to processing speed were determined. METHODS Forty-eight children and adolescents aged 7-17 years who sustained either complicated mild or moderate-to-severe TBI (n = 23) or orthopedic injury (OI; n = 25) were studied. The participants underwent brain MRI and were administered the Eriksen flanker task at both time points. RESULTS At 3 months after injury, there were significant group differences in DTI metrics in the total CC and its subregions (genu/anterior, body/central and splenium/posterior), with the TBI group demonstrating significantly lower fractional anisotropy (FA) and a higher apparent diffusion coefficient (ADC) in comparison to the OI group. These group differences were also present at 18 months after injury in all CC subregions, with lower FA and a higher ADC in the TBI group. In terms of longitudinal changes in DTI, despite the group difference in mean FA, both groups generally demonstrated a modest increase in FA over time though this increase was only significant in the splenium/posterior subregion. Interestingly, the TBI group also generally demonstrated ADC increases from 3 to 18 months though the OI group demonstrated ADC decreases over time. Volumetrically, the group differences at 3 months were marginal for the midanterior and body/central subregions and total CC. However, by 18 months, the TBI group demonstrated a significantly decreased volume in all subregions except the splenium/posterior area relative to the OI group. Unlike the OI group, which showed a significant volume increase in subregions of the CC over time, the TBI group demonstrated a significant and consistent volume decrease. Performance on a measure of processing speed did not differentiate the groups at either visit, and only the OI group showed significantly improved performance over time. Processing speed was related to FA in the splenium/posterior and total CC only in the TBI group on both occasions, with a stronger relation at 18 months. CONCLUSION In response to TBI, macrostructural volume loss in the CC occurred over time; yet, at the microstructural level, DTI demonstrated both indicators of continued maturation and development even in the damaged CC, as well as evidence of potential degenerative change. Unlike volumetrics, which likely reflects the degree of overall neuronal loss and axonal damage, DTI may reflect some aspects of postinjury maturation and adaptation in white matter following TBI. Multimodality imaging studies may be important to further understand the long-term consequences of pediatric TBI.
Collapse
Affiliation(s)
- Trevor C Wu
- Department of Psychology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Abstract
Mild traumatic brain injury (mTBI) remains a challenge to accurately assess with conventional neuroimaging. Recent research holds out the promise that diffusion tensor imaging (DTI) can be used to predict recovery in mTBI patients. Unlike computed tomography or conventional magnetic resonance imaging, DTI is sensitive to microstructural axonal injury, the neuropathology that is thought to be most responsible for the persistent cognitive and behavioral impairments that often occur after mTBI. Through the use of newer DTI analysis techniques such as automated region of interest analysis, tract-based voxel-wise analysis, and quantitative tractography, researchers have shown that frontal and temporal association white matter pathways are most frequently damaged in mTBI and that the microstructural integrity of these tracts correlates with behavioral and cognitive measures. Future longitudinal DTI studies are needed to elucidate how symptoms and the microstructural pathology evolve over time. Moving forward, large-scale investigations will ascertain whether DTI can serve as a predictive imaging biomarker for long-term neurocognitive deficits after mTBI that would be of value for triaging patients to clinical trials of experimental cognitive enhancement therapies and rehabilitation methods, as well as for monitoring their response to these interventions.
Collapse
|
367
|
Abstract
Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.
Collapse
Affiliation(s)
- Mayur Jayarao
- Department of Neurosurgery, Boston Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
368
|
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics 2010; 7:366-77. [PMID: 20880501 PMCID: PMC2948548 DOI: 10.1016/j.nurt.2010.07.002] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/26/2010] [Accepted: 07/01/2010] [Indexed: 01/12/2023] Open
Abstract
Microglia are the primary mediators of the immune defense system of the CNS and are integral to the subsequent inflammatory response. The role of microglia in the injured CNS is under scrutiny, as research has begun to fully explore how postinjury inflammation contributes to secondary damage and recovery of function. Whether microglia are good or bad is under debate, with strong support for a dual role or differential activation of microglia. Microglia release a number of factors that modulate secondary injury and recovery after injury, including pro- and anti-inflammatory cytokines, chemokines, nitric oxide, prostaglandins, growth factors, and superoxide species. Here we review experimental work on the complex and varied responses of microglia in terms of both detrimental and beneficial effects. Addressed in addition are the effects of microglial activation in two examples of CNS injury: spinal cord and traumatic brain injury. Microglial activation is integral to the response of CNS tissue to injury. In that light, future research is needed to focus on clarifying the signals and mechanisms by which microglia can be guided to promote optimal functional recovery.
Collapse
Affiliation(s)
- David J. Loane
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, 21201 Baltimore, Maryland
| | - Kimberly R. Byrnes
- grid.265436.00000000104215525Room B2048, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
| |
Collapse
|
369
|
Skandsen T, Kvistad KA, Solheim O, Strand IH, Folvik M, Vik A. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg 2010; 113:556-63. [PMID: 19852541 DOI: 10.3171/2009.9.jns09626] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In this prospective cohort study the authors examined patients with moderate to severe head injuries using MR imaging in the early phase. The objective was to explore the occurrence of diffuse axonal injury (DAI) and determine whether DAI was related to level of consciousness and patient outcome. METHODS One hundred and fifty-nine patients (age range 5-65 years) with traumatic brain injury, who survived the acute phase, and who had a Glasgow Coma Scale (GCS) score of 3-13 were admitted between October 2004 and August 2008. Of these 159 patients, 106 were examined using MR imaging within 4 weeks postinjury. Patients were classified into 1 of 3 stages of DAI: Stage 1, in which lesions were confined to the lobar white matter; Stage 2, in which there were callosal lesions; and Stage 3, in which lesions occurred in the dorsolateral brainstem. The outcome measure used 12 months postinjury was the Glasgow Outcome Scale-Extended (GOSE). RESULTS Diffuse axonal injury was detected in 72% of the patients and a combination of DAI and contusions or hematomas was found in 50%. The GCS score was significantly lower in patients with "pure DAI" (median GCS Score 9) than in patients without DAI (median GCS Score 12; p < 0.001). The GCS score was related to outcome only in those patients with DAI (r = 0.47; p = 0.001). Patients with DAI had a median GOSE score of 7, and patients without DAI had a median GOSE score of 8 (p = 0.10). Outcome was better in patients with DAI Stage 1 (median GOSE Score 8) and DAI Stage 2 (median GOSE Score 7.5) than in patients with DAI Stage 3 (median GOSE Score 4; p < 0.001). Thus, in patients without any brainstem injury, there was no difference in good recovery between patients with DAI (67%) and patients without DAI (66%). CONCLUSIONS Diffuse axonal injury was found in almost three-quarters of the patients with moderate and severe head injury who survived the acute phase. Diffuse axonal injury influenced the level of consciousness, and only in patients with DAI was GCS score related to outcome. Finally, DAI was a negative prognostic sign only when located in the brainstem.
