351
|
Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L, Rappsilber J, Tollervey D. Defining the RNA interactome by total RNA-associated protein purification. Mol Syst Biol 2019; 15:e8689. [PMID: 30962360 PMCID: PMC6452921 DOI: 10.15252/msb.20188689] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and E. coli showed apparent conservation of RNA binding by metabolic enzymes. Illustrating the value of total RBP purification, we discovered that the glycolytic enzyme enolase interacts with tRNAs. Exploiting PAR-TRAPP to determine the effects of brief exposure to weak acid stress revealed specific changes in late 60S ribosome biogenesis. Furthermore, we identified the precise sites of crosslinking for hundreds of RNA-peptide conjugates, using iTRAPP, providing insights into potential regulation. We conclude that TRAPP is a widely applicable tool for RBPome characterization.
Collapse
Affiliation(s)
- Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Lutz Fischer
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
352
|
Nakashima KK, Vibhute MA, Spruijt E. Biomolecular Chemistry in Liquid Phase Separated Compartments. Front Mol Biosci 2019; 6:21. [PMID: 31001538 PMCID: PMC6456709 DOI: 10.3389/fmolb.2019.00021] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Biochemical processes inside the cell take place in a complex environment that is highly crowded, heterogeneous, and replete with interfaces. The recently recognized importance of biomolecular condensates in cellular organization has added new elements of complexity to our understanding of chemistry in the cell. Many of these condensates are formed by liquid-liquid phase separation (LLPS) and behave like liquid droplets. Such droplet organelles can be reproduced and studied in vitro by using coacervates and have some remarkable features, including regulated assembly, differential partitioning of macromolecules, permeability to small molecules, and a uniquely crowded environment. Here, we review the main principles of biochemical organization in model membraneless compartments. We focus on some promising in vitro coacervate model systems that aptly mimic part of the compartmentalized cellular environment. We address the physicochemical characteristics of these liquid phase separated compartments, and their impact on biomolecular chemistry and assembly. These model systems enable a systematic investigation of the role of spatiotemporal organization of biomolecules in controlling biochemical processes in the cell, and they provide crucial insights for the development of functional artificial organelles and cells.
Collapse
Affiliation(s)
| | | | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
353
|
Felemban RA, François‐Moutal L, Sayegh M, Perez‐Miller S, Gokhale V, Zarnescu DC, Khanna M. Remodeling the interactions between TDP43 and RNA for development of therapeutics for ALS. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.670.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Razaz A Felemban
- Medical PharmacologyUniversity of ArizonaTucsonAZ
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonAZ
- College of MedicineKing Saud bin Abdulaziz University for Health SciencesJeddahSaudi Arabia
| | - Liberty François‐Moutal
- Medical PharmacologyUniversity of ArizonaTucsonAZ
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonAZ
| | - Melissa Sayegh
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZ
| | - Samantha Perez‐Miller
- Medical PharmacologyUniversity of ArizonaTucsonAZ
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonAZ
| | | | | | - May Khanna
- Medical PharmacologyUniversity of ArizonaTucsonAZ
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonAZ
| |
Collapse
|
354
|
Wilbertz JH, Voigt F, Horvathova I, Roth G, Zhan Y, Chao JA. Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response. Mol Cell 2019; 73:946-958.e7. [PMID: 30661979 DOI: 10.1016/j.molcel.2018.12.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Biological phase transitions form membrane-less organelles that generate distinct cellular environments. How molecules are partitioned between these compartments and the surrounding cellular space and the functional consequence of this localization is not well understood. Here, we report the localization of mRNA to stress granules (SGs) and processing bodies (PBs) and its effect on translation and degradation during the integrated stress response. Using single mRNA imaging in living human cells, we find that the interactions of mRNAs with SGs and PBs have different dynamics, very few mRNAs directly move between SGs and PBs, and that specific RNA-binding proteins can anchor mRNAs within these compartments. During recovery from stress, we show that mRNAs that were within SGs and PBs are translated and degraded at similar rates as their cytosolic counterparts. Our work provides a framework for using single-molecule measurements to directly investigate the molecular mechanisms of phase-separated compartments within their cellular environment.
