351
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
352
|
Huo Y, Wang M, Wei Y, Xia Z. Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco. FRONTIERS IN PLANT SCIENCE 2015; 6:1223. [PMID: 26793207 PMCID: PMC4709446 DOI: 10.3389/fpls.2015.01223] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/18/2015] [Indexed: 05/20/2023]
Abstract
The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde, and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn), stomatal conductance (Gs), and the maximal photochemical efficiency of PSII (Fv/Fm) during drought stress; indicating that OE of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing reactive oxygen species accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops.
Collapse
|
353
|
|
354
|
Wang Y, Zeng L, Xing D. ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2. FRONTIERS IN PLANT SCIENCE 2015; 6:777. [PMID: 26483802 PMCID: PMC4586435 DOI: 10.3389/fpls.2015.00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/10/2015] [Indexed: 05/20/2023]
Abstract
As a member of the Immunophilin family, cyclophilin38 (CYP38) is discovered to be localized in the thylakoid lumen, and is reported to be a participant in the function regulation of thylakoid membrane protein. However, the molecule mechanisms remain unclear. We found that, CYP38 plays an important role in the process of regulating and protecting the plant to resist high light (HL) stress. Under HL condition, the gene expression of CYP38 is enhanced, and if CYP38 gene is deficient, photochemistry efficiency, and chlorophyll content falls distinctly, and excessive reactive oxygen species synthesis occurs in the chloroplast. Western blot results showed that the D1 degradation rate of cyp38 mutant plants is faster than that of wide type plants. Interestingly, both gene expression and activity of PsbO2 were drastically enhanced in cyp38 mutant plants and less changed when the deleted gene of CYP38 was restored under HL treatment. This indicates that CYP38 may impose a negative regulation effect on PsbO2, which exerts a positive regulation effect in facilitating the dephosphorylation and subsequent degradation of D1. It is also found that, under HL condition, the cytoplasmic calcium ([Ca(2+)]cyt) concentration and the gene expression level of calmodulin 3 (CaM3) arose markedly, which occurs upstream of CYP38 gene expression. In conclusion, our results indicate that CYP38 plays an important role in plant strengthening HL resistibility, which provides a new insight in the research of mechanisms of CYP38 protein in plants.
Collapse
Affiliation(s)
| | | | - Da Xing
- *Correspondence: Da Xing, MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Shipai, Tianhe District, Guangzhou 510631, China,
| |
Collapse
|
355
|
Karapetyan NV, Bolychevtseva YV, Yurina NP, Terekhova IV, Shubin VV, Brecht M. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. BIOCHEMISTRY (MOSCOW) 2014; 79:213-20. [PMID: 24821447 DOI: 10.1134/s0006297914030067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.
Collapse
Affiliation(s)
- N V Karapetyan
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | | | |
Collapse
|
356
|
Santabarbara S, Agostini A, Casazza AP, Zucchelli G, Carbonera D. Carotenoid triplet states in photosystem II: coupling with low-energy states of the core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:262-275. [PMID: 25481107 DOI: 10.1016/j.bbabio.2014.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
The photo-excited triplet states of carotenoids, sensitised by triplet-triplet energy transfer from the chlorophyll triplet states, have been investigated in the isolated Photosystem II (PSII) core complex and PSII-LHCII (Light Harvesting Complex II) supercomplex by Optically Detected Magnetic Resonance techniques, using both fluorescence (FDMR) and absorption (ADMR) detection. The absence of Photosystem I allows us to reach the full assignment of the carotenoid triplet states populated in PSII under steady state illumination at low temperature. Five carotenoid triplet ((3)Car) populations were identified in PSII-LHCII, and four in the PSII core complex. Thus, four (3)Car populations are attributed to β-carotene molecules bound to the core complex. All of them show associated fluorescence emission maxima which are relatively red-shifted with respect to the bulk emission of both the PSII-LHCII and the isolated core complexes. In particular the two populations characterised by Zero Field Splitting parameters |D|=0.0370-0.0373 cm(-1)/|E|=0.00373-0.00375 cm(-1) and |D|=0.0381-0.0385 cm(-1)/|E|=0.00393-0.00389 cm(-1), are coupled by singlet energy transfer with chlorophylls which have a red-shifted emission peaking at 705 nm. This observation supports previous suggestions that pointed towards the presence of long-wavelength chlorophyll spectral forms in the PSII core complex. The fifth (3)Car component is observed only in the PSII-LHCII supercomplex and is then assigned to the peripheral light harvesting system.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
357
|
Dall'Osto L, Ünlü C, Cazzaniga S, van Amerongen H. Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1981-1988. [DOI: 10.1016/j.bbabio.2014.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
358
|
Christ B, Egert A, Süssenbacher I, Kräutler B, Bartels D, Peters S, Hörtensteiner S. Water deficit induces chlorophyll degradation via the 'PAO/phyllobilin' pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants. PLANT, CELL & ENVIRONMENT 2014; 37:2521-31. [PMID: 24697723 DOI: 10.1111/pce.12308] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Angiosperm resurrection plants exhibit poikilo- or homoiochlorophylly as a response to water deficit. Both strategies are generally considered as effective mechanisms to reduce oxidative stress associated with photosynthetic activity under water deficiency. The mechanism of water deficit-induced chlorophyll (Chl) degradation in resurrection plants is unknown but has previously been suggested to occur as a result of non-enzymatic photooxidation. We investigated Chl degradation during dehydration in both poikilochlorophyllous (Xerophyta viscosa) and homoiochlorophyllous (Craterostigma pumilum) species. We demonstrate an increase in the abundance of PHEOPHORBIDE a OXYGENASE (PAO), a key enzyme of Chl breakdown, together with an accumulation of phyllobilins, that is, products of PAO-dependent Chl breakdown, in both species. Phyllobilins and PAO levels diminished again in leaves from rehydrated plants. We conclude that water deficit-induced poikilochlorophylly occurs via the well-characterized PAO/phyllobilin pathway of Chl breakdown and that this mechanism also appears conserved in a resurrection species displaying homoiochlorophylly. The roles of the PAO/phyllobilin pathway during different plant developmental processes that involve Chl breakdown, such as leaf senescence and desiccation, fruit ripening and seed maturation, are discussed.