Collapse
Affiliation(s)
- Toril Skandsen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
370
|
Wilde EA, Ramos MA, Yallampalli R, Bigler ED, McCauley SR, Chu Z, Wu TC, Hanten G, Scheibel RS, Li X, Vásquez AC, Hunter JV, Levin HS. Diffusion tensor imaging of the cingulum bundle in children after traumatic brain injury. Dev Neuropsychol 2010; 35:333-51. [PMID: 20446136 DOI: 10.1080/87565641003696940] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Structural damage to the prefrontal-cingulate network has been implicated in cognitive and neurobehavioral deficits associated with traumatic brain injury (TBI). Forty-six children who had sustained moderate-to-severe TBI and 43 children with extracranial injury were imaged using diffusion tensor imaging (DTI). Decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) values were found in the cingulum bundles bilaterally in the TBI group. Cingulum ADC was related to frontal lesion volume, injury severity, and injury mechanism. Finally, cingulum DTI parameters were related to cognitive control measures. DTI detects TBI-related injury to the cingulum, which may facilitate advances in assessment and treatment.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Oni MB, Wilde EA, Bigler ED, McCauley SR, Wu TC, Yallampalli R, Chu Z, Li X, Hunter JV, Vasquez AC, Levin HS. Diffusion tensor imaging analysis of frontal lobes in pediatric traumatic brain injury. J Child Neurol 2010; 25:976-84. [PMID: 20332386 PMCID: PMC3227397 DOI: 10.1177/0883073809356034] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study examined the use of diffusion tensor imaging in detecting white matter changes in the frontal lobes following pediatric traumatic brain injury. A total of 46 children (ages 8-16 years) with moderate to severe traumatic brain injury and 47 children with orthopedic injury underwent 1.5 Tesla magnetic resonance imaging (MRI) at 3 months postinjury. Conventional MRI studies were obtained along with diffusion tensor imaging. Diffusion tensor imaging metrics, including fractional anisotropy, apparent diffusion coefficient, and radial diffusivity, were compared between the groups. Significant group differences were identified, implicating frontal white matter alterations in the injury group that were predictive of later Glasgow Outcome Scale ratings; however, focal lesions were not related to the Glasgow Outcome Scale ratings. Injury severity was also significantly associated with diffusion tensor imaging metrics. Diffusion tensor imaging holds great promise as an index of white matter integrity in traumatic brain injury and as a potential biomarker reflective of outcome.
Collapse
Affiliation(s)
| | - Elisabeth A. Wilde
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas,Department of Radiology, Baylor College of Medicine, Houston, Texas,Department of Neurology, Baylor College of Medicine, Houston, Texas,E.B. Singleton Department of Diagnostic Imaging, Texas Children's Hospital, Houston, Texas
| | - Erin D. Bigler
- Department of Psychology, Brigham Young University, Provo, Utah,Department of Neuroscience, Brigham Young University, Provo, Utah,The Brain Institute, University of Utah, Salt Lake City, Utah
| | - Stephen R. McCauley
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas,Department of Pediatrics-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Trevor C. Wu
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Ragini Yallampalli
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Zili Chu
- Department of Radiology, Baylor College of Medicine, Houston, Texas,E.B. Singleton Department of Diagnostic Imaging, Texas Children's Hospital, Houston, Texas
| | - Xiaoqi Li
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Jill V. Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas,E.B. Singleton Department of Diagnostic Imaging, Texas Children's Hospital, Houston, Texas
| | - Ana C. Vasquez
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Harvey S. Levin
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
372
|
Messé A, Caplain S, Paradot G, Garrigue D, Mineo JF, Soto Ares G, Ducreux D, Vignaud F, Rozec G, Desal H, Pélégrini-Issac M, Montreuil M, Benali H, Lehéricy S. Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp 2010; 32:999-1011. [PMID: 20669166 DOI: 10.1002/hbm.21092] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/09/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can induce long-term behavioral and cognitive disorders. Although the exact origin of these mTBI-related disorders is not known, they may be the consequence of diffuse axonal injury (DAI). Here, we investigated whether MRI at the subacute stage can detect lesions that are associated with poor functional outcome in mTBI by using anatomical images (T(1) ) and diffusion tensor imaging (DTI). Twenty-three patients with mTBI were investigated and compared with 23 healthy volunteers. All patients underwent an MRI investigation and clinical tests between 7 and 28 days (D15) and between 3 and 4 months (M3) after injury. Patients were divided in two groups of poor outcome (PO) and good outcome (GO), based on their complaints at M3. Groupwise differences in gray matter partial volume between PO patients, GO patients and controls were analyzed using Voxel-Based Morphometry (VBM) from T(1) data at D15. Differences in microstructural architecture were investigated using Tract-Based Spatial Statistics (TBSS) and the diffusion images obtained from DTI data at D15. Permutation-based non-parametric testing was used to assess cluster significance at p < 0.05, corrected for multiple comparisons. Twelve GO patients and 11 PO patients were identified on the basis of their complaints. In PO patients, gray matter partial volume was significantly lower in several cortical and subcortical regions compared with controls, but did not differ from that of GO patients. No difference in diffusion variables was found between GO and controls. PO patients showed significantly higher mean diffusivity values than both controls and GO patients in the corpus callosum, the right anterior thalamic radiations and the superior longitudinal fasciculus, the inferior longitudinal fasciculus and the fronto-occipital fasciculus bilaterally. In conclusion, PO patients differed from GO patients by the presence of diffusion changes in long association white matter fiber tracts but not by gray matter partial volume. These results suggest that DTI at the subacute stage may be a predictive marker of poor outcome in mTBI.