Collapse
Affiliation(s)
- Johannes H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Franka Voigt
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ivana Horvathova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
355
|
Gasior K, Zhao J, McLaughlin G, Forest MG, Gladfelter AS, Newby J. Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates. Phys Rev E 2019; 99:012411. [PMID: 30780260 DOI: 10.1103/physreve.99.012411] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/18/2022]
Abstract
An emerging mechanism for intracellular organization is liquid-liquid phase separation (LLPS). Found in both the nucleus and the cytoplasm, liquidlike droplets condense to create compartments that are thought to promote and inhibit specific biochemistry. In this work, a multiphase, Cahn-Hilliard diffuse interface model is used to examine RNA-protein interactions driving LLPS. We create a bivalent system that allows for two different species of protein-RNA complexes and model the competition that arises for a shared binding partner, free protein. With this system we demonstrate that the binding and unbinding of distinct RNA-protein complexes leads to diverse spatial pattern formation and dynamics within droplets. Both the initial formation and transient behavior of spatial patterning are subject to the exchange of free proteins between RNA-protein complexes. This study illustrates that spatiotemporal heterogeneity can emerge within phase-separated biological condensates with simple binding reactions and competition. Intradroplet patterning may influence droplet composition and, subsequently, cellular organization on a larger scale.
Collapse
Affiliation(s)
- Kelsey Gasior
- University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Road, Chapel Hill, North Carolina 27514, USA
| | - Jia Zhao
- Utah State University, Department of Mathematics & Statistics, Logan, Utah 84322, USA
| | - Grace McLaughlin
- University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Road, Chapel Hill, North Carolina 27514, USA
| | - M Gregory Forest
- University of North Carolina at Chapel Hill Department of Mathematics, 329 Phillips Hall CB #3250, Chapel Hill, North Carolina 27514, USA.,University of North Carolina at Chapel Hill & North Carolina State University Joint Department of Biomedical Engineering, 333 S Columbia Street, Chapel Hill, North Carolina 27514, USA.,University of North Carolina at Chapel Hill Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27514, USA
| | - Amy S Gladfelter
- University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Road, Chapel Hill, North Carolina 27514, USA
| | - Jay Newby
- Department of Mathematical and Statistical Sciences, CAB 632, University of Alberta, Edmonton, AB, Canada T6G 2G1
| |
Collapse
|
356
|
See YX, Wang BZ, Fullwood MJ. Chromatin Interactions and Regulatory Elements in Cancer: From Bench to Bedside. Trends Genet 2019; 35:145-158. [DOI: 10.1016/j.tig.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
|
357
|
|
358
|
Wong JTY. Architectural Organization of Dinoflagellate Liquid Crystalline Chromosomes. Microorganisms 2019; 7:microorganisms7020027. [PMID: 30678153 PMCID: PMC6406473 DOI: 10.3390/microorganisms7020027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Dinoflagellates have some of the largest genome sizes, but lack architectural nucleosomes. Their liquid crystalline chromosomes (LCCs) are the only non-architectural protein-mediated chromosome packaging systems, having high degrees of DNA superhelicity, liquid crystalline condensation and high levels of chromosomal divalent cations. Recent observations on the reversible decompaction–recompaction of higher-order structures implicated that LCCs are composed of superhelical modules (SPMs) comprising highly supercoiled DNA. Orientated polarizing light photomicrography suggested the presence of three compartments with different packaging DNA density in LCCs. Recent and previous biophysical data suggest that LCCs are composed of: (a) the highly birefringent inner core compartment (i) with a high-density columnar-hexagonal mesophase (CH-m); (b) the lower-density core surface compartment (ii.1) consisting of a spiraling chromonema; (c) the birefringent-negative periphery compartment (ii.2) comprising peripheral chromosomal loops. C(ii.1) and C(ii.2) are in dynamic equilibrium, and can merge into a single compartment during dinomitosis, regulated through multiphasic reversible soft-matter phase transitions.
