351
|
Battaglin F, Puccini A, Naseem M, Schirripa M, Berger MD, Tokunaga R, McSkane M, Khoukaz T, Soni S, Zhang W, Lenz HJ. Pharmacogenomics in colorectal cancer: current role in clinical practice and future perspectives. JOURNAL OF CANCER METASTASIS AND TREATMENT 2018; 4:12. [PMID: 34532592 PMCID: PMC8442855 DOI: 10.20517/2394-4722.2018.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The treatment scenario of colorectal cancer (CRC) has been evolving in recent years with the introduction of novel targeted agents and new therapeutic strategies for the metastatic disease. An extensive effort has been directed to the identification of predictive biomarkers to aid patients selection and guide therapeutic choices. Pharmacogenomics represents an irreplaceable tool to individualize patients treatment based on germline and tumor acquired somatic genetic variations able to predict drugs response and risk of toxicities. The growing knowledge of CRC molecular characteristics and complex genomic makeup has played a crucial role in identifying predictive pharmacogenomic biomarkers, while supporting the rationale for the development of new drugs and treatment combinations. Clinical validation of promising biomarkers, however, is often an issue. More recently, a deeper understanding of resistance mechanisms and tumor escape dynamics under treatment pressure and the availability of novel technologies are opening new perspectives in this field. This review aims to present an overview of current pharmacogenomic biomarkers and future perspectives of pharmacogenomics in CRC, in an evolving scenario moving from a single drug-gene interactions approach to a more comprehensive genome-wide approach, comprising genomics and epigenetics.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV - IRCCS, Padua 35128, Italy
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marta Schirripa
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV - IRCCS, Padua 35128, Italy
| | - Martin D. Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Medical Oncology, University Hospital of Bern, Bern 3010, Switzerland
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Taline Khoukaz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
352
|
Abstract
Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.
Collapse
|
353
|
Flattened microvessel independently predicts poor prognosis of patients with non-small cell lung cancer. Oncotarget 2018; 8:30092-30099. [PMID: 28404911 PMCID: PMC5444728 DOI: 10.18632/oncotarget.15617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays an essential role in improving tumor progression, whereas, its value in prognosis predicting remains controversial, especially in non-small cell lung cancer (NSCLC). Most recently, microvessel pattern has been raised as a novel prognosis factor. In this study, flattened microvessel, evaluated by tumor microvessel aspect ratio (TMAR), was conducted as a prognostic factor in NSCLC patients. A total of 100 patients with NSCLC were retrospectively reviewed. Microvessel in tumor was visualized by immunochemistry staining and then TMAR was determined. The prognostic role of TMAR was evaluated by univariate and multivariate analysis. Most of intratumor microvessels were flattened with a median TMAR of 3.65 (range, 2.43 - 6.28). Patients were stratified into high TMAR group (TMAR ≥ 3.6) and low TMAR group (TMAR < 3.6). Compared with subpopulation with low TMAR, high TMAR had significantly high risk of cancer-related death (univariate analysis: HR = 5.06, 95% CI: 2.44-10.47, p<0.001; multivariate analysis: HR = 4.53, 95% CI: 1.70-12.06, p=0.002). In conclusion, the results of our study demonstrate that flattened microvessel in tumor tissue is a promising prognosis predictor of NSCLC patients.
Collapse
|
354
|
Soleimani S, Shamsi M, Ghazani MA, Modarres HP, Valente KP, Saghafian M, Ashani MM, Akbari M, Sanati-Nezhad A. Translational models of tumor angiogenesis: A nexus of in silico and in vitro models. Biotechnol Adv 2018; 36:880-893. [PMID: 29378235 DOI: 10.1016/j.biotechadv.2018.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/10/2018] [Accepted: 01/20/2018] [Indexed: 12/13/2022]
Abstract
Emerging evidence shows that endothelial cells are not only the building blocks of vascular networks that enable oxygen and nutrient delivery throughout a tissue but also serve as a rich resource of angiocrine factors. Endothelial cells play key roles in determining cancer progression and response to anti-cancer drugs. Furthermore, the endothelium-specific deposition of extracellular matrix is a key modulator of the availability of angiocrine factors to both stromal and cancer cells. Considering tumor vascular network as a decisive factor in cancer pathogenesis and treatment response, these networks need to be an inseparable component of cancer models. Both computational and in vitro experimental models have been extensively developed to model tumor-endothelium interactions. While informative, they have been developed in different communities and do not yet represent a comprehensive platform. In this review, we overview the necessity of incorporating vascular networks for both in vitro and in silico cancer models and discuss recent progresses and challenges of in vitro experimental microfluidic cancer vasculature-on-chip systems and their in silico counterparts. We further highlight how these two approaches can merge together with the aim of presenting a predictive combinatorial platform for studying cancer pathogenesis and testing the efficacy of single or multi-drug therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Shirin Soleimani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Milad Shamsi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehran Akbarpour Ghazani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karolina Papera Valente
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Mohsen Saghafian
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehdi Mohammadi Ashani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
355
|
Huang Y, Kim BY, Chan CK, Hahn SM, Weissman IL, Jiang W. Improving immune-vascular crosstalk for cancer immunotherapy. Nat Rev Immunol 2018; 18:195-203. [PMID: 29332937 PMCID: PMC5922422 DOI: 10.1038/nri.2017.145] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vasculature of tumours is highly abnormal and dysfunctional. Consequently, immune effector cells have an impaired ability to penetrate solid tumours and often exhibit compromised functions. Normalization of the tumour vasculature can enhance tissue perfusion and improve immune effector cell infiltration, leading to immunotherapy potentiation. However, recent studies have demonstrated that the stimulation of immune cell functions can also help to normalize tumour vessels. In this Opinion article, we propose that the reciprocal regulation between tumour vascular normalization and immune reprogramming forms a reinforcing loop that reconditions the tumour immune microenvironment to induce durable antitumour immunity. A deeper understanding of these pathways could pave the way for identifying new biomarkers and developing more effective combination treatment strategies for patients with cancer.