Collapse
Affiliation(s)
- Arnaud Messé
- Inserm, UPMC Univ Paris 06, UMR_S 678, Laboratoire d'Imagerie Fonctionnelle, Paris F-75013, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
McNamara KCS, Lisembee AM, Lifshitz J. The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 2010; 27:695-706. [PMID: 20067394 DOI: 10.1089/neu.2009.1237] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-traumatic morbidity reduces the quality of life for traumatic brain injury (TBI) survivors by altering neuropsychological function. After midline fluid percussion injury (FPI), diffuse pathology in the ventral posterior thalamus suggests that somatosensory whisker function may be impaired post-injury. The goals of the present study were to design and validate a task to detect injury-induced somatosensory morbidity (Experiment 1), and to evaluate preliminary applications of the task (Experiment 2). In Experiment 1, male Sprague-Dawley rats were subjected to moderate FPI (approximately 1.9 atm) or sham injury. Over an 8-week time course, the whiskers on both mystacial pads were stimulated manually with an applicator stick in an open field for three 5-min periods. Behavioral responses in this whisker nuisance task were recorded using objective criteria (max score = 16). Sham animals were ambivalent or soothed by whisker stimulation (4.0 +/- 0.8), whereas brain-injured rats showed aggravated responses at 1 week (6.7 +/- 0.9), which became significant at 4 weeks (9.5 +/- 0.5) and 8 weeks (8.4 +/- 1.1) compared to sham injury, indicating chronic injury-induced sensory sensitivity. Total free serum corticosterone levels indicated a significant stress response in brain-injured (125.0 +/- 17.7 ng/mL), but not uninjured animals (74.2 +/- 12.2 ng/mL) in response to whisker stimulation. In Experiment 2, to evaluate applications of the whisker nuisance task, four additional uninjured and brain-injured groups were subjected to mild brain injury only, shaved whiskers after moderate brain injury, repeated whisker nuisance task stimulation after moderate brain injury, or regular opportunities for tactile exploration of an enriched environment after moderate brain injury over 4 weeks post-injury. The whisker nuisance task has the sensitivity to detect mild brain injury (7.7 +/- 1.0), but morbidity was not mitigated by any of the neurorehabilitative interventions. Following diffuse brain injury, the whisker nuisance task is a promising tool to detect post-traumatic morbidity and the efficacy of therapeutic interventions that may restore discrete circuit function in brain-injured patients.
Collapse
Affiliation(s)
- Katelyn C S McNamara
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
374
|
Warner MA, Youn TS, Davis T, Chandra A, Marquez de la Plata C, Moore C, Harper C, Madden CJ, Spence J, McColl R, Devous M, King RD, Diaz-Arrastia R. Regionally selective atrophy after traumatic axonal injury. ACTA ACUST UNITED AC 2010; 67:1336-44. [PMID: 20625067 DOI: 10.1001/archneurol.2010.149] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To determine the spatial distribution of cortical and subcortical volume loss in patients with diffuse traumatic axonal injury and to assess the relationship between regional atrophy and functional outcome. DESIGN Prospective imaging study. Longitudinal changes in global and regional brain volumes were assessed using high-resolution magnetic resonance imaging-based morphometric analysis. SETTING Inpatient traumatic brain injury unit. PATIENTS OR OTHER PARTICIPANTS Twenty-five patients with diffuse traumatic axonal injury and 22 age- and sex-matched controls. MAIN OUTCOME MEASURE Changes in global and regional brain volumes between initial and follow-up magnetic resonance imaging were used to assess the spatial distribution of posttraumatic volume loss. The Glasgow Outcome Scale-Extended score was the primary measure of functional outcome. RESULTS Patients underwent substantial global atrophy with mean whole-brain parenchymal volume loss of 4.5% (95% confidence interval, 2.7%-6.3%). Decreases in volume (at a false discovery rate of 0.05) were seen in several brain regions including the amygdala, hippocampus, thalamus, corpus callosum, putamen, precuneus, postcentral gyrus, paracentral lobule, and parietal and frontal cortices, while other regions such as the caudate and inferior temporal cortex were relatively resistant to atrophy. Loss of whole-brain parenchymal volume was predictive of long-term disability, as was atrophy of particular brain regions including the inferior parietal cortex, pars orbitalis, pericalcarine cortex, and supramarginal gyrus. CONCLUSION Traumatic axonal injury leads to substantial posttraumatic atrophy that is regionally selective rather than diffuse, and volume loss in certain regions may have prognostic value for functional recovery.
Collapse
Affiliation(s)
- Matthew A Warner
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9036, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Levin HS, Wilde E, Troyanskaya M, Petersen NJ, Scheibel R, Newsome M, Radaideh M, Wu T, Yallampalli R, Chu Z, Li X. Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma 2010; 27:683-94. [PMID: 20088647 DOI: 10.1089/neu.2009.1073] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To evaluate the effects of mild to moderate blast-related traumatic brain injury (TBI) on the microstructure of brain white matter (WM) and neurobehavioral outcomes, we studied 37 veterans and service members (mean age 31.5 years, SD = 7.2; post-injury interval 871.5 days; SD = 343.1), whose report of acute neurological status was consistent with sustaining mild to moderate TBI due to blast while serving in Iraq or Afghanistan. Fifteen veterans without a history of TBI or exposure to blast (mean age 31.4 years, SD = 5.4) served as a comparison group, including seven subjects with extracranial injury (post-injury interval 919.5 days, SD = 455.1), and eight who were uninjured. Magnetic resonance imaging disclosed focal lesions in five TBI participants. Post-concussion symptoms (Neurobehavioral Symptom Inventory), post-traumatic stress disorder (PTSD) symptoms (PTSD Checklist-Civilian), and global distress and depression (Brief Symptom Inventory) were worse in the TBI participants than the comparison group, but no group differences were found in perceived physical or mental functioning (SF-12). Verbal memory (Selective Reminding) was less efficient in the TBI group, but there were no group differences in nonverbal memory (Selective Reminding) or decision making (Iowa Gambling Task). Verbal memory in the TBI group was unrelated to PTSD severity. Diffusion tensor imaging (DTI) using tractography, standard single-slice region-of-interest measurement, and voxel-based analysis disclosed no group differences in fractional anisotropy (FA) and apparent diffusion coefficient (ADC). However, FA of the left and right posterior internal capsule and left corticospinal tract was positively correlated with total words consistently recalled, whereas ADC for the left and right uncinate fasciculi and left posterior internal capsule was negatively correlated with this measure of verbal memory. Correlations of DTI variables with symptom measures were non-significant and inconsistent. Our data do not show WM injury in mild to moderate blast-related TBI in veterans despite their residual symptoms and difficulty in verbal memory. Limitations of the study and implications for future research are also discussed.