Collapse
Affiliation(s)
- Joseph Tin Yum Wong
- Division of Life Science, Hong Kong University of Life Science, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
359
|
Maass PG, Barutcu AR, Rinn JL. Interchromosomal interactions: A genomic love story of kissing chromosomes. J Cell Biol 2019; 218:27-38. [PMID: 30181316 PMCID: PMC6314556 DOI: 10.1083/jcb.201806052] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 01/26/2023] Open
Abstract
Nuclei require a precise three- and four-dimensional organization of DNA to establish cell-specific gene-expression programs. Underscoring the importance of DNA topology, alterations to the nuclear architecture can perturb gene expression and result in disease states. More recently, it has become clear that not only intrachromosomal interactions, but also interchromosomal interactions, a less studied feature of chromosomes, are required for proper physiological gene-expression programs. Here, we review recent studies with emerging insights into where and why cross-chromosomal communication is relevant. Specifically, we discuss how long noncoding RNAs (lncRNAs) and three-dimensional gene positioning are involved in genome organization and how low-throughput (live-cell imaging) and high-throughput (Hi-C and SPRITE) techniques contribute to understand the fundamental properties of interchromosomal interactions.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
- University of Colorado, BioFrontiers, Department of Biochemistry, Boulder, CO
| |
Collapse
|
360
|
|
361
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
362
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
363
|
Nab3's localization to a nuclear granule in response to nutrient deprivation is determined by its essential prion-like domain. PLoS One 2018; 13:e0209195. [PMID: 30557374 PMCID: PMC6296506 DOI: 10.1371/journal.pone.0209195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are higher order assemblies of RNA, RNA-binding proteins, and other proteins, that regulate the transcriptome and protect RNAs from environmental challenge. There is a diverse range of RNP granules, many cytoplasmic, which provide various levels of regulation of RNA metabolism. Here we present evidence that the yeast transcription termination factor, Nab3, is targeted to intranuclear granules in response to glucose starvation by Nab3’s proline/glutamine-rich, prion-like domain (PrLD) which can assemble into amyloid in vitro. Localization to the granule is reversible and sensitive to the chemical probe 1,6 hexanediol suggesting condensation is driven by phase separation. Nab3’s RNA recognition motif is also required for localization as seen for other PrLD-containing RNA-binding proteins that phase separate. Although the PrLD is necessary, it is not sufficient to localize to the granule. A heterologous PrLD that functionally replaces Nab3’s essential PrLD, directed localization to the nuclear granule, however a chimeric Nab3 molecule with a heterologous PrLD that cannot restore termination function or viability, does not form granules. The Nab3 nuclear granule shows properties similar to well characterized cytoplasmic compartments formed by phase separation, suggesting that, as seen for other elements of the transcription machinery, termination factor condensation is functionally important.
Collapse
|
364
|
Cheng C, Spengler RM, Keiser MS, Monteys AM, Rieders JM, Ramachandran S, Davidson BL. The long non-coding RNA NEAT1 is elevated in polyglutamine repeat expansion diseases and protects from disease gene-dependent toxicities. Hum Mol Genet 2018; 27:4303-4314. [PMID: 30239724 PMCID: PMC6276831 DOI: 10.1093/hmg/ddy331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Polyglutamine (polyQ) repeat diseases are a class of neurodegenerative disorders caused by CAG-repeat expansion. There are diverse cellular mechanisms behind the pathogenesis of polyQ disorders, including transcriptional dysregulation. Interestingly, we find that levels of the long isoform of nuclear paraspeckle assembly transcript 1 (Neat1L) are elevated in the brains of mouse models of spinocerebellar ataxia types 1, 2, 7 and Huntington's disease (HD). Neat1L was also elevated in differentiated striatal neurons derived from HD knock-in mice and in HD patient brains. The elevation was mutant Huntingtin (mHTT) dependent, as knockdown of mHTT in vitro and in vivo restored Neat1L to normal levels. In additional studies, we found that Neat1L is repressed by methyl CpG binding protein 2 (MeCP2) by RNA-protein interaction but not by occupancy of MeCP2 at its promoter. We also found that NEAT1L overexpression protects from mHTT-induced cytotoxicity, while reducing it enhanced mHTT-dependent toxicity. Gene set enrichment analysis of previously published RNA sequencing data from mouse embryonic fibroblasts and cells derived from HD patients shows that loss of NEAT1L impairs multiple cellular functions, including pathways involved in cell proliferation and development. Intriguingly, the genes dysregulated in HD human brain samples overlap with pathways affected by a reduction in NEAT1, confirming the correlation of NEAT1L and HD-induced perturbations. Cumulatively, the role of NEAT1L in polyQ disease model systems and human tissues suggests that it may play a protective role in CAG-repeat expansion diseases.