Collapse
Affiliation(s)
- Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren'ai Rd, Suzhou, China, 215123
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province & Chinese Ministry of Science and Technology, Soochow University, 199 Ren'ai Rd, Suzhou, China, 215123
| | - Betty Y.S. Kim
- Department of Cancer Biology, Neurosurgery and Neurosciences, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, USA, 32224
| | - Charles K. Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, 291 Campus Drive, Stanford, USA, 94305
| | - Stephen M. Hahn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, USA, 77030
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, 291 Campus Drive, Stanford, USA, 94305
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, USA, 77030
| |
Collapse
|
356
|
Birnbaum DJ, Bertucci F, Finetti P, Birnbaum D, Mamessier E. Molecular classification as prognostic factor and guide for treatment decision of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:248-255. [PMID: 29499330 DOI: 10.1016/j.bbcan.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
Abstract
Clinico-pathological factors fail to consistently predict the outcome after pancreatic resection for pancreatic ductal adenocarcinoma (PDAC). PDACs show a high level of inter- and intra- tumor genetic heterogeneity. A molecular classification should help sort patients into less heterogeneous and more appropriate groups regarding the metastatic risk and the therapeutic response, with the consequences of better predicting evolution and better orienting the treatment. PDAC can be classified based on mutational subtypes and 18gene alterations. Whole-genome sequencing identified mutational signatures, mutational burden and hyper-mutated tumors with specific DNA repair defects. Their overlap/similarities allow the definition of molecular subtypes. DNA and RNA classifications can be used in prognosis assessment. They are useful in therapeutic choice for they allow the design of approaches that can predict the respective drug sensitivity of each molecular subtype. This review provides a comprehensive analysis of available molecular classifications in PDAC and how this can help guide clinical decisions.
Collapse
Affiliation(s)
- David J Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France; Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France.
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France; Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
357
|
Newton JM, Flores-Arredondo JH, Suki S, Ware MJ, Krzykawska-Serda M, Agha M, Law JJ, Sikora AG, Curley SA, Corr SJ. Non-Invasive Radiofrequency Field Treatment of 4T1 Breast Tumors Induces T-cell Dependent Inflammatory Response. Sci Rep 2018; 8:3474. [PMID: 29472563 PMCID: PMC5823899 DOI: 10.1038/s41598-018-21719-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jared M Newton
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA.,Baylor College of Medicine, Dept. of Otolaryngology-Head and Neck Surgery, Houston, TX, 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | - Sarah Suki
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA
| | - Matthew J Ware
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA
| | - Martyna Krzykawska-Serda
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Mahdi Agha
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA
| | - Justin J Law
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Baylor College of Medicine, Dept. of Otolaryngology-Head and Neck Surgery, Houston, TX, 77030, USA
| | - Steven A Curley
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA.,Rice University, Dept. of Mechanical Engineering and Materials Science, Houston, TX, USA
| | - Stuart J Corr
- Baylor College of Medicine, Dept. of Surgery, Houston, TX, 77030, USA. .,Rice University, Dept. of Chemistry & Smalley Institute, Houston, TX, 77030, USA. .,University of Houston, Dept. of Bioengineering, Houston, TX, 77004, USA. .,Swansea University, School of Medicine, Swansea, Wales, UK.
| |
Collapse
|
358
|
Abstract
Immunotherapies have revolutionized medical oncology following the remarkable and, in some cases, unprecedented outcomes observed in certain groups of patients with cancer. Combination with other therapeutic modalities, including anti-angiogenic agents, is one of the many strategies currently under investigation to improve the response rates and duration of immunotherapies. Such a strategy might seem counterintuitive given that anti-angiogenic agents can increase tumour hypoxia and reduce the number of blood vessels within tumours. Herein, we review the additional effects mediated by drugs targeting VEGF-dependent signalling and other pathways, such as those mediated by angiopoietin 2 or HGF, which might increase the efficacy of immunotherapies. In addition, we discuss the seldom considered possibility that immunotherapies, and immune-checkpoint inhibitors in particular, might increase the efficacy of anti-angiogenic or other types of antivascular therapies and/or promote changes in the tumour vasculature. In short, we propose that interactions between both therapeutic modalities could be considered a 'two-way street'.
Collapse
|
359
|
Dendritic Cells Pulsed with Exosomes in Combination with PD-1 Antibody Increase the Efficacy of Sorafenib in Hepatocellular Carcinoma Model. Transl Oncol 2018; 11:250-258. [PMID: 29413757 PMCID: PMC5789129 DOI: 10.1016/j.tranon.2018.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 02/08/2023] Open
Abstract
Advanced hepatocellular carcinoma (HCC) has limited therapeutic options. Immunotherapy is a promising treatment, while sorafenib is a first-line drug-based treatment for advanced HCC. However, the efficacy of sorafenib and immunotherapy in combination, have not been clearly evaluated. Sorafenib treatment has been shown to promote immunosuppression by increasing hypoxia in orthotopic HCC models. Here, we found that sorafenib treatment in mice with orthotopic HCC increased the expression of inhibitor programmed death-ligand 1 (PD-L1) and T-regulatory cells in tumor tissues. We pulsed dendritic cells with exosomes derived from tumor cells (DC-TEX) and found that the number of T-regulatory cells decreased and the number of CD8+T cells increased. However, combining DC-TEX and sorafenib did not prolong survival in these mice. Moreover, we found that the number of PD-1+CD8+T cells significantly increased after DC-TEX treatment. Therefore, we next added PD-1 antibody (PD-1 Ab) to the treatment regimen to block the PD-1/PD-L1 pathway, and found that the exhausted CD8+T cells were restored, without affecting the number of T-regulatory cells. Thus, our data suggest that the combination of DC-TEX and PD-1 Ab enhanced the efficacy of sorafenib, but treatment with either DC-TEX or PD-1 Ab alone, did not.
