351
|
A novel 5-lipoxygenase-activating protein inhibitor, AM679, reduces inflammation in the respiratory syncytial virus-infected mouse eye. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1654-9. [PMID: 19759251 DOI: 10.1128/cvi.00220-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory syncytial virus (RSV) is an important cause of viral respiratory disease in children, and RSV bronchiolitis has been associated with the development of asthma in childhood. RSV spreads from the eye and nose to the human respiratory tract. Correlative studies of humans and direct infection studies of BALB/c mice have established the eye as a significant pathway of entry of RSV to the lung. At the same time, RSV infection of the eye produces symptoms resembling allergic conjunctivitis. Cysteinyl leukotrienes (CysLTs) are known promoters of allergy and inflammation, and the first step in their biogenesis from arachidonic acid is catalyzed by 5-lipoxygenase (5-LO) in concert with the 5-LO-activating protein (FLAP). We have recently developed a novel compound, AM679, which is a topically applied and potent inhibitor of FLAP. Here we show with the BALB/c mouse eye RSV infection model that AM679 markedly reduced the RSV-driven ocular pathology as well as the synthesis of CysLTs in the eye. In addition, AM679 decreased the production of the Th2 cell cytokine interleukin-4 but did not increase the viral load in the eye or the lung. These results suggest that FLAP inhibitors may be therapeutic for RSV-driven eye disease and possibly other inflammatory eye indications.
Collapse
|
352
|
Luongo C, Yang L, Winter CC, Spann KM, Murphy BR, Collins PL, Buchholz UJ. Codon stabilization analysis of the "248" temperature sensitive mutation for increased phenotypic stability of respiratory syncytial virus vaccine candidates. Vaccine 2009; 27:5667-76. [PMID: 19646406 DOI: 10.1016/j.vaccine.2009.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/18/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
Abstract
Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory tract illness worldwide. Presently, the most promising vaccine candidate is a live, attenuated, cDNA-derived virus, RSV rA2cp248/404/1030DeltaSH, whose attenuation phenotype is based in large part on a series of point mutations including a glutamine to leucine (Q to L) substitution at amino acid residue 831 of the polymerase protein L, a mutation originally called "248". This mutation specifies both a temperature sensitive (ts) and attenuation phenotype. Reversion of this mutation from leucine back to glutamine was detected in some samples in clinical phase 1 trials. To identify the most genetically stable "attenuating" codon at this position to be included in a more stable RSV vaccine, we sought to create and evaluate recombinant RSVs representing all 20 possible amino acid assignments at this position, as well as small insertions and deletions. The recoverable viruses constituted a panel representing 18 different amino acid assignments, and were evaluated for temperature sensitivity in vitro and attenuation in mice. The original leucine mutation was found to be the most attenuating, followed only by phenylalanine. The paucity of highly attenuating assignments limited the possibility of increasing genetic stability. Indeed, it was not possible to find a leucine or phenylalanine codon requiring more than a single nucleotide change to yield a "non-attenuating" codon, as is necessary for the stabilization strategy. Nonetheless, serial passage of the six possible leucine codons in vitro at increasing temperatures revealed differences, with slower reversion to non-attenuated phenotypes for a subset of codons. Thus, it should be possible to modestly increase the phenotypic stability of the rA2cp248/404/1030DeltaSH vaccine virus by codon modification at the locus of the 248 mutation. In addition to characterizing the phenotypes associated with a particular locus in the RSV L protein, this manuscript provides insight into the problem of the instability of point mutations and the limitations of strategies to stabilize them.