Collapse
Affiliation(s)
- Congsheng Cheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan M Spengler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Megan S Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alejandro Mas Monteys
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julianne M Rieders
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shyam Ramachandran
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
365
|
Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis. Methods 2018; 155:30-40. [PMID: 30503825 DOI: 10.1016/j.ymeth.2018.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Transcripts have intrinsic propensity to form stable secondary structure that is fundamental to regulate RNA transcription, splicing, translation, RNA localization and turnover. Numerous methods that integrate chemical reactions with next-generation sequencing (NGS) have been applied to study in vivo RNA structure, providing new insights into RNA biology. Dimethyl sulfate (DMS) probing coupled with mutational profiling through NGS (DMS-MaPseq) is a newly developed method for revealing genome-wide or target-specific RNA structure. Herein, we present our experimental protocol of a modified DMS-MaPseq method for plant materials. The DMS treatment condition was optimized, and library preparation procedures were simplified. We also provided custom scripts for bioinformatic analysis of genome-wide DMS-MaPseq data. Bioinformatic results showed that our method could generate high-quality and reproducible data. Further, we assessed sequencing depth and coverage for genome-wide RNA structure profiling in Arabidopsis, and provided two examples of in vivo structure of mobile RNAs. We hope that our modified DMS-MaPseq method will serve as a powerful tool for analyzing in vivo RNA structurome in plants.
Collapse
|
366
|
André AAM, Spruijt E. Rigidity Rules in DNA Droplets: Nucleic Acid Flexibility Affects Model Membraneless Organelles. Biophys J 2018; 115:1837-1839. [PMID: 30322797 PMCID: PMC6303229 DOI: 10.1016/j.bpj.2018.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
367
|
Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci U S A 2018; 115:E11485-E11494. [PMID: 30442662 DOI: 10.1073/pnas.1811997115] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ubiquitin-like protein ubiquilin 2 (UBQLN2) has been genetically and pathologically linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but its normal cellular functions are not well understood. In a search for UBQLN2-interacting proteins, we found an enrichment of stress granule (SG) components, including ALS/FTD-linked heterogeneous ribonucleoprotein fused in sarcoma (FUS). Through the use of an optimized SG detection method, we observed UBQLN2 and its interactors at SGs. A low complexity, Sti1-like repeat region in UBQLN2 was sufficient for its localization to SGs. Functionally, UBQLN2 negatively regulated SG formation. UBQLN2 increased the dynamics of FUS-RNA interaction and promoted the fluidity of FUS-RNA complexes at a single-molecule level. This solubilizing effect corresponded to a dispersal of FUS liquid droplets in vitro and a suppression of FUS SG formation in cells. ALS-linked mutations in UBQLN2 reduced its association with FUS and impaired its function in regulating FUS-RNA complex dynamics and SG formation. These results reveal a previously unrecognized role for UBQLN2 in regulating the early stages of liquid-liquid phase separation by directly modulating the fluidity of protein-RNA complexes and the dynamics of SG formation.
Collapse
|
368
|
Langdon EM, Gladfelter AS. Probing RNA Structure in Liquid-Liquid Phase Separation Using SHAPE-MaP. Methods Enzymol 2018; 611:67-79. [PMID: 30471703 DOI: 10.1016/bs.mie.2018.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA is an integral component of many biological condensates. A variety of features of RNAs are linked to their function in biological phase separation. Length and negative charge provide fairly generic chemical inputs that drive condensation while sequence has been shown to influence both the molecular identity and biophysical properties of droplets. mRNA sequence guides the secondary structure of the polymers and RNA secondary structure licenses-specific RNA-RNA interactions and the recruitment of RNA-binding proteins. Here, we describe a method for directly probing the structure of mRNAs in the context of RNP-droplets formed via LLPS.
Collapse
Affiliation(s)
- Erin M Langdon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Marine Biological Laboratory, Woods Hole, MA, United States.