Collapse
Affiliation(s)
- Bastien Christ
- Institute of Plant Biology, Molecular Plant Physiology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
359
|
Supur M, Kawashima Y, Ma YX, Ohkubo K, Chen CF, Fukuzumi S. Long-lived charge separation in a rigid pentiptycene bis(crown ether)–Li+@C60host–guest complex. Chem Commun (Camb) 2014; 50:15796-8. [DOI: 10.1039/c4cc07795d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
360
|
Askerka M, Wang J, Brudvig GW, Batista VS. Structural changes in the oxygen-evolving complex of photosystem II induced by the S1 to S2 transition: A combined XRD and QM/MM study. Biochemistry 2014; 53:6860-2. [PMID: 25347729 PMCID: PMC4230327 DOI: 10.1021/bi5011915] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The S1 → S2 transition of the oxygen-evolving
complex (OEC) of photosystem II does not involve the transfer of a
proton to the lumen and occurs at cryogenic temperatures. Therefore,
it is commonly thought to involve only Mn oxidation without any significant
change in the structure of the OEC. Here, we analyze structural changes
upon the S1 → S2 transition, as revealed
by quantum mechanics/molecular mechanics methods and the isomorphous
difference Fourier method applied to serial femtosecond X-ray diffraction
data. We find that the main structural change in the OEC is in the
position of the dangling Mn and its coordination environment.
Collapse
Affiliation(s)
- Mikhail Askerka
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | | | | | | |
Collapse
|
361
|
Lin YP, Lee TY, Tanaka A, Charng YY. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:14-26. [PMID: 25041167 DOI: 10.1111/tpj.12611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/08/2023]
Abstract
Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | | | | | | |
Collapse
|
362
|
LeBlanc G, Gizzie E, Yang S, Cliffel DE, Jennings GK. Photosystem I protein films at electrode surfaces for solar energy conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10990-11001. [PMID: 24576007 DOI: 10.1021/la500129q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the course of a few billion years, nature has developed extraordinary nanomaterials for the efficient conversion of solar energy into chemical energy. One of these materials, photosystem I (PSI), functions as a photodiode capable of generating a charge separation with nearly perfect quantum efficiency. Because of the favorable properties and natural abundance of PSI, researchers around the world have begun to study how this protein complex can be integrated into modern solar energy conversion devices. This feature article describes some of the recent materials and methods that have led to dramatic improvements (over several orders of magnitude) in the photocurrents and photovoltages of biohybrid electrodes based on PSI, with an emphasis on the research activities in our laboratory.
Collapse
Affiliation(s)
- Gabriel LeBlanc
- Departments of †Chemistry and ‡Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | | |
Collapse
|
363
|
Shim Y, Young RM, Douvalis AP, Dyar SM, Yuhas BD, Bakas T, Wasielewski MR, Kanatzidis MG. Enhanced Photochemical Hydrogen Evolution from Fe4S4-Based Biomimetic Chalcogels Containing M2+ (M = Pt, Zn, Co, Ni, Sn) Centers. J Am Chem Soc 2014; 136:13371-80. [DOI: 10.1021/ja507297p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yurina Shim
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan M. Young
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Scott M. Dyar
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin D. Yuhas
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas Bakas
- Department
of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Michael R. Wasielewski
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G. Kanatzidis
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
364
|
Joaquín-Ramos A, Huerta-Ocampo JÁ, Barrera-Pacheco A, De León-Rodríguez A, Baginsky S, Barba de la Rosa AP. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1423-1435. [PMID: 25046763 DOI: 10.1016/j.jplph.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant.