Collapse
Affiliation(s)
- Cindy Luongo
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-8007, USA
| | | | | | | | | | | | | |
Collapse
|
353
|
Miura TA, Holmes KV. Host-pathogen interactions during coronavirus infection of primary alveolar epithelial cells. J Leukoc Biol 2009; 86:1145-51. [PMID: 19638499 PMCID: PMC2774885 DOI: 10.1189/jlb.0209078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Innate immune responses in coronavirus infections of the respiratory tract are analyzed in primary differentiated airway and alveolar epithelial cells. Viruses that infect the lung are a significant cause of morbidity and mortality in animals and humans worldwide. Coronaviruses are being associated increasingly with severe diseases in the lower respiratory tract. Alveolar epithelial cells are an important target for coronavirus infection in the lung, and infected cells can initiate innate immune responses to viral infection. In this overview, we describe in vitro models of highly differentiated alveolar epithelial cells that are currently being used to study the innate immune response to coronavirus infection. We have shown that rat coronavirus infection of rat alveolar type I epithelial cells in vitro induces expression of CXC chemokines, which may recruit and activate neutrophils. Although neutrophils are recruited early in infection in several coronavirus models including rat coronavirus. However, their role in viral clearance and/or immune‐mediated tissue damage is not understood. Primary cultures of differentiated alveolar epithelial cells will be useful for identifying the interactions between coronaviruses and alveolar epithelial cells that influence the innate immune responses to infection in the lung. Understanding the molecular details of these interactions will be critical for the design of effective strategies to prevent and treat coronavirus infections in the lung.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
354
|
Shao HY, Yu SL, Sia C, Chen Y, Chitra E, Chen IH, Venkatesan N, Leng CH, Chong P, Chow YH. Immunogenic properties of RSV-B1 fusion (F) protein gene-encoding recombinant adenoviruses. Vaccine 2009; 27:5460-71. [PMID: 19622401 DOI: 10.1016/j.vaccine.2009.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/16/2009] [Accepted: 07/01/2009] [Indexed: 12/29/2022]
Abstract
Two recombinant adenoviruses designated rAd-F0DeltaTM and rAd-F0 carrying the transmembrane truncated and full length of the F gene of the RSV-B1 strain, respectively, were engineered. Comparative immunogenicity studies in BALB/c mice showed that each vector was capable of inducing RSV-B1-specific antibodies that cross-reacted with the RSV-long and RSV-A2 viruses. The anti-RSV-B1 antibodies were neutralizing, and exhibited strong cross-neutralizing activity against the RSV-long and RSV-A2 isolates as well. Analysis of the cellular responses revealed that animals immunized with rAd-F0DeltaTM and rAd-F0 elicited CD4(+) T-cell responses of the Th1 and Th2 phenotypes, as well as F protein-specific CTLs. Production of Th2 cytokines (IL-4, IL-5 and IL-13) by splenocytes of the rAd-F0DeltaTM and rAd-F0 immunized mice was markedly lower than those released by animals administered with heat-inactivated RSV-B1 (HIRSV-B1). Comparison of the overall humoral and cellular responses suggests that rAd-F0DeltaTM is significantly more immunogenic than rAd-F0. The anti-viral immunity generated by both recombinant adenovirus vectors has conferred protection against live RSV-B1 challenge as judged by the lower viral load recovered in the lungs, a faster rate of recovery of body weight loss, and a lower count of eosinophils as compared to eosinophilia in mice immunized with HIRSV-B1. Results from these studies suggest that rAd-F0DeltaTM or rAd-F0 possess immunogenic properties that meet the requirements expected from potential RSV vaccine candidates.
Collapse
Affiliation(s)
- Hsiao-Yun Shao
- Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Gene expression of nucleic acid-sensing pattern recognition receptors in children hospitalized for respiratory syncytial virus-associated acute bronchiolitis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:816-23. [PMID: 19386802 DOI: 10.1128/cvi.00445-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Given the critical role of pattern recognition receptors (PRRs) in acid nucleic recognition in the initiation of innate immunity and the orchestration of adaptive immunity, the aim of this study was to determine whether any heterogeneity of PRR expression in the airway tracts of infants with respiratory syncytial virus (RSV) infection might explain the broad clinical spectrum of RSV-associated bronchiolitis in infants. For this purpose, the levels of melanoma differentiation-associated protein-5 (MDA-5), retinoic acid inducible gene-1 (RIG-1), and Toll-like receptor 3 (TLR-3), TLR-7, TLR-8, and TLR-9 mRNAs were evaluated, using TaqMan quantitative reverse transcription-PCR, in cells from nasopharyngeal washes collected from 157 infants suffering from acute bronchiolitis whether or not they were associated with respiratory viruses. High interindividual variability was observed in both virus-positive and -negative infants; however, the relative gene expression levels of MDA-5, RIG-1, TLR-7, and TLR-8 were significantly higher in the virus-infected group, whereas the expression levels of TLR-3 and TLR-9 were not significantly different. The differences in the gene expression of MDA-5, RIG-1, TLR-7, and TLR-8 were more evident in infants with RSV infection than in those with bocavirus or rhinovirus infection. In RSV-infected infants, PRR-mRNA levels also were analyzed in relation to interferon protein levels, viral load, clinical severity, days of hospitalization, age, and body weight. A significant positive correlation was observed only between RSV viral load and RIG-1 mRNA levels. These findings provide the first direct evidence that, in infants with respiratory virus-associated bronchiolitis, especially RSV, there are substantial changes in PRR gene expression; this likely is an important determinant of the clinical outcome of bronchiolitis.