| |
Collapse
|
369
|
Evolution of weak cooperative interactions for biological specificity. Proc Natl Acad Sci U S A 2018; 115:E11053-E11060. [PMID: 30404915 PMCID: PMC6255166 DOI: 10.1073/pnas.1815912115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Functional specificity in biology is mediated by two classes of mechanisms, “lock–key” interactions and multivalent weak cooperative interactions (WCI). Despite growing evidence that WCI are widely prevalent in higher organisms, little is known about the selection forces that drove its evolution and repeated positive selection for mediating biological specificity in metazoa. We report that multivalent WCI for mediating biological specificity evolved as the number of tasks that organisms had to perform with functional specificity became large (e.g., multicellular organisms). We find that the evolution of multivalent WCI confer enhanced and robust evolvability to organisms, and thus it has been repeatedly positively selected. Thus, we provide insights on the evolution of WCI and, more broadly, on the evolution of evolvability. A hallmark of biological systems is that particular functions and outcomes are realized in specific contexts, such as when particular signals are received. One mechanism for mediating specificity is described by Fisher’s “lock and key” metaphor, exemplified by enzymes that bind selectively to a particular substrate via specific finely tuned interactions. Another mechanism, more prevalent in multicellular organisms, relies on multivalent weak cooperative interactions. Its importance has recently been illustrated by the recognition that liquid-liquid phase transitions underlie the formation of membraneless condensates that perform specific cellular functions. Based on computer simulations of an evolutionary model, we report that the latter mechanism likely became evolutionarily prominent when a large number of tasks had to be performed specifically for organisms to function properly. We find that the emergence of weak cooperative interactions for mediating specificity results in organisms that can evolve to accomplish new tasks with fewer, and likely less lethal, mutations. We argue that this makes the system more capable of undergoing evolutionary changes robustly, and thus this mechanism has been repeatedly positively selected in increasingly complex organisms. Specificity mediated by weak cooperative interactions results in some useful cross-reactivity for related tasks, but at the same time increases susceptibility to misregulation that might lead to pathologies.
Collapse
|
370
|
Szabó B, Murvai N, Abukhairan R, Schád É, Kardos J, Szeder B, Buday L, Tantos Á. Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding. Int J Mol Sci 2018; 19:ijms19113478. [PMID: 30400675 PMCID: PMC6274713 DOI: 10.3390/ijms19113478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important regulators of cellular processes and are extensively involved in the development of different cancers; including leukemias. As one of the accepted methods of lncRNA function is affecting chromatin structure; lncRNA binding has been shown for different chromatin modifiers. Histone lysine methyltransferases (HKMTs) are also subject of lncRNA regulation as demonstrated for example in the case of Polycomb Repressive Complex 2 (PRC2). Mixed Lineage Leukemia (MLL) proteins that catalyze the methylation of H3K4 have been implicated in several different cancers; yet many details of their regulation and targeting remain elusive. In this work we explored the RNA binding capability of two; so far uncharacterized regions of MLL4; with the aim of shedding light to the existence of possible regulatory lncRNA interactions of the protein. We demonstrated that both regions; one that contains a predicted RNA binding sequence and one that does not; are capable of binding to different RNA constructs in vitro. To our knowledge, these findings are the first to indicate that an MLL protein itself is capable of lncRNA binding.
Collapse
Affiliation(s)
- Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Nikoletta Murvai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
371
|
Ditlev JA, Case LB, Rosen MK. Who's In and Who's Out-Compositional Control of Biomolecular Condensates. J Mol Biol 2018; 430:4666-4684. [PMID: 30099028 PMCID: PMC6204295 DOI: 10.1016/j.jmb.2018.08.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid-liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
372
|
Drino A, Schaefer MR. RNAs, Phase Separation, and Membrane-Less Organelles: Are Post-Transcriptional Modifications Modulating Organelle Dynamics? Bioessays 2018; 40:e1800085. [PMID: 30370622 DOI: 10.1002/bies.201800085] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Membranous organelles allow sub-compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane-less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid-liquid phase separation (LLPS), and is primarily governed by the interactions of multi-domain proteins or proteins harboring intrinsically disordered regions as well as RNA-binding domains. Although the presence of RNAs affects the formation and dissolution of MLOs, it remains unclear how the properties of RNAs exactly contribute to these effects. Here, the authors review this emerging field, and explore how particular RNA properties can affect LLPS and the behavior of MLOs. It is suggested that post-transcriptional RNA modification systems could be contributors for dynamically modulating the assembly and dissolution of MLOs.