Collapse
|
360
|
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis 2018; 9:117. [PMID: 29371589 PMCID: PMC5833343 DOI: 10.1038/s41419-017-0063-y] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
The most common type of lung cancer is adenocarcinoma (ADC), comprising around 40% of all lung cancer cases. In spite of achievements in understanding the pathogenesis of this disease and the development of new approaches in its treatment, unfortunately, lung ADC is still one of the most aggressive and rapidly fatal tumor types with overall survival less than 5 years. Lung ADC is often diagnosed at advanced stages involving disseminated metastatic tumors. This is particularly important for the successful development of new approaches in cancer therapy. The high resistance of lung ADC to conventional radiotherapies and chemotherapies represents a major challenge for treatment effectiveness. Here we discuss recent advances in understanding the molecular pathways driving tumor progression and related targeted therapies in lung ADCs. In addition, the cell death mechanisms induced by different treatment strategies and their contribution to therapy resistance are analyzed. The focus is on approaches to overcoming drug resistance in order to improve future treatment decisions.
Collapse
Affiliation(s)
- Tatiana V Denisenko
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Inna N Budkevich
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia. .,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden.
| |
Collapse
|
361
|
M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 2018; 13:e0191012. [PMID: 29320562 PMCID: PMC5761928 DOI: 10.1371/journal.pone.0191012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression. In contrast M1-like TAMs trigger immune response and normalize irregular tumor vascular network which should sensitize cancer cells to chemo- and radiotherapy and lead to tumor growth regression. Here, we demonstrated that combination of endoglin-based DNA vaccine with interleukin 12 repolarizes TAMs from tumor growth-promoting M2-like phenotype to tumor growth-inhibiting M1-like phenotype. Combined therapy enhances tumor infiltration by CD4+, CD8+ lymphocytes and NK cells. Depletion of TAMs as well as CD8+ lymphocytes and NK cells, but not CD4+ lymphocytes, reduces the effect of combined therapy. Furthermore, combined therapy improves tumor vessel maturation, perfusion and reduces hypoxia. It caused that suboptimal doses of doxorubicin reduced the growth of tumors in mice treated with combined therapy. To summarize, combination of antiangiogenic drug and immunostimulatory agent repolarizes TAMs phenotype from M2-like (pro-tumor) into M1-like (anti-tumor) which affects the structure of tumor blood vessels, improves the effect of chemotherapy and leads to tumor growth regression.
Collapse
|
362
|
Wilkes GM. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents. Asia Pac J Oncol Nurs 2018; 5:137-155. [PMID: 29607374 PMCID: PMC5863423 DOI: 10.4103/apjon.apjon_79_17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Today, personalized cancer therapy with targeted agents has taken center stage, and offers individualized treatment to many. As the mysteries of the genes in a cell's DNA and their specific proteins are defined, advances in the understanding of cancer gene mutations and how cancer evades the immune system have been made. This article provides a basic and simplified understanding of the available (Food and Drug Administration- approved) molecularly and immunologically targeted agents in the USA. Other agents may be available in Asia, and throughout the USA and the world, many more agents are being studied. Nursing implications for drug classes are reviewed.
Collapse
|
363
|
Qiao M, Jiang T, Ren S, Zhou C. Combination Strategies on the Basis of Immune Checkpoint Inhibitors in Non–Small-Cell Lung Cancer: Where Do We Stand? Clin Lung Cancer 2018; 19:1-11. [DOI: 10.1016/j.cllc.2017.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
|
364
|
Croci DO, Mendez-Huergo SP, Cerliani JP, Rabinovich GA. Immune-Mediated and Hypoxia-Regulated Programs: Accomplices in Resistance to Anti-angiogenic Therapies. Handb Exp Pharmacol 2018; 249:31-61. [PMID: 28405776 DOI: 10.1007/164_2017_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In contrast to mechanisms taking place during resistance to chemotherapies or other targeted therapies, compensatory adaptation to angiogenesis blockade does not imply a mutational alteration of genes encoding drug targets or multidrug resistance mechanisms but instead involves intrinsic or acquired activation of compensatory angiogenic pathways. In this article we highlight hypoxia-regulated and immune-mediated mechanisms that converge in endothelial cell programs and preserve angiogenesis in settings of vascular endothelial growth factor (VEGF) blockade. These mechanisms involve mobilization of myeloid cell populations and activation of cytokine- and chemokine-driven circuits operating during intrinsic and acquired resistance to anti-angiogenic therapies. Particularly, we focus on findings underscoring a role for galectins and glycosylated ligands in promoting resistance to anti-VEGF therapies and discuss possible strategies to overcome or attenuate this compensatory pathway. Finally, we highlight emerging evidence demonstrating the interplay between immunosuppressive and pro-angiogenic programs in the tumor microenvironment (TME) and discuss emerging combinatorial anticancer strategies aimed at simultaneously potentiating antitumor immune responses and counteracting aberrant angiogenesis.
Collapse
Affiliation(s)
- Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina.
| | - Santiago P Mendez-Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
| |
Collapse
|
365
|
Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N, Yen RWC, Wenzel A, Hicks J, Ballew M, Stone M, Tran PT, Zahnow CA, Hellmann MD, Anagnostou V, Strissel PL, Strick R, Velculescu VE, Baylin SB. Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer. Cell 2017; 171:1284-1300.e21. [PMID: 29195073 DOI: 10.1016/j.cell.2017.10.022] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/07/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022]
Abstract
Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/β-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC.