Collapse
|
356
|
Song W, Liu G, Bosworth CA, Walker JR, Megaw GA, Lazrak A, Abraham E, Sullender WM, Matalon S. Respiratory syncytial virus inhibits lung epithelial Na+ channels by up-regulating inducible nitric-oxide synthase. J Biol Chem 2009; 284:7294-306. [PMID: 19131335 PMCID: PMC2652346 DOI: 10.1074/jbc.m806816200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/06/2009] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection has been shown to reduce Na+-driven alveolar fluid clearance in BALB/c mice in vivo. To investigate the cellular mechanisms by which RSV inhibits amiloride-sensitive epithelial Na+ channels (ENaC), the main pathways through which Na+ ions enter lung epithelial cells, we infected human Clara-like lung (H441) cells with RSV that expresses green fluorescent protein (rRA2). 3-6 days later patch clamp recordings showed that infected cells (i.e. cells expressing green fluorescence; GFP+) had significantly lower whole-cell amiloride-sensitive currents and single channel activity (NPo) as compared with non-infected (GFP-), non-inoculated, or cells infected with UV-inactivated RSV. Both alpha and beta ENaC mRNA levels were significantly reduced in GFP+ cells as measured by real-time reverse transcription-PCR. Infection with RSV increased expression of the inducible nitric-oxide synthase (iNOS) and nitrite concentration in the culture medium; nuclear translocation of NF-kappaB p65 subunit and NF-kappaB activation were also up-regulated. iNOS up-regulation in GFP+ cells was prevented by knocking down IkappaB kinase gamma before infection. Furthermore, pretreatment of H441 cells with the specific iNOS inhibitor 1400W (1 microM) resulted in a doubling of the amiloride-sensitive Na+ current in GFP+ cells. Additionally, preincubation of H441 cells with A77-1726 (20 microM), a de novo UTP synthesis inhibitor, and 1400W completely reversed the RSV inhibition of amiloride-sensitive currents in GFP+ cells. Thus, both UTP- and iNOS-generated reactive species contribute to ENaC down-regulation in RSV-infected airway epithelial cells.
Collapse
Affiliation(s)
- Weifeng Song
- Department of Anesthesiology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Characterization of respiratory syncytial virus M- and M2-specific CD4 T cells in a murine model. J Virol 2009; 83:4934-41. [PMID: 19264776 DOI: 10.1128/jvi.02140-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M(213-223) (FKYIKPQSQFI) and M2(27-37) (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-gamma), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-A(b)-restricted pattern. Construction of fluorochrome-conjugated peptide-I-A(b) class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-gamma expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M(209-223) peptide-activated CD4 T cells reduced IFN-gamma and IL-2 production in M- and M2-specific CD8 T-cell responses to D(b)-M(187-195) and K(d)-M2(82-90) peptides more than M2(25-39) peptide-stimulated CD4 T cells. This correlated with the fact that I-A(b)-M(209-223) tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-A(b)-M2(26-39) tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-A(b) tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.
Collapse
|
358
|
Human PIV-2 recombinant Sendai virus (rSeV) elicits durable immunity and combines with two additional rSeVs to protect against hPIV-1, hPIV-2, hPIV-3, and RSV. Vaccine 2009; 27:1848-57. [PMID: 19200447 DOI: 10.1016/j.vaccine.2009.01.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/12/2009] [Accepted: 01/14/2009] [Indexed: 01/15/2023]
Abstract
The human parainfluenza viruses (hPIVs) and respiratory syncytial viruses (RSVs) are the leading causes of hospitalizations due to respiratory viral disease in infants and young children, but no vaccines are yet available. Here we describe the use of recombinant Sendai viruses (rSeVs) as candidate vaccine vectors for these respiratory viruses in a cotton rat model. Two new Sendai virus (SeV)-based hPIV-2 vaccine constructs were generated by inserting the fusion (F) gene or the hemagglutinin-neuraminidase (HN) gene from hPIV-2 into the rSeV genome. The inoculation of either vaccine into cotton rats elicited neutralizing antibodies toward both homologous and heterologous hPIV-2 virus isolates. The vaccines elicited robust and durable antibodies toward hPIV-2, and cotton rats immunized with individual or mixed vaccines were fully protected against hPIV-2 infections of the lower respiratory tract. The immune responses toward a single inoculation with rSeV vaccines were long-lasting and cotton rats were protected against viral challenge for as long as 11 months after vaccination. One inoculation with a mixture of the hPIV-2-HN-expressing construct and two additional rSeVs (expressing the F protein of RSV and the HN protein of hPIV-3) resulted in protection against challenge viruses hPIV-1, hPIV-2, hPIV-3, and RSV. Results identify SeV vectors as promising vaccine candidates for four different paramyxoviruses, each responsible for serious respiratory infections in children.