Collapse
Affiliation(s)
- Ahuitzolt Joaquín-Ramos
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - José Á Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Alberto Barrera-Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Antonio De León-Rodríguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Sacha Baginsky
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie, Abteilung Pflanzenbiochemie, Weinbergweg 22 (Biozentrum), 06120 Halle (Saale), Germany
| | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico.
| |
Collapse
|
365
|
|
366
|
Wang L, Zhang C, Zhao J. Location and function of the high-affinity chloride in the oxygen-evolving complex – Implications from comparing studies on Cl−/Br−/I−-substituted photosystem II prepared using two different methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:249-55. [DOI: 10.1016/j.jphotobiol.2014.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
|
367
|
Tikhonov AN. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:163-83. [PMID: 24485217 DOI: 10.1016/j.plaphy.2013.12.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI).
Collapse
|
368
|
Carmeli I, Senthil Kumar K, Heifler O, Carmeli C, Naaman R. Spin selectivity in electron transfer in photosystem I. Angew Chem Int Ed Engl 2014; 53:8953-8. [PMID: 24989350 DOI: 10.1002/anie.201404382] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 11/12/2022]
Abstract
Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons' spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high-spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300 K and vanishes at temperatures below about 150 K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high-spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology.
Collapse
Affiliation(s)
- Itai Carmeli
- Department of Chemical Physics, The Weizmann Institute, Rehovot 76100 (Israel)
| | | | | | | | | |
Collapse
|
369
|
Carmeli I, Kumar KS, Heifler O, Carmeli C, Naaman R. Spin Selectivity in Electron Transfer in Photosystem I. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
370
|
DePaoli HC, Borland AM, Tuskan GA, Cushman JC, Yang X. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3381-93. [PMID: 24567493 DOI: 10.1093/jxb/eru038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering.
Collapse
Affiliation(s)
- Henrique C DePaoli
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Anne M Borland
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA School of Biology, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Gerald A Tuskan
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Xiaohan Yang
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| |
Collapse
|
371
|
Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA. A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex. J Phys Chem B 2014; 118:6614-25. [PMID: 24867491 PMCID: PMC4067154 DOI: 10.1021/jp501165k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
cytochrome b6f complex,
a member of the cytochrome bc family that
mediates energy transduction in photosynthetic and respiratory membranes,
is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane
electron transfer, quinone oxidation–reduction, and generation
of a proton electrochemical potential. Analysis of electron storage
in this pathway, utilizing simultaneous measurement of heme reduction,
and of circular dichroism (CD) spectra, to assay heme–heme
interactions, implies a heterogeneous distribution of the dielectric
constants that mediate electrostatic interactions between the four
hemes in the complex. Crystallographic information was used to determine
the identity of the interacting hemes. The Soret band CD signal is
dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides
of the complex. Kinetic data imply that the most probable pathway
for transfer of the two electrons needed for quinone oxidation–reduction
utilizes this intramonomer heme pair, contradicting the expectation
based on heme redox potentials and thermodynamics, that the two higher
potential hemes bn on different monomers
would be preferentially reduced. Energetically preferred intramonomer
electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric
constants. Relative to the medium separating the two higher potential
hemes bn, a relatively large dielectric
constant must exist between the intramonomer b-hemes,
allowing a smaller electrostatic repulsion between the reduced hemes.
Heterogeneity of dielectric constants is an additional structure–function
parameter of membrane protein complexes.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences and ‡Department of Physics, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
372
|
Tomizioli M, Lazar C, Brugière S, Burger T, Salvi D, Gatto L, Moyet L, Breckels LM, Hesse AM, Lilley KS, Seigneurin-Berny D, Finazzi G, Rolland N, Ferro M. Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 2014; 13:2147-67. [PMID: 24872594 DOI: 10.1074/mcp.m114.040923] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Photosynthesis has shaped atmospheric and ocean chemistries and probably changed the climate as well, as oxygen is released from water as part of the photosynthetic process. In photosynthetic eukaryotes, this process occurs in the chloroplast, an organelle containing the most abundant biological membrane, the thylakoids. The thylakoids of plants and some green algae are structurally inhomogeneous, consisting of two main domains: the grana, which are piles of membranes gathered by stacking forces, and the stroma-lamellae, which are unstacked thylakoids connecting the grana. The major photosynthetic complexes are unevenly distributed within these compartments because of steric and electrostatic constraints. Although proteomic analysis of thylakoids has been instrumental to define its protein components, no extensive proteomic study of subthylakoid localization of proteins in the BBY (grana) and the stroma-lamellae fractions has been achieved so far. To fill this gap, we performed a complete survey of the protein composition of these thylakoid subcompartments using thylakoid membrane fractionations. We employed semiquantitative proteomics coupled with a data analysis pipeline and manual annotation to differentiate genuine BBY and stroma-lamellae proteins from possible contaminants. About 300 thylakoid (or potentially thylakoid) proteins were shown to be enriched in either the BBY or the stroma-lamellae fractions. Overall, present findings corroborate previous observations obtained for photosynthetic proteins that used nonproteomic approaches. The originality of the present proteomic relies in the identification of photosynthetic proteins whose differential distribution in the thylakoid subcompartments might explain already observed phenomenon such as LHCII docking. Besides, from the present localization results we can suggest new molecular actors for photosynthesis-linked activities. For instance, most PsbP-like subunits being differently localized in stroma-lamellae, these proteins could be linked to the PSI-NDH complex in the context of cyclic electron flow around PSI. In addition, we could identify about a hundred new likely minor thylakoid (or chloroplast) proteins, some of them being potential regulators of the chloroplast physiology.