Collapse
Affiliation(s)
- Harvey S Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
|
377
|
Kumar R, Gupta RK, Husain M, Chaudhry C, Srivastava A, Saksena S, Rathore RKS. Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: its correlation with neuropsychometric tests. Brain Inj 2010; 23:675-85. [PMID: 19557571 DOI: 10.1080/02699050903014915] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PRIMARY OBJECTIVE To look for differences in vulnerability of corpus callosum (CC) in patients of mild and moderate traumatic brain injury (TBI) in the acute stage using quantitative diffusion tensor imaging (DTI) and to correlate these with neuropsychometric tests (NPT) done at 6 months post-injury. RESEARCH DESIGN, METHODS AND PROCEDURES: Conventional MRI, DTI and NPT were performed on 83 patients (moderate TBI, n = 57; mild TBI, n = 26) within 5-14 days after TBI. Thirty-three age- and sex-matched healthy controls were also included for comparison. RESULTS Significantly decreased fractional anisotropy (FA) in genu and splenium; significantly increased radial diffusivity (RD) values in genu, midbody and splenium with significant increase in mean diffusivity (MD) and a decrease in axial diffusivity (AD) only in genu, respectively, in patients with moderate TBI compared to healthy controls were observed. However, in moderate TBI, significantly decreased FA was found only in genu compared to mild TBI. Moderate TBI showed poor NPT scores compared to mild TBI, but this did not reach statistical significance. CONCLUSIONS It is concluded that DTI abnormalities in the regions of CC were more in patients with moderate TBI compared to mild TBI and this was associated with relatively poor neuropsychological outcome 6 months post-injury.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Neurosurgery, Chhatrapati Shahuji Maharaj Medical University, Lucknow, UP, India
| | | | | | | | | | | | | |
Collapse
|
378
|
Richardson RM, Singh A, Sun D, Fillmore HL, Dietrich DW, Bullock MR. Stem cell biology in traumatic brain injury: effects of injury and strategies for repair. J Neurosurg 2010; 112:1125-38. [PMID: 19499984 DOI: 10.3171/2009.4.jns081087] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Approximately 350,000 individuals in the US are affected annually by severe and moderate traumatic brain injuries (TBI) that may result in long-term disability. This rate of injury has produced approximately 3.3 million disabled survivors in the US alone. There is currently no specific treatment available for TBI other than supportive care, but aggressive prehospital resuscitation, rapid triage, and intensive care have reduced mortality rates. With the recent demonstration that neurogenesis occurs in all mammals (including man) throughout adult life, albeit at a low rate, the concept of replacing neurons lost after TBI is now becoming a reality. Experimental rodent models have shown that neurogenesis is accelerated after TBI, especially in juveniles. Two approaches have been followed in these rodent models to test possible therapeutic approaches that could enhance neuronal replacement in humans after TBI. The first has been to define and quantify the phenomenon of de novo hippocampal and cortical neurogenesis after TBI and find ways to enhance this (for example by exogenous trophic factor administration). A second approach has been the transplantation of different types of neural progenitor cells after TBI. In this review the authors discuss some of the processes that follow after acute TBI including the changes in the brain microenvironment and the role of trophic factor dynamics with regard to the effects on endogenous neurogenesis and gliagenesis. The authors also discuss strategies to clinically harness the factors influencing these processes and repair strategies using exogenous neural progenitor cell transplantation. Each strategy is discussed with an emphasis on highlighting the progress and limiting factors relevant to the development of clinical trials of cellular replacement therapy for severe TBI in humans.
Collapse
Affiliation(s)
- R Mark Richardson
- Department of Neurological Surgery, University of California San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
379
|
Matthews SC, Strigo IA, Simmons AN, O'Connell RM, Reinhardt LE, Moseley SA. A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage 2010; 54 Suppl 1:S69-75. [PMID: 20451622 DOI: 10.1016/j.neuroimage.2010.04.269] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 03/18/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022] Open
Abstract
Although the exact number of affected individuals is unknown, it has been estimated that approximately 20% of U.S. veterans of Operations Enduring Freedom (OEF) and Iraqi Freedom (OIF) have experienced mild traumatic brain injury (mTBI) (i.e., concussion), which is defined as a brief loss or alteration of consciousness from a blow or jolt to the head. Blast exposure is among the most common causes of concussion in OEF-OIF warriors. Although the mechanism is unknown, major depressive disorder (MDD) after head injury is common. The purpose of this study was to use diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to examine the structural and functional neural correlates of MDD in OEF-OIF combat veterans with a self-reported history of blast-related concussion. We hypothesized that subjects in the MDD group (i.e., individuals with a history of blast-related concussion who were experiencing current MDD) relative to individuals in the non-MDD group (i.e., individuals with a history of blast-related concussion but no current or lifetime history of MDD) would show amygdala hyperactivity and disruption of white matter tracts connecting prefrontal and limbic brain regions. To test these hypotheses, 11 MDD and 11 non-MDD individuals underwent DTI and performed a validated emotional face matching task during fMRI. MDD relative to non-MDD individuals showed greater activity during fear matching trials in the amygdala and other emotion processing structures, lower activity during fear matching trials in emotional control structures such as the dorsolateral prefrontal cortex and lower fractional anisotropy (FA) in several white matter tracts including the superior longitudinal fasciculus (SLF). Greater depressive symptom severity correlated negatively with FA in the SLF. These results suggest a biological basis of MDD in OEF-OIF veterans who have experienced blast-related concussion, and may contribute to the development of treatments aimed at improving the clinical care of this unique population of wounded warriors.
Collapse
|
380
|
Colley BS, Phillips LL, Reeves TM. The effects of cyclosporin-A on axonal conduction deficits following traumatic brain injury in adult rats. Exp Neurol 2010; 224:241-51. [PMID: 20362574 DOI: 10.1016/j.expneurol.2010.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/23/2010] [Accepted: 03/24/2010] [Indexed: 11/20/2022]
Abstract
Immunophilin ligands, including cyclosporin-A (CsA), have been shown to be neuroprotective in experimental models of traumatic brain injury (TBI) and to attenuate the severity of traumatic axonal injury. Prior studies have documented CsA treatment to reduce essential components of posttraumatic axonal pathology, including impaired axoplasmic transport, spectrin proteolysis, and axonal swelling. However, the effects of CsA administration on axonal function, following TBI, have not been evaluated. The present study assessed the effects of CsA treatment on compound action potentials (CAPs) evoked in corpus callosum of adult rats following midline fluid percussion injury. Rats received a 20 mg/kg bolus of CsA, or cremaphor vehicle, at either 15 min or 1 h postinjury, and at 24 h postinjury CAP recording was conducted in coronal brain slices. To elucidate how injury and CsA treatments affect specific populations of axons, CAP waveforms generated largely by myelinated axons (N1) were analyzed separately from the CAP signal, which predominantly reflects activity in unmyelinated axons (N2). CsA administration at 15 min postinjury resulted in significant protection of CAP area, and this effect was more pronounced in N1, than in the N2, CAP component. This treatment also significantly protected against TBI-induced reductions in high-frequency responding of the N1 CAP signal. In contrast, CsA treatment at 1 h did not significantly protect CAPs but was associated with atypical waveforms in N1 CAPs, including decreased CAP duration and reduced refractoriness. The present findings also support growing evidence that myelinated and unmyelinated axons respond differentially to injury and neuroprotective compounds.