Collapse
Affiliation(s)
- Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle Vaz
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Christina E DeStefano Shields
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Ray-Whay Chiu Yen
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Alyssa Wenzel
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica Hicks
- Department of Urologic Pathology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Matthew Ballew
- Department of Radiation Oncology & Molecular Radiation Sciences, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Meredith Stone
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Phuoc T Tran
- Department of Radiation Oncology & Molecular Radiation Sciences, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Valsamo Anagnostou
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, 91054 Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, 91054 Erlangen, Germany
| | - Victor E Velculescu
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.
| |
Collapse
|
366
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
367
|
Comunanza V, Bussolino F. Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies. Front Cell Dev Biol 2017; 5:101. [PMID: 29270405 PMCID: PMC5725406 DOI: 10.3389/fcell.2017.00101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
The concept that blood supply is required and necessary for cancer growth and spreading is intuitive and was firstly formalized by Judah Folkman in 1971, when he demonstrated that cancer cells release molecules able to promote the proliferation of endothelial cells and the formation of new vessels. This seminal result has initiated one of the most fascinating story of the medicine, which is offering a window of opportunity for cancer treatment based on the use of molecules inhibiting tumor angiogenesis and in particular vascular-endothelial growth factor (VEGF), which is the master gene in vasculature formation and is the commonest target of anti-angiogenic regimens. However, the clinical results are far from the remarkable successes obtained in pre-clinical models. The reasons of this discrepancy have been partially understood and well addressed in many reviews (Bergers and Hanahan, 2008; Bottsford-Miller et al., 2012; El-Kenawi and El-Remessy, 2013; Wang et al., 2015; Jayson et al., 2016). At present anti-angiogenic regimens are not used as single treatments but associated with standard chemotherapies. Based on emerging knowledge of the biology of VEGF, here we sustain the hypothesis of the efficacy of a dual approach based on targeting pro-angiogenic pathways and other druggable targets such as mutated oncogenes or the immune system.
Collapse
Affiliation(s)
- Valentina Comunanza
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
368
|
Chen Q, Xu L, Chen J, Yang Z, Liang C, Yang Y, Liu Z. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials 2017; 148:69-80. [DOI: 10.1016/j.biomaterials.2017.09.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/08/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
369
|
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG, Borad MJ. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother 2017; 6:39-49. [PMID: 29184854 PMCID: PMC5687448 DOI: 10.2147/ov.s145262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Bolni M Nagalo
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Brent Vernon
- Department of Biomedical Engineering, Arizona State University, Tempe
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Yumei Zhou
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Jan B Egan
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mitesh J Borad
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| |
Collapse
|
370
|
Abstract
Normalization of tumor blood vessels enhances the infiltration and functions of T cells. Tian et al. (2017) report that effector CD4+ T cells, in turn, support vascular normalization, highlighting intertwined roles for blood vessels and T cells in cancer.
Collapse
|
371
|
Bocca P, Di Carlo E, Caruana I, Emionite L, Cilli M, De Angelis B, Quintarelli C, Pezzolo A, Raffaghello L, Morandi F, Locatelli F, Pistoia V, Prigione I. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology 2017; 7:e1378843. [PMID: 29296542 DOI: 10.1080/2162402x.2017.1378843] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
GD2-redirected chimeric antigen receptor (CAR) T lymphocytes represent a promising therapeutic option for immunotherapy of neuroblastoma (NB). However, despite the encouraging therapeutic effects observed in some hematological malignancies, clinical results of CAR T cell immunotherapy in solid tumors are still modest. Tumor driven neo-angiogenesis supports an immunosuppressive microenvironment that influences treatment responses and is amenable to targeting with antiangiogenic drugs. The latter agents promote lymphocyte tumor infiltration by transiently reprogramming tumor vasculature, and may represent a valid combinatorial approach with CAR T cell immunotherapy. In light of these considerations, we investigated the anti-NB activity of GD2-CAR T cells combined with bevacizumab (BEV) in an orthotopic xenograft model of human NB. Two weeks after tumor implantation, mice received BEV or GD2-CAR T cells or both by single intravenous administration. GD2-CAR T cells exerted a significant anti-NB activity only in combination with BEV, even at the lowest concentration tested, which per se did not inhibit tumor growth. When combined with BEV, GD2-CAR T cells massively infiltrated tumor mass where they produced interferon-γ (IFN-γ), which, in turn, induced expression of CXCL10 by NB cells. IFN-γ, and possibly other cytokines, upregulated NB cell expression of PD-L1, while tumor infiltrating GD2-CAR T cells expressed PD-1. Thus, the PD-1/PD-L1 axis can limit the anti-tumor efficacy of the GD2-CAR T cell/BEV association. This study provides a strong rationale for testing the combination of GD2-CAR T cells with BEV in a clinical trial enrolling NB patients. PD-L1 silencing or blocking strategies may further enhance the efficacy of such combination.
Collapse
Affiliation(s)
- Paola Bocca
- Laboratory of Oncology, Dep. of Translational Research, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Emma Di Carlo
- Anatomic Pathology and Molecular Medicine, Dep. of Medicine and Sciences of Aging, "G. d'Annunzio" University, Chieti, Italy.,Ce. S. I.-MeT, Aging Research Center, Pathological Anatomy and Immuno-Oncology Unit, "G. d'Annunzio" University, Chieti, Italy
| | - Ignazio Caruana
- Laboratory of Cell and Gene Therapy of Pediatric Tumors, Dep. of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Laura Emionite
- S.S.D. Animal Facility, Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Michele Cilli
- S.S.D. Animal Facility, Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Biagio De Angelis
- Laboratory of Cell and Gene Therapy of Pediatric Tumors, Dep. of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Concetta Quintarelli
- Laboratory of Cell and Gene Therapy of Pediatric Tumors, Dep. of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Annalisa Pezzolo
- Laboratory of Oncology, Dep. of Translational Research, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Lizzia Raffaghello
- Laboratory of Oncology, Dep. of Translational Research, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Fabio Morandi
- Laboratory of Oncology, Dep. of Translational Research, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Franco Locatelli
- Laboratory of Cell and Gene Therapy of Pediatric Tumors, Dep. of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy.,Department of Pediatrics, Università di Pavia, Pavia, Italy
| | - Vito Pistoia
- Immunology Area, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Ignazia Prigione
- Laboratory of Oncology, Dep. of Translational Research, IRCCS Istituto G. Gaslini, Genova, Italy
| |
Collapse
|
372
|
Ito K, Hamamichi S, Abe T, Akagi T, Shirota H, Kawano S, Asano M, Asano O, Yokoi A, Matsui J, Umeda IO, Fujii H. Antitumor effects of eribulin depend on modulation of the tumor microenvironment by vascular remodeling in mouse models. Cancer Sci 2017; 108:2273-2280. [PMID: 28869796 PMCID: PMC5665763 DOI: 10.1111/cas.13392] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
We previously reported that eribulin mesylate (eribulin), a tubulin‐binding drug (TBD), could remodel tumor vasculature (i.e. increase tumor vessels and perfusion) in human breast cancer xenograft models. However, the role of this vascular remodeling in antitumor effects is not fully understood. Here, we investigated the effects of eribulin‐induced vascular remodeling on antitumor activities in multiple human cancer xenograft models. Microvessel densities (MVD) were evaluated by immunohistochemistry (CD31 staining), and antitumor effects were examined in 10 human cancer xenograft models. Eribulin significantly increased MVD compared to the controls in six out of 10 models with a correlation between enhanced MVD levels and antitumor effects (R2 = 0.54). Because of increased MVD, we next used radiolabeled liposomes to examine whether eribulin treatment would result in increased tumoral accumulation levels of these macromolecules and, indeed, we found that eribulin, unlike vinorelbine (another TBD) enhanced them. As eribulin increased accumulation of radiolabeled liposomes, we postulated that this treatment might enhance the antitumor effect of Doxil (a liposomal anticancer agent) and facilitate recruitment of immune cells into the tumor. As expected, eribulin enhanced antitumor activity of Doxil in a post‐erlotinib treatment H1650 (PE‐H1650) xenograft model. Furthermore, infiltrating CD11b‐positive immune cells were significantly increased in multiple eribulin‐treated xenografted tumors, and natural killer (NK) cell depletion reduced the antitumor effects of eribulin. These findings suggest a contribution of the immune cells for antitumor activities of eribulin. Taken together, our results suggest that vascular remodeling induced by eribulin acts as a microenvironment modulator and, consequently, this alteration enhanced the antitumor effects of eribulin.