Collapse
Affiliation(s)
- Martino Tomizioli
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Cosmin Lazar
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Sabine Brugière
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Thomas Burger
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France; §§CNRS, FR3425, F-38054 Grenoble, France
| | - Daniel Salvi
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Laurent Gatto
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Lucas Moyet
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Lisa M Breckels
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Anne-Marie Hesse
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Kathryn S Lilley
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Daphné Seigneurin-Berny
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Giovanni Finazzi
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Norbert Rolland
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France;
| | - Myriam Ferro
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France;
| |
Collapse
|
373
|
Kuroda H, Kodama N, Sun XY, Ozawa SI, Takahashi Y. Requirement for Asn298 on D1 Protein for Oxygen Evolution: Analyses by Exhaustive Amino Acid Substitution in the Green Alga Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014; 55:1266-75. [DOI: 10.1093/pcp/pcu073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
374
|
Computer modeling of electron and proton transport in chloroplasts. Biosystems 2014; 121:1-21. [PMID: 24835748 DOI: 10.1016/j.biosystems.2014.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis.
Collapse
|
375
|
Zhang Y, Magdaong N, Frank HA, Rusling JF. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex. PHOTOSYNTHESIS RESEARCH 2014; 120:153-167. [PMID: 23625504 DOI: 10.1007/s11120-013-9831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (Em = -0.47 V, all vs. NHE, at pH 6), quinones (-0.12 V), and the manganese (Mn) cluster (Em = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The -0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the -0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269-3060, USA
| | | | | | | |
Collapse
|
376
|
Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL. Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 2014; 39:35-45. [PMID: 24731839 DOI: 10.1016/j.niox.2014.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important signalling molecule in plants under physiological and stress conditions. Here we review the influence of NO on chloroplasts which can be directly induced by interaction with the photosynthetic apparatus by influencing photophosphorylation, electron transport activity and oxido-reduction state of the Mn clusters of the oxygen-evolving complex or by changes in gene expression. The influence of NO-induced changes in the photosynthetic apparatus on its functions and sensitivity to stress factors are discussed.
Collapse
Affiliation(s)
- Amarendra N Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India.
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Ranjeet Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Meena Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| |
Collapse
|
377
|
Schneider A, Steinberger I, Strissel H, Kunz HH, Manavski N, Meurer J, Burkhard G, Jarzombski S, Schünemann D, Geimer S, Flügge UI, Leister D. The Arabidopsis Tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:344-356. [PMID: 24612058 DOI: 10.1111/tpj.12474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/04/2014] [Indexed: 05/28/2023]
Abstract
Assembly of photosystem II (PSII) occurs sequentially and requires several auxiliary proteins, such as ALB3 (ALBINO3). Here, we describe the role of the Arabidopsis thaliana thylakoid membrane protein Tellurite resistance C (AtTerC) in this process. Knockout of AtTerC was previously shown to be seedling-lethal. This phenotype was rescued by expressing TerC fused C-terminally to GFP in the terc-1 background, and the resulting terc-1TerC- GFP line and an artificial miRNA-based knockdown allele (amiR-TerC) were used to analyze the TerC function. The alterations in chlorophyll fluorescence and thylakoid ultrastructure observed in amiR-TerC plants and terc-1TerC- GFP were attributed to defects in PSII. We show that this phenotype resulted from a reduction in the rate of de novo synthesis of PSII core proteins, but later steps in PSII biogenesis appeared to be less affected. Yeast two-hybrid assays showed that TerC interacts with PSII proteins. In particular, its interaction with the PSII assembly factor ALB3 has been demonstrated by co-immunoprecipitation. ALB3 is thought to assist in incorporation of CP43 into PSII via interaction with Low PSII Accumulation2 (LPA2) Low PSII Accumulation3 (LPA3). Homozygous lpa2 mutants expressing amiR-TerC displayed markedly exacerbated phenotypes, leading to seedling lethality, indicating an additive effect. We propose a model in which TerC, together with ALB3, facilitates de novo synthesis of thylakoid membrane proteins, for instance CP43, at the membrane insertion step.
Collapse
Affiliation(s)
- Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig Maximilians Universität München, 82152, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Yang L, Zhou H, Fan T, Zhang D. Semiconductor photocatalysts for water oxidation: current status and challenges. Phys Chem Chem Phys 2014; 16:6810-26. [PMID: 24599528 DOI: 10.1039/c4cp00246f] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.