Collapse
Affiliation(s)
- Beverly S Colley
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | |
Collapse
|
381
|
Bigler ED, Abildskov TJ, Wilde EA, McCauley SR, Li X, Merkley TL, Fearing MA, Newsome MR, Scheibel RS, Hunter JV, Chu Z, Levin HS. Diffuse damage in pediatric traumatic brain injury: A comparison of automated versus operator-controlled quantification methods. Neuroimage 2010; 50:1017-26. [DOI: 10.1016/j.neuroimage.2010.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/05/2009] [Accepted: 01/01/2010] [Indexed: 11/17/2022] Open
|
382
|
Kumar R, Saksena S, Husain M, Srivastava A, Rathore RKS, Agarwal S, Gupta RK. Serial changes in diffusion tensor imaging metrics of corpus callosum in moderate traumatic brain injury patients and their correlation with neuropsychometric tests: a 2-year follow-up study. J Head Trauma Rehabil 2010; 25:31-42. [PMID: 20051898 DOI: 10.1097/htr.0b013e3181bff331] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To assess longitudinally the severity of diffuse axonal injury in the corpus callosum in patients with moderate traumatic brain injury (TBI) through quantitative diffusion tensor imaging and to correlate these changes with neuropsychometric tests (NPT) at 6 and 24 months after injury. DESIGN Prospective longitudinal study. PARTICIPANTS Sixteen patients with TBI and 17 age/sex-matched healthy controls. METHODS Patients underwent magnetic resonance imaging at 3 time points: within 2 weeks (range = 5-14 days), 6 months, and 24 months after injury. NPT could be performed only at 6 and 24 months. RESULTS In patients with TBI, a significant increase in fractional anisotropy (FA) values in genu as well as an insignificant decrease in radial diffusivity (RD) and mean diffusivity values in genu and splenium were observed over time, respectively. FA, RD, and mean diffusivity values continued to be abnormal in patients compared with controls at the end of 2 years. Although some NPT scores improved over time in these patients, these were still significantly impaired compared with controls. CONCLUSIONS FA and RD indices appear to be surrogate markers of microstructural alterations in patients over time and correlate significantly with some of the NPT scores. The recovery in these indices associated with recovery in neurocognitive deficits suggests that these indices may be used as an objective marker for residual injury in these patients.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Neurosurgery, Chhatrapati Shahuji Maharaj Medical University, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
383
|
Bernabeu M, Demirtas-Tatlidede A, Opisso E, Lopez R, Tormos JM, Pascual-Leone A. Abnormal corticospinal excitability in traumatic diffuse axonal brain injury. J Neurotrauma 2010; 26:2185-93. [PMID: 19604100 DOI: 10.1089/neu.2008.0859] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (SP) duration. The patient group overall revealed a higher MT, smaller MEP areas, and narrower recruitment curves compared to normal controls (p < 0.05). The alterations in excitability were more pronounced with an increase in DAI severity (p < 0.005) and the presence of motor impairment (p < 0.05), while co-existence of focal lesions did not affect the degree of MEP changes. MEP variability was significantly lower in the group with motor impairment only (p < 0.05). The intracortical inhibition, as revealed by SP duration, did not exhibit any significant differences in any of the patient groups. In conclusion, our findings expand the concept that impairment of the excitatory and inhibitory phenomena in the motor cortex does not proceed in parallel and demonstrate distinct patterns of aberrations in TBI. Furthermore, these data suggest that alterations in the corticospinal excitatory mechanisms are determined predominantly by the severity of DAI, and show a significant relationship with clinical motor dysfunction following severe trauma diffusely affecting the motor cortical connections. In severe TBI, motor and functional recovery might be linked to restitution of normal corticospinal mechanisms, indexed by normalization of the cortical excitability parameters.
Collapse
Affiliation(s)
- Montse Bernabeu
- Guttmann University Institute for Neurorehabilitation-UAB , Badalona, Spain
| | | | | | | | | | | |
Collapse
|
384
|
Schönberger M, Ponsford J, Reutens D, Beare R, O'Sullivan R. The Relationship between age, injury severity, and MRI findings after traumatic brain injury. J Neurotrauma 2010; 26:2157-67. [PMID: 19624261 DOI: 10.1089/neu.2009.0939] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age and injury severity are among the most significant predictors of outcome after traumatic brain injury (TBI). However, only a few studies have investigated the association between, age, injury severity, and the extent of brain damage in TBI. The purpose of this study was to investigate the association between age, measures of injury severity, and brain lesion volumes, as well as viable brain volumes, following TBI. Ninety-eight individuals with mild to very severe TBI (75.5% male, mean age at injury 34.5 years) underwent a structural MRI scan, performed with a 1.5-Tesla machine, on average 2.3 years post-injury. Lesion volumes were highly skewed in their distribution and were dichotomized for statistical purposes. Measures of injury severity were Glasgow Coma Scale score (GCS) and duration of post-traumatic amnesia (PTA). Logistic regression analyses predicting lesion volumes, controlling for participants' gender, cause of injury, time from injury to MRI scan, and total brain volume, revealed that both older age and longer PTA were associated with larger lesion volumes in both grey and white matter in almost all brain regions. Older age was also associated with smaller viable grey matter volumes in most neo-cortical brain regions, while longer PTA was associated with smaller viable white matter volumes in most brain regions. The results suggest that older age worsens the impact of TBI on the brain. They also indicate the validity of duration of PTA as a measure of injury severity that is not just related to one particular injury location.
Collapse
Affiliation(s)
- Michael Schönberger
- School of Psychology, Psychiatry, and Psychological Medicine, Monash University Melbourne , Clayton Campus, and Monash-Epworth Rehabilitation Research Centre, Epworth Hospital, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
385
|
Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 2010; 30:255-66. [PMID: 19809467 PMCID: PMC2855235 DOI: 10.1038/jcbfm.2009.203] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review considers the pathobiology of non-impact blast-induced neurotrauma (BINT). The pathobiology of traumatic brain injury (TBI) has been historically studied in experimental models mimicking features seen in the civilian population. These brain injuries are characterized by primary damage to both gray and white matter and subsequent evolution of secondary pathogenic events at the cellular, biochemical, and molecular levels, which collectively mediate widespread neurodegeneration. An emerging field of research addresses brain injuries related to the military, in particular blast-induced brain injuries. What is clear from the effort to date is that the pathobiology of military TBIs, particularly BINT, has characteristics not seen in other types of brain injury, despite similar secondary injury cascades. The pathobiology of primary BINT is extremely complex. It comprises systemic, local, and cerebral responses interacting and often occurring in parallel. Activation of the autonomous nervous system, sudden pressure-increase in vital organs such as lungs and liver, and activation of neuroendocrine-immune system are among the most important mechanisms significantly contributing to molecular changes and cascading injury mechanisms in the brain.
Collapse
Affiliation(s)
- Ibolja Cernak
- National Security Technology Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA.
| | | |
Collapse
|
386
|
Hall KD, Lifshitz J. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 2010; 1323:161-73. [PMID: 20122903 DOI: 10.1016/j.brainres.2010.01.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity.