Collapse
Affiliation(s)
- Ken Ito
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan.,Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Shusei Hamamichi
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Takanori Abe
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Tsuyoshi Akagi
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Hiroshi Shirota
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Satoshi Kawano
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Makoto Asano
- Biology Research, Oncology, Eisai Co., Ltd., Tsukuba, Japan
| | - Osamu Asano
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Akira Yokoi
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Junji Matsui
- Biology Research, Oncology, Eisai Co., Ltd., Tsukuba, Japan
| | - Izumi O Umeda
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
373
|
Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Raoul JL, Delpero JR, Moutardier V, Birnbaum D, Mamessier E, Bertucci F. A 25-gene classifier predicts overall survival in resectable pancreatic cancer. BMC Med 2017; 15:170. [PMID: 28927421 PMCID: PMC5606023 DOI: 10.1186/s12916-017-0936-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic carcinoma is one of the most lethal human cancers. In patients with resectable tumors, surgery followed by adjuvant chemotherapy is the only curative treatment. However, the 5-year survival is 20%. Because of a strong metastatic propensity, neoadjuvant chemotherapy is being tested in randomized clinical trials. In this context, improving the selection of patients for immediate surgery or neoadjuvant chemotherapy is crucial, and high-throughput molecular analyses may help; the present study aims to address this. METHODS Clinicopathological and gene expression data of 695 pancreatic carcinoma samples were collected from nine datasets and supervised analysis was applied to search for a gene expression signature predictive for overall survival (OS) in the 601 informative operated patients. The signature was identified in a learning set of patients and tested for its robustness in a large independent validation set. RESULTS Supervised analysis identified 1400 genes differentially expressed between two selected patient groups in the learning set, namely 17 long-term survivors (LTS; ≥ 36 months after surgery) and 22 short-term survivors (STS; dead of disease between 2 and 6 months after surgery). From these, a 25-gene prognostic classifier was developed, which identified two classes ("STS-like" and "LTS-like") in the independent validation set (n = 562), with a 25% (95% CI 18-33) and 48% (95% CI 42-54) 2-year OS (P = 4.33 × 10-9), respectively. Importantly, the prognostic value of this classifier was independent from both clinicopathological prognostic features and molecular subtypes in multivariate analysis, and existed in each of the nine datasets separately. The generation of 100,000 random gene signatures by a resampling scheme showed the non-random nature of our prognostic classifier. CONCLUSION This study, the largest prognostic study of gene expression profiles in pancreatic carcinoma, reports a 25-gene signature associated with post-operative OS independently of classical factors and molecular subtypes. This classifier may help select patients with resectable disease for either immediate surgery (the LTS-like class) or neoadjuvant chemotherapy (the STS-like class). Its assessment in the current prospective trials of adjuvant and neoadjuvant chemotherapy trials is warranted, as well as the functional analysis of the classifier genes, which may provide new therapeutic targets.
Collapse
Affiliation(s)
- David J Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
- Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France
- Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Alexia Lopresti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Marine Gilabert
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Flora Poizat
- Département d'Anatomopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Luc Raoul
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Robert Delpero
- Faculté de Médecine, Aix-Marseille Université, Marseille, France
- Département d'Oncologie Chirurgicale, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Moutardier
- Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France
- Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France.
- Département d'Oncologie Moléculaire, Institut Paoli-Calmettes, 232 Bd. Ste-Marguerite, 13009, Marseille, France.
| |
Collapse
|
374
|
Askoxylakis V, Arvanitis CD, Wong CSF, Ferraro GB, Jain RK. Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Adv Drug Deliv Rev 2017; 119:159-174. [PMID: 28648712 PMCID: PMC12051390 DOI: 10.1016/j.addr.2017.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Five-year survival rates have not increased appreciably for patients with primary and metastatic brain tumors. Nearly 17,000 patients die from primary brain tumors, whereas approximately 200,000 cases are diagnosed with brain metastasis every year in the US alone. At the same time, with improved control of systemic disease, the incidence of brain metastasis is increasing. Thus, novel approaches for improving the treatment outcome for these uniformly fatal diseases are needed urgently. In the review, we summarize the challenges in the treatment of these diseases using antiangiogenic therapies alone or in combination with radio-, chemo- and immuno-therapies. We also discuss the emerging strategies to improve the treatment outcome using both pharmacological approaches to normalize the tumor microenvironment and physical approaches (e.g., focused ultrasound) to modulate the blood-tumor-barrier, along with limitations of each approach. Finally, we offer some new avenues of future research.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christina S F Wong
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA.