Collapse
Affiliation(s)
- Lingling Yang
- State Key Lab of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, P.R. China.
| | | | | | | |
Collapse
|
379
|
Abstract
Small proteins, here defined as proteins of 50 amino acids or fewer in the absence of processing, have traditionally been overlooked due to challenges in their annotation and biochemical detection. In the past several years, however, increasing numbers of small proteins have been identified either through the realization that mutations in intergenic regions are actually within unannotated small protein genes or through the discovery that some small, regulatory RNAs encode small proteins. These insights, together with comparative sequence analysis, indicate that tens if not hundreds of small proteins are synthesized in a given organism. This review summarizes what has been learned about the functions of several of these bacterial small proteins, most of which act at the membrane, illustrating the astonishing range of processes in which these small proteins act and suggesting several general conclusions. Important questions for future studies of these overlooked proteins are also discussed.
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430;
| | | | | |
Collapse
|
380
|
Ito H, Tanaka A. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity. PLANT & CELL PHYSIOLOGY 2014; 55:593-603. [PMID: 24399236 DOI: 10.1093/pcp/pct203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.
Collapse
Affiliation(s)
- Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819 Japan
| | | |
Collapse
|
381
|
Takagi D, Inoue H, Odawara M, Shimakawa G, Miyake C. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes. PLANT & CELL PHYSIOLOGY 2014; 55:333-40. [PMID: 24406631 PMCID: PMC3913449 DOI: 10.1093/pcp/pcu007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sugar-derived reactive carbonyls (RCs), including methylglyoxal (MG), are aggressive by-products of oxidative stress known to impair the functions of multiple proteins. These advanced glycation end-products accumulate in patients with diabetes mellitus and cause major complications, including arteriosclerosis and cardiac insufficiency. In the glycolytic pathway, the equilibration reactions between dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (GAP) have recently been shown to generate MG as a by-product. Because plants produce vast amounts of sugars and support the same reaction in the Calvin cycle, we hypothesized that MG also accumulates in chloroplasts. Incubating isolated chloroplasts with excess 3-phosphoglycerate (3-PGA) as the GAP precursor drove the equilibration reaction toward MG production. The rate of oxygen (O2) evolution was used as an index of 3-PGA-mediated photosynthesis. The 3-PGA- and time-dependent accumulation of MG in chloroplasts was confirmed by HPLC. In addition, MG production increased with an increase in light intensity. We also observed a positive linear relationship between the rates of MG production and O2 evolution (R = 0.88; P < 0.0001). These data provide evidence that MG is produced by the Calvin cycle and that sugar-derived RC production is inevitable during photosynthesis. Furthermore, we found that MG production is enhanced under high-CO2 conditions in illuminated wheat leaves.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Hironori Inoue
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Mizue Odawara
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- CREST, JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
- *Corresponding author: E-mail, ; Fax, +81-78-803-5851
| |
Collapse
|
382
|
Lassen LM, Nielsen AZ, Ziersen B, Gnanasekaran T, Møller BL, Jensen PE. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol 2014; 3:1-12. [PMID: 24328185 DOI: 10.1021/sb400136f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Photosynthesis in plants, green algae, and cyanobacteria converts solar energy into chemical energy in the form of ATP and NADPH, both of which are used in primary metabolism. However, often more reducing power is generated by the photosystems than what is needed for primary metabolism. In this review, we discuss the development in the research field, focusing on how the photosystems can be used as synthetic biology building blocks to channel excess reducing power into light-driven production of alternative products. Plants synthesize a large number of high-value bioactive natural compounds. Some of the key enzymes catalyzing their biosynthesis are the cytochrome P450s situated in the endoplasmic reticulum. However, bioactive compounds are often synthesized in low quantities in the plants and are difficult to produce by chemical synthesis due to their often complex structures. Through a synthetic biology approach, enzymes with a requirement for reducing equivalents as cofactors, such as the cytochrome P450s, can be coupled directly to the photosynthetic energy output to obtain environmentally friendly production of complex chemical compounds. By relocating cytochrome P450s to the chloroplasts, reducing power can be diverted toward the reactions catalyzed by the cytochrome P450s. This provides a sustainable production method for high-value compounds that potentially can solve the problem of NADPH regeneration, which currently limits the biotechnological uses of cytochrome P450s. We describe the approaches that have been taken to couple enzymes to photosynthesis in vivo and to photosystem I in vitro and the challenges associated with this approach to develop new green production platforms.