Collapse
Affiliation(s)
- Kelley D Hall
- Spinal Cord and Brain Injury Research Center, Chandler Medical Center, University of Kentucky, USA
| | | |
Collapse
|
387
|
Mayer AR, Ling J, Mannell MV, Gasparovic C, Phillips JP, Doezema D, Reichard R, Yeo RA. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 2010; 74:643-50. [PMID: 20089939 DOI: 10.1212/wnl.0b013e3181d0ccdd] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Only a handful of studies have investigated the nature, functional significance, and course of white matter abnormalities associated with mild traumatic brain injury (mTBI) during the semi-acute stage of injury. The present study used diffusion tensor imaging (DTI) to investigate white matter integrity and compared the accuracy of traditional anatomic scans, neuropsychological testing, and DTI for objectively classifying mTBI patients from controls. METHODS Twenty-two patients with semi-acute mTBI (mean = 12 days postinjury), 21 matched healthy controls, and a larger sample (n = 32) of healthy controls were studied with an extensive imaging and clinical battery. A subset of participants was examined longitudinally 3-5 months after their initial visit. RESULTS mTBI patients did not differ from controls on clinical imaging scans or neuropsychological performance, although effect sizes were consistent with literature values. In contrast, mTBI patients demonstrated significantly greater fractional anisotropy as a result of reduced radial diffusivity in the corpus callosum and several left hemisphere tracts. DTI measures were more accurate than traditional clinical measures in classifying patients from controls. Longitudinal data provided preliminary evidence of partial normalization of DTI values in several white matter tracts. CONCLUSIONS Current findings of white matter abnormalities suggest that cytotoxic edema may be present during the semi-acute phase of mild traumatic brain injury (mTBI). Initial mechanical damage to axons disrupts ionic homeostasis and the ratio of intracellular and extracellular water, primarily affecting diffusion perpendicular to axons. Diffusion tensor imaging measurement may have utility for objectively classifying mTBI, and may serve as a potential biomarker of recovery.
Collapse
Affiliation(s)
- A R Mayer
- The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
388
|
van der Eerden AW, Twickler MTB, Sweep FCGJ, Beems T, Hendricks HT, Hermus ARMM, Vos PE. Should anterior pituitary function be tested during follow-up of all patients presenting at the emergency department because of traumatic brain injury? Eur J Endocrinol 2010; 162:19-28. [PMID: 19783620 DOI: 10.1530/eje-09-0436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CONTEXT A wide range (15-56%) of prevalences of anterior pituitary insufficiency are reported in patients after traumatic brain injury (TBI). However, different study populations, study designs, and diagnostic procedures were used. No data are available on emergency-department-based cohorts of TBI patients. OBJECTIVE To assess the prevalence of pituitary dysfunction in an emergency-department-based cohort of TBI patients using strict endocrinological diagnostic criteria. METHODS Of all the patients presenting in the emergency department with TBI over a 2-year period, 516 matched the inclusion criteria. One hundred and seven patients (77 with mild TBI and 30 with moderate/severe TBI) agreed to participate. They were screened for anterior pituitary insufficiency by GHRH-arginine testing, evaluation of fasting morning hormone levels (cortisol, TSH, free thyroxine, FSH, LH, and 17beta-estradiol or testosterone), and menstrual history 3-30 months after TBI. Abnormal screening results were defined as low peak GH to GHRH-arginine, or low levels of any of the end-organ hormones with low or normal pituitary hormone levels. Patients with abnormal screening results were extensively evaluated, including additional hormone provocation tests (insulin tolerance test, ACTH stimulation test, and repeated GHRH-arginine test) and assessment of free testosterone levels. RESULTS Screening results were abnormal in 15 of 107 patients. In a subsequent extensive endocrine evaluation, anterior pituitary dysfunction was diagnosed in only one patient (partial hypocortisolism). CONCLUSION By applying strict diagnostic criteria to an emergency-department-based cohort of TBI patients, it was shown that anterior pituitary dysfunction is rare (<1%). Routine pituitary screening in unselected patients after TBI is unlikely to be cost-effective.
Collapse
Affiliation(s)
- Anke W van der Eerden
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
389
|
Cekic M, Stein DG. Traumatic brain injury and aging: is a combination of progesterone and vitamin D hormone a simple solution to a complex problem? Neurotherapeutics 2010; 7:81-90. [PMID: 20129500 PMCID: PMC2834197 DOI: 10.1016/j.nurt.2009.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/27/2009] [Indexed: 12/19/2022] Open
Abstract
Although progress is being made in the development of new clinical treatments for traumatic brain injury (TBI), little is known about whether such treatments are effective in older patients, in whom frailty, prior medical conditions, altered metabolism, and changing sensitivity to medications all can affect outcomes following a brain injury. In this review we consider TBI to be a complex, highly variable, and systemic disorder that may require a new pharmacotherapeutic approach, one using combinations or cocktails of drugs to treat the many components of the injury cascade. We review some recent research on the role of vitamin D hormone and vitamin D deficiency in older subjects, and on the interactions of these factors with progesterone, the only treatment for TBI that has shown clinical effectiveness. Progesterone is now in phase III multicenter trial testing in the United States. We also discuss some of the potential mechanisms and pathways through which the combination of hormones may work, singly and in synergy, to enhance survival and recovery after TBI.
Collapse
Affiliation(s)
- Milos Cekic
- grid.189967.80000000419367398Department of Emergency Medicine, Emory University School of Medicine, 30322 Atlanta, Georgia
| | - Donald G. Stein
- grid.189967.80000000419367398Department of Emergency Medicine, Emory University School of Medicine, 30322 Atlanta, Georgia
| |
Collapse
|
390
|
LaPlaca MC, Prado GR. Neural mechanobiology and neuronal vulnerability to traumatic loading. J Biomech 2010; 43:71-8. [DOI: 10.1016/j.jbiomech.2009.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
|
391
|
|
392
|
Mazzeo AT, Brophy GM, Gilman CB, Alves ÓL, Robles JR, Hayes RL, Povlishock JT, Bullock MR. Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 2009; 26:2195-206. [PMID: 19621985 PMCID: PMC2824218 DOI: 10.1089/neu.2009.1012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclosporin A (CsA) has recently been proposed for use in the early phase after traumatic brain injury (TBI), for its ability to preserve mitochondrial integrity in experimental brain injury models, and thereby provide improved behavioral outcomes as well as significant histological protection. The aim of this prospective, randomized, double-blind, dual-center, placebo-controlled trial was to evaluate the safety, tolerability, and pharmacokinetics of a single intravenous infusion of CsA in patients with severe TBI. Fifty adult severe TBI patients were enrolled over a 22-month period. Within 12 h of the injury patients received 5 mg/kg of CsA infused over 24 h, or placebo. Blood urea nitrogen (BUN), creatinine, hemoglobin, platelets, white blood cell count (WBC), and a hepatic panel were monitored on admission, and at 12, 24, 36, and 48 h, and on days 4 and 7. Potential adverse events (AEs) were also recorded. Neurological outcome was recorded at 3 and 6 months after injury. This study revealed only transient differences in BUN levels at 24 and 48 h and for WBC counts at 24 h between the CsA and placebo patients. These modest differences were not clinically significant in that they did not negatively impact on patient course. Both BUN and creatinine values, markers of renal function, remained within their normal limits over the entire monitoring period. There were no significant differences in other mean laboratory values, or in the incidence of AEs at any other measured time point. Also, no significant difference was demonstrated for neurological outcome. Based on these results, we report a good safety profile of CsA infusion when given at the chosen dose of 5 mg/kg, infused over 24 h, during the early phase after severe head injury in humans, with the aim of neuroprotection.