Collapse
Affiliation(s)
- Aleksej Drino
- Division of Cell and Developmental Biology, Medical University Vienna, Center for Anatomy and Cell Biology, Schwarzspanierstrasse 17, A-1090, Vienna, Austria
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Medical University Vienna, Center for Anatomy and Cell Biology, Schwarzspanierstrasse 17, A-1090, Vienna, Austria
| |
Collapse
|
373
|
Ivanyi-Nagy R, Ahmed SM, Peter S, Ramani PD, Ong PF, Dreesen O, Dröge P. The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis. eLife 2018; 7:40037. [PMID: 30355447 PMCID: PMC6249008 DOI: 10.7554/elife.40037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase RNA (TR) provides the template for DNA repeat synthesis at telomeres and is essential for genome stability in continuously dividing cells. We mapped the RNA interactome of human TR (hTR) and identified a set of non-coding and coding hTR-interacting RNAs, including the histone 1C mRNA (HIST1H1C). Disruption of the hTR-HIST1H1C RNA association resulted in markedly increased telomere elongation without affecting telomerase enzymatic activity. Conversely, over-expression of HIST1H1C led to telomere attrition. By using a combination of mutations to disentangle the effects of histone 1 RNA synthesis, protein expression, and hTR interaction, we show that HIST1H1C RNA negatively regulates telomere length independently of its protein coding potential. Taken together, our data provide important insights into a surprisingly complex hTR-RNA interaction network and define an unexpected non-coding RNA role for HIST1H1C in regulating telomere length homeostasis, thus offering a glimpse into the mostly uncharted, vast space of non-canonical messenger RNA functions.
Collapse
Affiliation(s)
- Roland Ivanyi-Nagy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Peh Fern Ong
- Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute Singapore, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
374
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
375
|
Nguyen TC, Zaleta-Rivera K, Huang X, Dai X, Zhong S. RNA, Action through Interactions. Trends Genet 2018; 34:867-882. [PMID: 30177410 DOI: 10.1016/j.tig.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
As transcription of the human genome is quite pervasive, it is possible that many novel functions of the noncoding genome have yet to be identified. Often the noncoding genome's functions are carried out by their RNA transcripts, which may rely on their structures and/or extensive interactions with other molecules. Recent technology developments are transforming the fields of RNA biology from studying one RNA at a time to transcriptome-wide mapping of structures and interactions. Here, we highlight the recent advances in transcriptome-wide RNA interaction analysis. These technologies revealed surprising versatility of RNA to participate in diverse molecular systems. For example, tens of thousands of RNA-RNA interactions have been revealed in cultured cells as well as in mouse brain, including interactions between transposon-produced transcripts and mRNAs. In addition, most transcription start sites in the human genome are associated with noncoding RNA transcribed from other genomic loci. These recent discoveries expanded our understanding of RNAs' roles in chromatin organization, gene regulation, and intracellular signaling.
Collapse
Affiliation(s)
- Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xuerui Huang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi Shi, Jiangsu Sheng, P.R. China.
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
376
|
Mittag T, Parker R. Multiple Modes of Protein-Protein Interactions Promote RNP Granule Assembly. J Mol Biol 2018; 430:4636-4649. [PMID: 30099026 DOI: 10.1016/j.jmb.2018.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Eukaryotic cells are known to contain a wide variety of RNA-protein assemblies, collectively referred to as RNP granules. RNP granules form from a combination of RNA-RNA, protein-RNA, and protein-protein interactions. In addition, RNP granules are enriched in proteins with intrinsically disordered regions (IDRs), which are frequently appended to a well-folded domain of the same protein. This structural organization of RNP granule components allows for a diverse set of protein-protein interactions including traditional structured interactions between well-folded domains, interactions of short linear motifs in IDRs with the surface of well-folded domains, interactions of short motifs within IDRs that weakly interact with related motifs, and weak interactions involving at most transient ordering of IDRs and folded domains with other components. In addition, both well-folded domains and IDRs in granule components frequently interact with RNA and thereby can contribute to RNP granule assembly. We discuss the contribution of these interactions to liquid-liquid phase separation and the possible role of phase separation in the assembly of RNP granules. We expect that these principles also apply to other non-membrane bound organelles and large assemblies in the cell.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Roy Parker
- Department of Chemistry and Biochemistry & Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, United States.
| |
Collapse
|
377
|
Seydoux G. The P Granules of C. elegans: A Genetic Model for the Study of RNA-Protein Condensates. J Mol Biol 2018; 430:4702-4710. [PMID: 30096346 DOI: 10.1016/j.jmb.2018.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023]
Abstract
P granules are RNA/protein condensates in the germline of Caenorhabditis elegans. Genetic analyses have begun to identify the proteins that regulate P granule assembly in the cytoplasm of zygotes. Among them, the RGG-domain protein PGL-3, the intrinsically disordered protein MEG-3, and the RNA helicase LAF-1 all bind and phase separate with RNA in vitro. We discuss how RNA-induced phase separation, competition with other RNA-binding proteins, and reversible phosphorylation contribute to the asymmetric localization of P granules in the cytoplasm of newly fertilized embryos. P granules contain RNA silencing complexes that monitor the germline transcriptome and may provide an RNA memory of germline gene expression across generations.