Collapse
|
359
|
Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities. J Virol 2009; 83:3019-28. [PMID: 19153229 DOI: 10.1128/jvi.00036-09] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In addition to regulating autoimmunity and antitumor immunity, CD4(+) CD25(+) FoxP3(+) natural regulatory T (Treg) cells are global regulators of adaptive immune responses. Depletion of these cells with the anti-CD25 antibody PC61 prior to primary respiratory syncytial virus (RSV) infection was partial but had several effects on the RSV-specific CD8(+) response in a hybrid mouse model. Mediastinal lymph node and spleen epitope-specific CD8(+) T-cell responses were enhanced in Treg-cell-depleted mice at all time points following infection, but responses of Treg-cell-depleted lung show a strikingly different pattern than lymphoid organ responses, with an initial delay in the CD8(+) T-cell response. The delay in the CD8(+) T-cell response correlated with a delay both in the early phase of viral clearance and in illness in Treg-cell-depleted mice compared to isotype-treated controls. The lungs of Treg-cell-depleted mice were shown to have increased lung chemokine and cytokine levels 7 days postinfection despite lower CD8(+) T-cell responses. Following the early delay in the lung response, CD8(+) T-cell responses at later infection time points were enhanced and increased the severity of illness in depleted mice. Finally, decreasing regulatory T-cell control of the CD8(+) T-cell response had a greater effect on response of the dominant K(d)-restricted M2 epitope consisting of amino acids 82 to 90 (K(d)M2(82-90)) than on the subdominant D(b)M(187-195) epitope response, indicating that regulatory T cells modulate immunodominance disparities in epitope-specific CD8(+) T-cell responses following primary RSV infection.
Collapse
|
360
|
Estripeaut D, Torres JP, Somers CS, Tagliabue C, Khokhar S, Bhoj VG, Grube SM, Wozniakowski A, Gomez AM, Ramilo O, Jafri HS, Mejias A. Respiratory syncytial virus persistence in the lungs correlates with airway hyperreactivity in the mouse model. J Infect Dis 2009; 198:1435-43. [PMID: 18828742 DOI: 10.1086/592714] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies in mice showed that respiratory syncytial virus (RSV) infection was associated with RSV RNA persistence. This study was designed to characterize the significance of RSV RNA persistence and its relation to RSV-induced chronic airway disease. METHODS Mice were inoculated with live RSV, UV light-treated RSV, heat-inactivated RSV, or medium. Bronchoalveolar lavage fluid samples were obtained and lung specimens were harvested on days 1, 5, and 42 after inoculation to assess lung inflammation, lung mRNA expression of interleukin (IL)-4, IL-5, IL-15, and interferon (IFN)-gamma; RSV loads were assessed by culture and real-time polymerase chain reaction (PCR) and correlated with pulmonary function. RESULTS During the acute phase of infection, RSV loads as indicated by culture and PCR were significantly higher in mice inoculated with live RSV. On day 42, RSV RNA remained detectable only in mice inoculated with live or UV light-treated RSV. Lung inflammation, IFN-gamma:IL-4 mRNA expression ratios, airway obstruction (AO), and airway hyperreactivity (AHR) were significantly increased in mice inoculated with live RSV. AO on day 5 and AHR on day 42 were significantly correlated with RSV RNA copy number in lung samples. CONCLUSIONS Infection with live RSV induced acute and chronic airway disease that was associated with a predominantly Th-1 immune response and RSV RNA persistence that significantly correlated with pulmonary function abnormalities.
Collapse
Affiliation(s)
- Dora Estripeaut
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children's Medical Center Dallas, Texas 75390-9063, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3. Virology 2009; 385:169-82. [PMID: 19128816 DOI: 10.1016/j.virol.2008.11.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/08/2008] [Accepted: 11/25/2008] [Indexed: 12/25/2022]
Abstract
Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza virus type 3 (HPIV3) are common, important respiratory pathogens, but HRSV has a substantially greater impact with regard to acute disease, long-term effects on airway function, and frequency of re-infection. It has been reported to strongly interfere with the functioning of dendritic cells (DC). We compared HRSV to HMPV and HPIV3 with regard to their effects on human monocyte-derived immature DC (IDC). Side-by-side analysis distinguished between common effects versus those specific to individual viruses. The use of GFP-expressing viruses yielded clear identification of robustly infected cells and provided the means to distinguish between direct effects of robust viral gene expression versus bystander effects. All three viruses infected inefficiently based on GFP expression, with considerable donor-to donor-variability. The GFP-negative cells exhibited low, abortive levels of viral RNA synthesis. The three viruses induced low-to-moderate levels of DC maturation and cytokine/chemokine responses, increasing slightly in the order HRSV, HMPV, and HPIV3. Infection at the individual cell level was relatively benign, such that in general GFP-positive cells were neither more nor less able to mature compared to GFP-negative bystanders, and cells were responsive to a secondary treatment with lipopolysaccharide, indicating that the ability to mature was not impaired. However, there was a single exception, namely that HPIV3 down-regulated CD38 expression at the RNA level. Maturation by these viruses was anti-apoptotic. Inefficient infection of IDC and sub-optimal maturation might result in reduced immune responses, but these effects would be common to all three viruses rather than specific to HRSV.