| |
Collapse
|
375
|
Spessotto P, Fornasarig M, Pivetta E, Maiero S, Magris R, Mongiat M, Canzonieri V, De Paoli P, De Paoli A, Buonadonna A, Serraino D, Panato C, Belluco C, Cannizzaro R. Probe-based confocal laser endomicroscopy for in vivo evaluation of the tumor vasculature in gastric and rectal carcinomas. Sci Rep 2017; 7:9819. [PMID: 28852161 PMCID: PMC5575283 DOI: 10.1038/s41598-017-10963-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Probe-based Confocal Laser Endomicroscopy (pCLE) is a powerful imaging technique that allows to perform gastrointestinal endomicroscopy at subcellular resolution. The aim of this study was to assess the use of pCLE to evaluate tumor angiogenesis in rectal and gastric cancers. A total of 35 consecutive patients with gastric and 91 with rectal carcinomas underwent endoscopy and pCLE during the same examination. Vascular assessment was based on vessel shape and size, vessel permeability and blood flow, and allowed the creation of an angiogenic score ranging from 0, for normal vasculature, to 4, for aberrant vasculature. A significant difference for the presence of vessels with large diameter and defective blood flow was found between rectal and gastric cancers. Overall, rectal cancers displayed a higher angiogenic score compared to gastric cancers. Conventional therapy induced a striking reduction in the angiogenic score only in rectal cancer patients. Taken together, our findings suggest that the pCLE technology is suitable for the evaluation of the tumor microvasculature abnormalities. Therefore, the real-time assessment of the vasculature status may represent a promising approach to predict the efficacy of the treatments and improve the clinical management of patients with gastric or rectal carcinomas.
Collapse
Affiliation(s)
- Paola Spessotto
- Molecular Oncology, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Mara Fornasarig
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Stefania Maiero
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Raffaella Magris
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | | | - Paolo De Paoli
- Scientific Directorate, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Antonino De Paoli
- Radiation Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Angela Buonadonna
- Medical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Diego Serraino
- Epidemiology and Biostatistics, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Chiara Panato
- Epidemiology and Biostatistics, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Claudio Belluco
- Surgical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Renato Cannizzaro
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
376
|
Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, Anfuso CD. Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol Med Rep 2017; 16:4393-4402. [PMID: 28791360 PMCID: PMC5646999 DOI: 10.3892/mmr.2017.7179] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is the formation of new vessels starting from pre-existing vasculature. Tumour environment is characterized by 'aberrant angiogenesis', whose main features are tortuous and permeable blood vessels, heterogeneous both in their structure and in efficiency of perfusion and very different from normal vessels. Therapeutic strategies targeting the three pathways chiefly involved in tumour angiogenesis, VEGF, Notch and Ang signalling, have been identified to block the vascular supply to the tumour. However, phenomena of toxicity, development of primary and secondary resistance and hypoxia significantly blunted the effects of anti-angiogenic drugs in several tumour types. Thus, different strategies aimed to overcome these problems are imperative. The focus of the present review was some principal 'alternative' approaches to classic antiangiogenic therapies, including the cyclooxygenase-2 (COX-2) blockade, the use of oligonucleotide complementary to the miRNA to compete with the mRNA target (antimiRs) and the inhibition of matrix metalloproteinases (MMPs). The role of blood soluble VEGFA as a predictive biomarker during antiangiogenic therapy in gastric, ovarian and colorectal cancer was also examined.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
377
|
Mooradian MJ, Sullivan RJ. Immunomodulatory effects of current cancer treatment and the consequences for follow-up immunotherapeutics. Future Oncol 2017; 13:1649-1663. [DOI: 10.2217/fon-2017-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances in the use of immunotherapy have led to historic advancements in the field of oncology. Checkpoint inhibitors have demonstrated significant effectiveness against a broadening range of cancers. However, despite the success of antibodies against the immune regulators, CTLA4 and PD-L1/PD-1, only a subset of patients will have a durable response to these therapies, which implies that a broader view of cancer immunity is required. It is becoming increasingly apparent that combination therapy to target multiple events in the cancer-immunity cycle is needed and could potentially extend the benefit of immunotherapy to a larger population. In this review, we discuss the current status of immunotherapy and highlight the use of combination therapy to prime the tumor microenvironment and thereby improve treatment effect.
Collapse
Affiliation(s)
- Meghan J Mooradian
- Department of Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Ryan J Sullivan
- Department of Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
378
|
You WK, Stallcup WB. Localization of VEGF to Vascular ECM Is an Important Aspect of Tumor Angiogenesis. Cancers (Basel) 2017; 9:cancers9080097. [PMID: 28788063 PMCID: PMC5575600 DOI: 10.3390/cancers9080097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/02/2022] Open
Abstract
Our research has identified several examples in which reduced VEGF-A binding to deficient vascular extracellular matrix leads to deficits in tumor vascularization and tumor growth: (1) germline ablation of collagen VI in the stroma of intracranial B16F10 melanomas; (2) knockdown of the Tks5 scaffolding protein in MDA-MB-231 mammary tumor cells; (3) germline ablation of NG2 proteoglycan in the stroma of MMTV-PyMT mammary tumors; and (4) myeloid-specific ablation of NG2 in the stroma of intracranial B16F10 melanomas. Tumor hypoxia is increased in each of the four types of experimental mice, accompanied by increases in total VEGF-A. However, while VEGF-A is highly associated with tumor blood vessels in control mice, it is much more diffusely distributed in tumors in all four sets of experimental mice, likely due to reduced extent of the vascular extracellular matrix. In parallel to lost VEGF-A localization, tumor vessels in each case have smaller diameters and are leakier than tumor vessels in control mice. Tumor growth is decreased as a result of this poor vascular function. The fact that the observed vascular changes occur in the absence of alterations in vascular density suggests that examination of vessel structure and function is more useful than vascular density for understanding the importance of angiogenesis in tumor progression.