Collapse
Affiliation(s)
- Geraldine Seydoux
- Department of Molecular Biology and Genetics, HHMI, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
378
|
Myers N, Olender T, Savidor A, Levin Y, Reuven N, Shaul Y. The Disordered Landscape of the 20S Proteasome Substrates Reveals Tight Association with Phase Separated Granules. Proteomics 2018; 18:e1800076. [PMID: 30039638 DOI: 10.1002/pmic.201800076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Proteasomal degradation is the main route of regulated proteostasis. The 20S proteasome is the core particle (CP) responsible for the catalytic activity of all proteasome complexes. Structural constraints mean that only unfolded, extended polypeptide chains may enter the catalytic core of the 20S proteasome. It has been previously shown that the 20S CP is active in degradation of certain intrinsically disordered proteins (IDP) lacking structural constrains. Here, a comprehensive analysis of the 20S CP substrates in vitro is conducted. It is revealed that the 20S CP substrates are highly disordered. However, not all the IDPs are 20S CP substrates. The group of the IDPs that are 20S CP substrates, termed 20S-IDPome are characterized by having significantly more protein binding partners, more posttranslational modification sites, and are highly enriched for RNA binding proteins. The vast majority of them are involved in splicing, mRNA processing, and translation. Remarkably, it is found that low complexity proteins with prion-like domain (PrLD), which interact with GR or PR di-peptide repeats, are the most preferential 20S CP substrates. The finding suggests roles of the 20S CP in gene transcription and formation of phase-separated granules.
Collapse
Affiliation(s)
- Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| |
Collapse
|
379
|
Abstract
Eukaryotic cells organize their intracellular components into organelles that can be membrane-bound or membraneless. A large number of membraneless organelles, including nucleoli, Cajal bodies, P-bodies, and stress granules, exist as liquid droplets within the cell and arise from the condensation of cellular material in a process termed liquid-liquid phase separation (LLPS). Beyond a mere organizational tool, concentrating cellular components into membraneless organelles tunes biochemical reactions and improves cellular fitness during stress. In this review, we provide an overview of the molecular underpinnings of the formation and regulation of these membraneless organelles. This molecular understanding explains emergent properties of these membraneless organelles and shines new light on neurodegenerative diseases, which may originate from disturbances in LLPS and membraneless organelles.
Collapse
Affiliation(s)
- Edward Gomes
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James Shorter
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
380
|
Franzmann TM, Alberti S. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. J Biol Chem 2018; 294:7128-7136. [PMID: 29921587 DOI: 10.1074/jbc.tm118.001190] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many proteins, such as RNA-binding proteins, have complex folding landscapes. How cells maintain the solubility and folding state of such proteins, particularly under stress conditions, is largely unknown. Here, we argue that prion-like low-complexity regions (LCRs) are key regulators of protein solubility and folding. We discuss emerging evidence that prion-like LCRs are not, as commonly thought, autonomous aggregation modules that adopt amyloid-like conformations, but protein-specific sequences with chaperone-like functions. On the basis of recent findings, we propose that prion-like LCRs have evolved to regulate protein phase behavior and to protect proteins against proteotoxic damage.
Collapse
Affiliation(s)
- Titus M Franzmann
- From the Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- From the Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
381
|
|
382
|
Abstract
Intracellular environments are heterogeneous milieus comprised of macromolecules, osmolytes, and a range of assemblies that include membrane-bound organelles and membraneless biomolecular condensates. The latter are nonstoichiometric assemblies of protein and RNA molecules. They represent distinct phases and form via intracellular phase transitions. Here, we present insights from recent studies and provide a perspective on how phase transitions that lead to biomolecular condensates might contribute to cellular functions.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|