Collapse
|
362
|
Deletion of nonstructural proteins NS1 and NS2 from pneumonia virus of mice attenuates viral replication and reduces pulmonary cytokine expression and disease. J Virol 2008; 83:1969-80. [PMID: 19052095 DOI: 10.1128/jvi.02041-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pneumonia virus of mice (PVM) strain 15 causes fatal pneumonia in mice and provides a convenient model for human respiratory syncytial virus pathogenesis and immunobiology. We prepared PVM mutants lacking the genes for nonstructural proteins NS1 and/or NS2. In Vero cells, which lack type I interferon (IFN), deletion of these proteins had no effect on the efficiency of virus growth. In IFN-competent mouse embryo fibroblasts, wild-type (wt) PVM and the DeltaNS1 virus grew efficiently and strongly inhibited the IFN response, whereas virus lacking NS2 was highly attenuated and induced high levels of IFN and IFN-inducible genes. In BALB/c mice, intranasal infection with wt PVM caused overt disease that began on day 6 and was lethal by day 9 postinoculation. In comparison, DeltaNS1 induced transient, reduced disease, and DeltaNS2 and DeltaNS12 caused no disease. Thus, NS1 and NS2 are virulence factors, with NS2 being a major antagonist of the type I IFN system. The pulmonary titers of wt PVM and DeltaNS1 were high on day 3 and increased further by day 6; in addition, expression of IFN and representative proinflammatory cytokines/chemokines and T lymphocyte-related cytokines was undetectable on day 3 but increased dramatically by day 6 coincident with the onset of disease. The titers of DeltaNS2 and DeltaNS12 were somewhat lower on day 3 and decreased further by day 6; in addition, these viruses induced a more circumscribed set of cytokines/chemokines (IFN, interleukin-6 [IL-6], and CXCL10) that were detected on day 3 and had largely subsided by day 6. Lung immunohistology revealed abundant PVM-positive pneumocytes and bronchial and bronchiolar epithelial cells in wt PVM- and DeltaNS1-infected mice on day 6 compared to few PVM-positive foci with DeltaNS2 and DeltaNS12. These results indicate that severe PVM disease is associated with high, poorly controlled virus replication driving the expression of high levels of pulmonary IFN and a broad array of cytokines/chemokines. In contrast, in the absence of NS2, there was an early, transient innate response involving moderate levels of IFN, IL-6, and CXCL10 that restricted virus replication and prevented disease.
Collapse
|
363
|
Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J Virol 2008; 82:8780-96. [PMID: 18562519 DOI: 10.1128/jvi.00630-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most important agent of serious pediatric respiratory tract disease worldwide. One of the main characteristics of RSV is that it readily reinfects and causes disease throughout life without the need for significant antigenic change. The virus encodes nonstructural protein 1 (NS1) and NS2, which are known to suppress type I interferon (IFN) production and signaling. In the present study, we monitored the maturation of human monocyte-derived myeloid dendritic cells (DC) following inoculation with recombinant RSVs bearing deletions of the NS1 and/or NS2 proteins and expressing enhanced green fluorescent protein. Deletion of the NS1 protein resulted in increased expression of cell surface markers of DC maturation and an increase in the expression of multiple cytokines and chemokines. This effect was enhanced somewhat by further deletion of the NS2 protein, although deletion of NS2 alone did not have a significant effect. The upregulation was largely inhibited by pretreatment with a blocking antibody against the type I IFN receptor, suggesting that suppression of DC maturation by NS1/2 is, at least in part, a result of IFN antagonism mediated by these proteins. Therefore, this study identified another effect of the NS1 and NS2 proteins. The observed suppression of DC maturation may result in decreased antigen presentation and T-lymphocyte activation, leading to incomplete and/or weak immune responses that might contribute to RSV reinfection.
Collapse
|