Collapse
Affiliation(s)
- Anna Teresa Mazzeo
- Department of Neurosciences, Psychiatric and Anesthesiological Sciences, University of Messina, Messina, Italy
| | - Gretchen M. Brophy
- Department of Pharmacy and Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Charlotte B. Gilman
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Óscar Luís Alves
- Serviço de Neurocirurgia, Centro Hospitalar de Vila Nova de Gaia, Faculdade de Medicina da Universitade do Porto, Porto, Portugal
| | - Jaime R. Robles
- Department of Pharmacy, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Ronald L. Hayes
- Department of Neurosurgery, University of Florida, Center of Innovative Research, Banyan Biomarkers, Inc., Alachua, Florida
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - M. Ross Bullock
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Lois Pope LIFE Center, Miami, Florida
| |
Collapse
|
393
|
Mathai K, Jain A, Singh D, Dutta SGS, Sengupta SK, Harikrishnan V. The enigma of traumatic, behaviourally benign brain stem bleeds: Case report. INDIAN JOURNAL OF NEUROTRAUMA 2009. [DOI: 10.1016/s0973-0508(09)80009-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
394
|
Abstract
O trauma crânio-encefálico contuso (TCEC) é freqüentemente seguido pela amnésia pós-traumática (APT), caracterizada como um estado transitório de confusão e desorientação. Sua duração tem sido utilizada para quantificar a gravidade do TCEC e prever distúrbios nas funções cognitivas, assim como para antever as alterações na capacidade funcional das vítimas pós-trauma. O Galveston Orientation Amnesia Test (GOAT) é o primeiro instrumento sistematizado criado e o mais amplamente utilizado para avaliar a APT. Este artigo apresenta esse instrumento, as bases conceituais para seu desenvolvimento e a adaptação e validação do GOAT para cultura brasileira. Além disso, descreve sua aplicação e comenta as restrições do seu uso. Resultados de pesquisas realizadas em nosso meio contribuíram para as evidências sobre a validade do GOAT. Também apontaram os indicadores do momento pós-trauma em que o GOAT deve ser aplicado e destacaram as dificuldades no uso desse instrumento.
Collapse
|
395
|
The changes of cortical metabolism associated with the clinical response to donepezil therapy in traumatic brain injury. Clin Neuropharmacol 2009; 32:63-8. [PMID: 18978490 DOI: 10.1097/wnf.0b013e31816f1bc1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine the effects of treatment with donepezil on cortical metabolism in patients with traumatic brain injury using F-fluorodeoxyglucose positron emission tomography. METHODS Twenty-six patients with cognitive impairment after traumatic brain injury were enrolled and randomly assigned into the donepezil-treated group and the control group. There was no significant difference between 2 groups in age, sex, education, and postinjury duration. Donepezil 5 mg was administered daily for 3 weeks and then 10 mg/d for 3 weeks to patients in the experimental groups. For both groups, we evaluated cognitive function with Mini-Mental State Examination, Wechsler Memory Test, Boston Naming Test, Colored Progressive Matrices upon initial evaluation and at the 6-week follow-up. An 18F-fluorodeoxyglucose positron emission tomography of the brain was performed before and after 6 weeks of the donepezil-treated group. Effects of donepezil treatment on cortical metabolism were analyzed using Statistical Parametric Mapping software (Institute of Neurology, University College London, UK). RESULTS There was no significance difference between the 2 groups in initial evaluation of cognitive functions. After 6 weeks, compared with the control group, donepezil-treated group showed enhanced cognitive functions (P < 0.05), and 18F-fluorodeoxyglucose positron emission tomography showed a statistically significant increase in the cerebral cortical metabolism for both of the frontal, parietal, occipital, and temporal cortices (P < 0.01) which are the key role of attention and object naming. CONCLUSIONS Cholinergic augmentation by donepezil therapy in traumatic brain injury shows a cortical metabolic effect on the both of the frontal, parietal, occipital, and temporal cortices associated with clinical response to treatment.
Collapse
|
396
|
Abstract
INTRODUCTION Traumatic brain injury is heterogeneous, both in its induction and ensuing neurological sequelae. In this way, medical care depends on accurately identifying the severity of injury-related forces. Clinically, injury severity is determined by a combination of the Glasgow Coma Scale, length of unconsciousness, posttraumatic amnesia, and persistence of neurological sequelae. In the laboratory, injury severity is gauged by the biomechanical forces and the acute suppression of neurological reflexes. The present communication describes and validates the "fencing response" as an overt indicator of injury force magnitude and midbrain localization to aid in injury identification and classification. METHODS Using YouTube, the Internet video database, videos were screened for head injury resulting in unconsciousness and documented for the fencing response. Adult male rats were subjected to midline fluid percussion brain injury at two severities, observed for acute neurological reflexes and the midbrain evaluated histopathologically. RESULTS Tonic posturing (fencing response) has been observed to precede convulsions in sports injuries at the moment of impact, where extension and flexion of opposite arms occurs despite body position or gravity. Of the 35 videos identified by an impact to the head and period of unconsciousness, 66% showed a fencing response at the moment of impact, regardless of the side of impact, without ensuing convulsion. Similarly, diffuse brain-injured rats demonstrate a fencing response upon injury at moderate (1.9 atm, 39/44 animals) but not mild severity (1.1 atm, 0/19 animals). The proximity of the lateral vestibular nucleus to the cerebellar peduncles makes it vulnerable to mechanical forces that initiate a neurochemical storm to elicit the neuromotor response, disrupt the blood-brain barrier, and alter the nuclear volume. CONCLUSIONS Therefore, the fencing response likely indicates neurological disturbance unique from convulsion associated with mechanical forces of moderate magnitude imparted on the midbrain and can assist in guiding medical care after injury.