Collapse
Affiliation(s)
- Lærke Münter Lassen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Agnieszka Zygadlo Nielsen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Bibi Ziersen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Poul Erik Jensen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
383
|
Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1553-66. [PMID: 24388916 DOI: 10.1016/j.bbabio.2013.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
384
|
Han G, Huang Y, Koua FHM, Shen JR, Westlund PO, Messinger J. Hydration of the oxygen-evolving complex of photosystem II probed in the dark-stable S1 state using proton NMR dispersion profiles. Phys Chem Chem Phys 2014; 16:11924-35. [DOI: 10.1039/c3cp55232b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
385
|
Grégoire DS, Poulain AJ. A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 2014; 6:396-407. [DOI: 10.1039/c3mt00312d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
386
|
Kato M, Zhang JZ, Paul N, Reisner E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev 2014; 43:6485-97. [DOI: 10.1039/c4cs00031e] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review describes key functions of the water oxidation enzyme photosystem II, protein film photoelectrochemistry of photosystem II and bio-inspired photoelectrochemical water oxidation systems.
Collapse
Affiliation(s)
- Masaru Kato
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| | - Jenny Z. Zhang
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| | - Nicholas Paul
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| |
Collapse
|
387
|
Souza VL, de Almeida AAF, Souza JDS, Mangabeira PAO, de Jesus RM, Pirovani CP, Ahnert D, Baligar VC, Loguercio LL. Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1217-30. [PMID: 23888348 DOI: 10.1007/s11356-013-1983-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/02/2013] [Indexed: 05/25/2023]
Abstract
Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.
Collapse
Affiliation(s)
- Vânia L Souza
- Departamento de Ensino, Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Rod. 148, km 04, n. 1800, Vila Esperança, 44900-000, Irecê, BA, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Stieger KR, Feifel SC, Lokstein H, Lisdat F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys Chem Chem Phys 2014; 16:15667-74. [DOI: 10.1039/c4cp00935e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Engineering biohybrid photodiodes using surface-fixed cytochrome c as scaffold for efficiently connecting photosystem I with electrodes in 3D protein architectures.
Collapse
Affiliation(s)
- Kai R. Stieger
- Biosystems Technology
- Technical University of Applied Sciences Wildau
- D-15745 Wildau, Germany
| | - Sven C. Feifel
- Biosystems Technology
- Technical University of Applied Sciences Wildau
- D-15745 Wildau, Germany
| | - Heiko Lokstein
- Institute for Molecular, Cell & Systems Biology
- Glasgow Biomedical Research Centre
- University of Glasgow
- Glasgow, Scotland, UK
| | - Fred Lisdat
- Biosystems Technology
- Technical University of Applied Sciences Wildau
- D-15745 Wildau, Germany
| |
Collapse
|
389
|
Wong DCJ, Sweetman C, Drew DP, Ford CM. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics 2013; 14:882. [PMID: 24341535 PMCID: PMC3904201 DOI: 10.1186/1471-2164-14-882] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/29/2013] [Indexed: 11/16/2022] Open
Abstract
Background Gene expression datasets in model plants such as Arabidopsis have contributed to our understanding of gene function and how a single underlying biological process can be governed by a diverse network of genes. The accumulation of publicly available microarray data encompassing a wide range of biological and environmental conditions has enabled the development of additional capabilities including gene co-expression analysis (GCA). GCA is based on the understanding that genes encoding proteins involved in similar and/or related biological processes may exhibit comparable expression patterns over a range of experimental conditions, developmental stages and tissues. We present an open access database for the investigation of gene co-expression networks within the cultivated grapevine, Vitis vinifera. Description The new gene co-expression database, VTCdb (http://vtcdb.adelaide.edu.au/Home.aspx), offers an online platform for transcriptional regulatory inference in the cultivated grapevine. Using condition-independent and condition-dependent approaches, grapevine co-expression networks were constructed using the latest publicly available microarray datasets from diverse experimental series, utilising the Affymetrix Vitis vinifera GeneChip (16 K) and the NimbleGen Grape Whole-genome microarray chip (29 K), thus making it possible to profile approximately 29,000 genes (95% of the predicted grapevine transcriptome). Applications available with the online platform include the use of gene names, probesets, modules or biological processes to query the co-expression networks, with the option to choose between Affymetrix or Nimblegen datasets and between multiple co-expression measures. Alternatively, the user can browse existing network modules using interactive network visualisation and analysis via CytoscapeWeb. To demonstrate the utility of the database, we present examples from three fundamental biological processes (berry development, photosynthesis and flavonoid biosynthesis) whereby the recovered sub-networks reconfirm established plant gene functions and also identify novel associations. Conclusions Together, we present valuable insights into grapevine transcriptional regulation by developing network models applicable to researchers in their prioritisation of gene candidates, for on-going study of biological processes related to grapevine development, metabolism and stress responses.