Collapse
Affiliation(s)
| | - William B Stallcup
- Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
379
|
Xue S, Hu M, Li P, Ma J, Xie L, Teng F, Zhu Y, Fan B, Mu D, Yu J. Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 2017; 8:49702-49712. [PMID: 28591697 PMCID: PMC5564800 DOI: 10.18632/oncotarget.17922] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) is highly expressed in many cancers. We investigated the expression of PD-L1 and its relationship with vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 and KI-67 expression in 64 patients with primary glioma. The expression rate of PD-L1 in glioma patients was 78.12%. PD-L1 levels correlated with the tumor grade (p = 0.013), VEGF status (p = 0.002) and KI-67 status (p = 0.002). In addition, PD-L1 levels correlated positively with VEGF (r = 0.314, p = 0.011) and KI-67 (r = 0.391, p = 0.001) levels when the data were treated as continuous variables. This is the first report suggesting that PD-L1 is important for glioma angiogenesis and proliferation. Thus, further research should be conducted to assess the combination of targeted VEGF therapy and anti-PD-L1 immunotherapy for the treatment of glioma.
Collapse
Affiliation(s)
- Song Xue
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Man Hu
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Peifeng Li
- Department of Pathology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Ji Ma
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Medicine, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Li Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Feifei Teng
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yufang Zhu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Bingjie Fan
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dianbin Mu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Pathology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Jinming Yu
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
380
|
Early Actions of Anti-Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor Drugs on Angiogenic Blood Vessels. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2337-2347. [PMID: 28736316 DOI: 10.1016/j.ajpath.2017.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022]
Abstract
Tumors induce their heterogeneous vasculature by secreting vascular endothelial growth factor (VEGF)-A. Anti-VEGF/VEGF receptor (VEGFR) drugs treat cancer, but the underlying mechanisms remain unclear. An adenovirus expressing VEGF-A (Ad-VEGF-A164) replicates the tumor vasculature in mice without tumor cells. Mother vessels (MV) are the first angiogenic vessel type to form in tumors and after Ad-VEGF-A164. Multiday treatments with a VEGF trap reverted MV back to normal microvessels. We now show that, within hours, a single dose of several anti-VEGF drugs collapsed MV to form glomeruloid microvascular proliferations (GMP), accompanied by only modest endothelial cell death. GMP, common in many human cancers but of uncertain origin, served as an intermediary step in MV reversion to normal microvessels. The vasodisruptive drug combretastatin CA4 also targeted MV selectively but acted differently, extensively killing MV endothelium. Antivascular changes were quantified with a novel Evans blue dye assay that measured vascular volumes. As in tumors, Ad-VEGF-A164 strikingly increased endothelial nitric oxide synthase (eNOS) expression. The eNOS inhibitor N(G)-Nitro-l-arginine methyl ester mimicked anti-VEGF/VEGFR drugs, rapidly collapsing MV to GMP. Inhibition of eNOS reduces synthesis of its vasodilatory product, nitric oxide, leading to arterial contraction. Patients and mice receiving anti-VEGF/VEGFR drugs develop hypertension, reflecting systemic arterial contraction. Together, anti-VEGF/VEGFR drugs act in part by inhibiting eNOS, causing vasocontraction, MV collapse to GMP, and subsequent reversion of GMP to normal microvessels, all without extensive vascular killing.
Collapse
|
381
|
ISHIKAWA E, YAMAMOTO T, MATSUMURA A. Prospect of Immunotherapy for Glioblastoma: Tumor Vaccine, Immune Checkpoint Inhibitors and Combination Therapy. Neurol Med Chir (Tokyo) 2017; 57:321-330. [PMID: 28539528 PMCID: PMC5566705 DOI: 10.2176/nmc.nmc.ra.2016-0334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
To date, clinical trials of various vaccine therapies using autologous tumor antigens or tumor-associated/specific antigen peptide with adjuvants have been performed to treat patients with high-grade gliomas (HGG). Furthermore, immune checkpoint pathway-targeted therapies including anti- programmed cell death 1 (PD-1) antibody have been remarkably effective in other neoplasms, and various clinical trials with anti-PD-1 antibody in patients with HGG have started to date. It is possible that up-regulation of immune checkpoint molecules in tumor tissues after vaccine therapy may be one of the mechanisms of vaccine failure. Multiple preclinical studies indicate that combination therapy with vaccination and immune checkpoint blockade is effective for the treatment of malignant tumors including HGG. Thus, immunotherapy, especially combination therapy with vaccine and immune checkpoint inhibitors, may be a promising strategy for treatment of patients with HGG.
Collapse
Affiliation(s)
- Eiichi ISHIKAWA
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuya YAMAMOTO
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira MATSUMURA
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
382
|
ISHIKAWA E, YAMAMOTO T, MATSUMURA A. Prospect of Immunotherapy for Glioblastoma: Tumor Vaccine, Immune Checkpoint Inhibitors and Combination Therapy. Neurol Med Chir (Tokyo) 2017. [PMID: 28539528 PMCID: PMC5566705 DOI: 10.2176/nmc.ra.2016-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To date, clinical trials of various vaccine therapies using autologous tumor antigens or tumor-associated/specific antigen peptide with adjuvants have been performed to treat patients with high-grade gliomas (HGG). Furthermore, immune checkpoint pathway-targeted therapies including anti- programmed cell death 1 (PD-1) antibody have been remarkably effective in other neoplasms, and various clinical trials with anti-PD-1 antibody in patients with HGG have started to date. It is possible that up-regulation of immune checkpoint molecules in tumor tissues after vaccine therapy may be one of the mechanisms of vaccine failure. Multiple preclinical studies indicate that combination therapy with vaccination and immune checkpoint blockade is effective for the treatment of malignant tumors including HGG. Thus, immunotherapy, especially combination therapy with vaccine and immune checkpoint inhibitors, may be a promising strategy for treatment of patients with HGG.