Collapse
Affiliation(s)
- Ario H Hosseini
- Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
397
|
Abstract
Blasts or explosions are the most common mechanisms of injury in modern warfare. Traumatic brain injury (TBI) is a frequent consequence of exposure to such attacks. Although the management of orthopedic, integumentary, neurocognitive, and neurobehavioral sequelae in survivors of blasts has been described in the literature, less attention has been paid to the physical therapist examination and care of people with dizziness and blast-induced TBI (BITBI). Dizziness is a common clinical finding in people with BITBI; however, many US military service members who have been exposed to blasts and who are returning from Iraq and Afghanistan also complain of vertigo, gaze instability, motion intolerance, and other symptoms consistent with peripheral vestibular pathology. To date, few studies have addressed such "vestibular" complaints in service members injured by blasts. Given the demonstrated efficacy of treating the signs and symptoms associated with vestibular pathology, vestibular rehabilitation may have important implications for the successful care of service members who have been injured by blasts and who are complaining of vertigo or other symptoms consistent with vestibular pathology. In addition, there is a great need to build consensus on the clinical best practices for the assessment and management of BITBI and blast-related dizziness. The purpose of this review is to summarize the findings of clinicians and scientists conducting research on the effects of blasts with the aims of defining the scope of the problem, describing and characterizing the effects of blasts, reviewing relevant patients' characteristics and sensorimotor deficits associated with BITBI, and suggesting clinical best practices for the rehabilitation of BITBI and blast-related dizziness.
Collapse
|
398
|
Staal JA, Dickson TC, Chung RS, Vickers JC. Disruption of the ubiquitin proteasome system following axonal stretch injury accelerates progression to secondary axotomy. J Neurotrauma 2009; 26:781-8. [PMID: 19416018 DOI: 10.1089/neu.2008.0669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a vital role in the regulation of protein degradation. Ubiquitination of proteins has been implicated in the pathological cascade associated with neuronal degeneration in both neurodegenerative disease and following acquired central nervous system (CNS) injury. In the present study, we have investigated the role of the UPS following mild to moderate in vitro axonal stretch injury to mature primary cortical neurons, a model of the evolving axonal pathology characteristic of diffuse axonal injury following brain trauma. Transient axonal stretch injury in this model does not involve primary axotomy. However, delayed accumulation of ubiquitin in neuritic swellings at 48 h post-injury (PI) was present in axonal bundles, followed by approximately 60% of axonal bundles progressing to secondary axotomy at 72 h PI. This delayed accumulation of ubiquitin was temporally and spatially associated with cytoskeletal damage. Pharmacological inhibition of the UPS with both MG132 and lactacystin prior to axonal injury resulted in a significant (p < 0.05) increase in the number of axonal bundles progressing to secondary axotomy at 48 and 72 h PI. These results demonstrate that, following mild to moderate transient axonal stretch injury, UPS activity may assist structural reorganization within axons, potentially impeding secondary axotomy. Protein ubiquitination in the axon may therefore have a protective role relative to the diffuse axonal changes that follow traumatic brain injury.
Collapse
Affiliation(s)
- Jerome A Staal
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | |
Collapse
|
399
|
Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 2009; 110:1227-37. [PMID: 19216653 DOI: 10.3171/2008.9.jns08584] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Damage to axons contributes to postinjury disabilities and is commonly observed following traumatic brain injury (TBI). Traumatic brain injury is an important environmental risk factor for the development of Alzheimer disease (AD). In the present feasibility study, the aim was to use intracerebral microdialysis catheters with a high molecular cutoff membrane (100 kD) to harvest interstitial total tau (T-tau) and amyloid beta 1-42 (Abeta42) proteins, which are important biomarkers for axonal injury and for AD, following moderate-to-severe TBI. METHODS Eight patients (5 men and 3 women) were included in the study; 5 of the patients had a focal/mixed TBI and 3 had a diffuse axonal injury (DAI). Following the bedside analysis of the routinely measured energy metabolic markers (that is, glucose, lactate/pyruvate ratio, glycerol, and glutamate), the remaining dialysate was pooled and two 12-hour samples per day were used to analyze T-tau and Abeta42 by enzyme-linked immunosorbent assay from Day 1 up to 8 days postinjury. RESULTS The results show high levels of interstitial T-tau and Abeta42 postinjury. Patients with a predominantly focal lesion had higher interstitial T-tau levels than in the DAI group from Days 1 to 3 postinjury (p < 0.05). In contrast, patients with DAI had consistently higher Abeta42 levels when compared with patients with focal injury. CONCLUSIONS These results suggest that monitoring of interstitial T-tau and Abeta42 by using microdialysis may be an important tool when evaluating the presence and role of axonal injury following TBI.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
400
|
Smucker P, Hekmatyar SK, Bansal N, Rodgers RB, Shapiro SA, Borgens RB. Intravenous polyethylene glycol successfully treats severe acceleration-induced brain injury in rats as assessed by magnetic resonance imaging. Neurosurgery 2009; 64:984-90; discussion 990. [PMID: 19404158 DOI: 10.1227/01.neu.0000342406.43816.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Polyethylene glycol (PEG) is a nontoxic molecule with known efficacy as a cell membrane sealant, improving histological and behavioral outcomes in trauma models. Diffusion-weighted (DW) magnetic resonance imaging (MRI) is the most sensitive method of detecting in vivo diffuse axonal injury (DAI), where a decreased apparent diffusion coefficient (ADC) of water reflects cytotoxic edema. We use DW-MRI to assess severe DAI in rats treated with a single acute postinjury injection of PEG. METHODS Rats were divided into uninjured, injured saline-treated, and injured PEG-treated groups. Injury groups received a severe brain injury using an impact-acceleration weight-drop model. Saline or PEG was administered acutely as a single intravenous dose to injured saline-treated and injured PEG-treated groups, respectively. DW-MRI analysis was performed at postinjury day 7 with a 9.4-T magnet. ADC was calculated for cortex, corpus callosum/hippocampus, and thalamus in each group. RESULTS An expected decrease in ADC, representing cytotoxic edema, was observed in the injured saline-treated group. The injured PEG-treated group demonstrated no decrease in ADC relative to the uninjured rats, and the difference between ADC in saline and PEG-treated groups reached significance for all 3 zones of assessed brain. Differences were seen grossly between injured saline-treated and injured PEG-treated groups on representative color-mapped ADC images. CONCLUSION A single intravenous dose of PEG dramatically limits sequelae of severe acceleration-induced brain injury--in this case, assessed by cytotoxic edema on DW-MRI--by intervening at the primary injury level of neuronal membrane disruption. This outcome is unprecedented, as no prior treatments for DAI have demonstrated similar efficacy. DAI treatment with intravenous PEG may have future clinical relevance and warrants further investigation.
Collapse
Affiliation(s)
- Philip Smucker
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|