Collapse
Affiliation(s)
| | | | | | - Christopher M Ford
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5064, South Australia, Australia.
| |
Collapse
|
390
|
Liu J, Wang P, Liu B, Feng D, Zhang J, Su J, Zhang Y, Wang JF, Wang HB. A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:861-874. [PMID: 24118453 DOI: 10.1111/tpj.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Magdaong NM, Enriquez MM, LaFountain AM, Rafka L, Frank HA. Effect of protein aggregation on the spectroscopic properties and excited state kinetics of the LHCII pigment–protein complex from green plants. PHOTOSYNTHESIS RESEARCH 2013; 118:259-76. [PMID: 24077891 DOI: 10.1007/s11120-013-9924-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/09/2013] [Indexed: 05/15/2023]
Abstract
Steady-state and time-resolved absorption and fluorescence spectroscopic experiments have been carried out at room and cryogenic temperatures on aggregated and unaggregated monomeric and trimeric LHCII complexes isolated from spinach chloroplasts. Protein aggregation has been hypothesized to be one of the mechanistic factors controlling the dissipation of excess photo-excited state energy of chlorophyll during the process known as nonphotochemical quenching. The data obtained from the present experiments reveal the role of protein aggregation on the spectroscopic properties and dynamics of energy transfer and excited state deactivation of the protein-bound chlorophyll and carotenoid pigments.
Collapse
|
392
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
393
|
Abstract
Artificial photosynthesis and the production of solar fuels could be a key element in a future renewable energy economy providing a solution to the energy storage problem in solar energy conversion. We describe a hybrid strategy for solar water splitting based on a dye sensitized photoelectrosynthesis cell. It uses a derivatized, core-shell nanostructured photoanode with the core a high surface area conductive metal oxide film--indium tin oxide or antimony tin oxide--coated with a thin outer shell of TiO2 formed by atomic layer deposition. A "chromophore-catalyst assembly" 1, [(PO3H2)2bpy)2Ru(4-Mebpy-4-bimpy)Rub(tpy)(OH2)](4+), which combines both light absorber and water oxidation catalyst in a single molecule, was attached to the TiO2 shell. Visible photolysis of the resulting core-shell assembly structure with a Pt cathode resulted in water splitting into hydrogen and oxygen with an absorbed photon conversion efficiency of 4.4% at peak photocurrent.
Collapse
|
394
|
Antal TK, Kovalenko IB, Rubin AB, Tyystjärvi E. Photosynthesis-related quantities for education and modeling. PHOTOSYNTHESIS RESEARCH 2013; 117:1-30. [PMID: 24162971 DOI: 10.1007/s11120-013-9945-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/07/2013] [Indexed: 05/24/2023]
Abstract
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Collapse
Affiliation(s)
- Taras K Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, 119992, Moscow, Russia
| | | | | | | |
Collapse
|
395
|
Nath K, Phee BK, Jeong S, Lee SY, Tateno Y, Allakhverdiev SI, Lee CH, Nam HG. Age-dependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2013; 117:547-56. [PMID: 23975202 DOI: 10.1007/s11120-013-9906-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/30/2013] [Indexed: 05/05/2023]
Abstract
Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.
Collapse
Affiliation(s)
- Krishna Nath
- Department of New Biology, DGIST, Daegu, 711-873, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
396
|
Kusaba M, Tanaka A, Tanaka R. Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. PHOTOSYNTHESIS RESEARCH 2013; 117:221-34. [PMID: 23771643 DOI: 10.1007/s11120-013-9862-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/25/2013] [Indexed: 05/08/2023]
Abstract
A practical approach to increasing crop yields is to extend the duration of active photosynthesis. Stay-green is a term that is used to describe mutant and transgenic plants or cultivars with the trait of maintaining their leaves for a longer period of time than the wild-type or crosses from which they are derived. Analyzing stay-green genotypes contributes to our understanding of the molecular mechanism regulating leaf senescence which may allow us to extend the duration of active photosynthesis in crop plants. This article summarizes recent studies on stay-green plants and the insights they provide on the mechanism of leaf senescence. Briefly, mutations suppressing ethylene, abscisic acid, brassinosteroid, and strigolactone signal transduction or those activating cytokinin signaling often lead to stay-green phenotypes indicating a complex signaling network regulating leaf senescence. Developmentally regulated transcription factors, including NAC or WRKY family members, play key roles in the induction of leaf senescence and thus alteration in the activity of these transcription factors also result in stay-green phenotypes. Impairment in the enzymatic steps responsible for chlorophyll breakdown also leads to stay-green phenotypes. Some of these genotypes die in the middle of the process of chlorophyll breakdown due to the accumulation of toxic intermediates, while others appear to stay-green but their photosynthetic activity declines in a manner similar to wild-type plants. Alterations in certain metabolic pathways in chloroplasts (e.g., photosynthesis) can lead to a delayed onset of leaf senescence with maintenance of photosynthetic activity longer than wild-type plants, indicating that chloroplast metabolism can also affect the regulatory mechanism of leaf senescence.
Collapse
Affiliation(s)
- Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | |
Collapse
|
397
|
Takematsu K, Williamson H, Blanco-Rodríguez AM, Sokolová L, Nikolovski P, Kaiser JT, Towrie M, Clark IP, Vlček A, Winkler JR, Gray HB. Tryptophan-accelerated electron flow across a protein-protein interface. J Am Chem Soc 2013; 135:15515-25. [PMID: 24032375 PMCID: PMC3855362 DOI: 10.1021/ja406830d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new metallolabeled blue copper protein, Re126W122Cu(I) Pseudomonas aeruginosa azurin, which has three redox sites at well-defined distances in the protein fold: Re(I)(CO)3(4,7-dimethyl-1,10-phenanthroline) covalently bound at H126, a Cu center, and an indole side chain W122 situated between the Re and Cu sites (Re-W122(indole) = 13.1 Å, dmp-W122(indole) = 10.0 Å, Re-Cu = 25.6 Å). Near-UV excitation of the Re chromophore leads to prompt Cu(I) oxidation (<50 ns), followed by slow back ET to regenerate Cu(I) and ground-state Re(I) with biexponential kinetics, 220 ns and 6 μs. From spectroscopic measurements of kinetics and relative ET yields at different concentrations, it is likely that the photoinduced ET reactions occur in protein dimers, (Re126W122Cu(I))2 and that the forward ET is accelerated by intermolecular electron hopping through the interfacial tryptophan: *Re//←W122←Cu(I), where // denotes a protein-protein interface. Solution mass spectrometry confirms a broad oligomer distribution with prevalent monomers and dimers, and the crystal structure of the Cu(II) form shows two Re126W122Cu(II) molecules oriented such that redox cofactors Re(dmp) and W122-indole on different protein molecules are located at the interface at much shorter intermolecular distances (Re-W122(indole) = 6.9 Å, dmp-W122(indole) = 3.5 Å, and Re-Cu = 14.0 Å) than within single protein folds. Whereas forward ET is accelerated by hopping through W122, BET is retarded by a space jump at the interface that lacks specific interactions or water molecules. These findings on interfacial electron hopping in (Re126W122Cu(I))2 shed new light on optimal redox-unit placements required for functional long-range charge separation in protein complexes.
Collapse
Affiliation(s)
- Kana Takematsu
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather Williamson
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ana María Blanco-Rodríguez
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| | - Lucie Sokolová
- Institute of Physical and Theoretical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Pavle Nikolovski
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens T. Kaiser
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Antonín Vlček
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
398
|
Wientjes E, Drop B, Kouřil R, Boekema EJ, Croce R. During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 2013; 288:32821-6. [PMID: 24097972 DOI: 10.1074/jbc.m113.511691] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants are exposed to continuous changes in light quality and quantity that challenge the performance of the photosynthetic apparatus and have evolved a series of mechanisms to face this challenge. In this work, we have studied state transitions, the process that redistributes the excitation pressure between photosystems I and II (PSI/PSII) by the reversible association of LHCII, the major antenna complex of higher plants, with either one of them upon phosphorylation/dephosphorylation. By combining biochemical analysis and electron microscopy, we have studied the effect of state transitions on the composition and organization of photosystem II in Arabidopsis thaliana. Two LHCII trimers (called trimers M and S) are part of the PSII supercomplex, whereas up to two more are loosely associated with PSII in state 1 in higher plants (called "extra" trimers). Here, we show that the LHCII from the extra pool migrates to PSI in state 2, thus leaving the PSII supercomplex and the semicrystalline PSII arrays intact. In state 2, not only is the mobile LHCII phosphorylated, but also the LHCII in the PSII supercomplexes. This demonstrates that PSII phosphorylation is not sufficient for disconnecting LHCII trimers S and M from PSII and for their migration to PSI.
Collapse
Affiliation(s)
- Emilie Wientjes
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
399
|
Nagashima H, Mino H. Highly resolved proton matrix ENDOR of oriented photosystem II membranes in the S2 state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1165-73. [DOI: 10.1016/j.bbabio.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/26/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022]
|
400
|
van Amerongen H, Croce R. Light harvesting in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:251-63. [PMID: 23595278 PMCID: PMC3824292 DOI: 10.1007/s11120-013-9824-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It can handle far more photons than the ones absorbed by its own pigments and therefore, additional excitations are provided by the surrounding light-harvesting complexes or antennae. The RC is located in the PSII core that also contains the inner light-harvesting complexes CP43 and CP47, harboring 13 and 16 chlorophyll pigments, respectively. The core is surrounded by outer light-harvesting complexes (Lhcs), together forming the so-called supercomplexes, at least in plants. These PSII supercomplexes are complemented by some "extra" Lhcs, but their exact location in the thylakoid membrane is unknown. The whole system consists of many subunits and appears to be modular, i.e., both its composition and organization depend on environmental conditions, especially on the quality and intensity of the light. In this review, we will provide a short overview of the relation between the structure and organization of pigment-protein complexes in PSII, ranging from individual complexes to entire membranes and experimental and theoretical results on excitation energy transfer and charge separation. It will become clear that time-resolved fluorescence data can provide invaluable information about the organization and functioning of thylakoid membranes. At the end, an overview will be given of unanswered questions that should be addressed in the near future.
Collapse
Affiliation(s)
- Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P. O. Box 8128, 6700 ET, Wageningen, The Netherlands,
| | | |
Collapse
|