Collapse
Affiliation(s)
- Eiichi ISHIKAWA
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan,Address reprint requests to: Eiichi Ishikawa, MD, PhD, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. e-mail:
| | - Tetsuya YAMAMOTO
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira MATSUMURA
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
383
|
Fine-Tuning Tumor Endothelial Cells to Selectively Kill Cancer. Int J Mol Sci 2017; 18:ijms18071401. [PMID: 28665313 PMCID: PMC5535894 DOI: 10.3390/ijms18071401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
Tumor endothelial cells regulate several aspects of tumor biology, from delivering oxygen and nutrients to shaping the immune response against a tumor and providing a barrier against tumor cell dissemination. Accordingly, targeting tumor endothelial cells represents an important modality in cancer therapy. Whereas initial anti-angiogenic treatments focused mainly on blocking the formation of new blood vessels in cancer, emerging strategies are specifically influencing certain aspects of tumor endothelial cells. For instance, efforts are generated to normalize tumor blood vessels in order to improve tumor perfusion and ameliorate the outcome of chemo-, radio-, and immunotherapy. In addition, treatment options that enhance the properties of tumor blood vessels that support a host’s anti-tumor immune response are being explored. Hence, upcoming anti-angiogenic strategies will shape some specific aspects of the tumor blood vessels that are no longer limited to abrogating angiogenesis. In this review, we enumerate approaches that target tumor endothelial cells to provide anti-cancer benefits and discuss their therapeutic potential.
Collapse
|
384
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 996] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
385
|
Zhao Y, Ting KK, Li J, Cogger VC, Chen J, Johansson-Percival A, Ngiow SF, Holst J, Grau G, Goel S, Muller T, Dejana E, McCaughan G, Smyth MJ, Ganss R, Vadas MA, Gamble JR. Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Res 2017; 77:4434-4447. [DOI: 10.1158/0008-5472.can-16-3129] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 06/14/2017] [Indexed: 11/16/2022]
|
386
|
Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller HJ, Ooi CH, Laoui D, De Palma M. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med 2017; 9:9/385/eaak9670. [PMID: 28404865 DOI: 10.1126/scitranslmed.aak9670] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Abstract
Pathological angiogenesis is a hallmark of cancer and a therapeutic target. Vascular endothelial growth factor A (VEGFA) and angiopoietin-2 (ANGPT2; also known as ANG2) are proangiogenic cytokines that sustain tumor angiogenesis and limit antitumor immunity. We show that combined ANGPT2 and VEGFA blockade by a bispecific antibody (A2V) provided superior therapeutic benefits, as compared to the single agents, in both genetically engineered and transplant tumor models, including metastatic breast cancer (MMTV-PyMT), pancreatic neuroendocrine tumor (RIP1-Tag2), and melanoma. Mechanistically, A2V promoted vascular regression, tumor necrosis, and antigen presentation by intratumoral phagocytes. A2V also normalized the remaining blood vessels and facilitated the extravasation and perivascular accumulation of activated, interferon-γ (IFNγ)-expressing CD8+ cytotoxic T lymphocytes (CTLs). Whereas the antitumoral activity of A2V was, at least partly, CTL-dependent, perivascular T cells concurrently up-regulated the expression of the immune checkpoint ligand programmed cell death ligand 1 (PD-L1) in tumor endothelial cells. IFNγ neutralization blunted this adaptive response, and PD-1 blockade improved tumor control by A2V in different cancer models. These findings position immune cells as key effectors of antiangiogenic therapy and support the rationale for cotargeting angiogenesis and immune checkpoints in cancer therapy.
Collapse
Affiliation(s)
- Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolò Rigamonti
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ece Kadioglu
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Antonino Cassará
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Céline Wyser Rmili
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anna Kiialainen
- Roche Innovation Center Basel, Pharmaceutical Sciences, Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Yvonne Kienast
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Hans-Joachim Mueller
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Chia-Huey Ooi
- Roche Innovation Center Basel, Pharmaceutical Sciences, Pharma Research and Early Development, 4070 Basel, Switzerland.,Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Damya Laoui
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
387
|
Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA, Ridnour LA. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid Redox Signal 2017; 26:1044-1058. [PMID: 27464521 PMCID: PMC5488348 DOI: 10.1089/ars.2016.6813] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Breast cancer is the second leading cause of cancer-related deaths among women in the United States. Development and progression of malignancy are associated with diverse cell signaling pathways that control cell proliferation, survival, motility, invasion, and metastasis. Recent Advances: An increasing number of clinical studies have implicated a strong relationship between elevated tumor nitric oxide synthase-2 (NOS2) expression and poor patient survival. CRITICAL ISSUES Herein, we review what we believe to be key mechanisms in the role(s) of NOS2-derived nitric oxide (NO) as a driver of breast cancer disease progression. High NO increases cyclooxygenase-2 activity, hypoxia inducible factor-1 alpha protein stabilization, and activation of important cell signaling pathways, including phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase, epidermal growth factor receptor, and Ras, through post-translational protein modifications. Moreover, dysregulated NO flux within the tumor microenvironment has other important roles, including the promotion of angiogenesis and modulation of matrix metalloproteinase/tissue inhibitor matrix metalloproteinase associated with tumor progression. FUTURE DIRECTIONS The elucidation of these and other NO-driven pathways implicates NOS2 as a key driver of breast cancer disease progression and provides a new perspective in the identification of novel targets that may be therapeutically beneficial in the treatment of estrogen receptor-negative disease. Antioxid. Redox Signal. 26, 1044-1058.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Veena Somasundaram
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | | | - Aparna Kesarwala
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie L. Heinecke
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Robert Y. Cheng
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Sharon A. Glynn
- Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| |
Collapse
|
388
|
Liu K, Zhang X, Xu W, Chen J, Yu J, Gamble JR, McCaughan GW. Targeting the vasculature in hepatocellular carcinoma treatment: Starving versus normalizing blood supply. Clin Transl Gastroenterol 2017; 8:e98. [PMID: 28617447 PMCID: PMC5518951 DOI: 10.1038/ctg.2017.28] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Traditional treatments for intermediate or advanced stage hepatocellular carcinoma (HCC) such as transarterial chemoembolization (TACE) and anti-angiogenesis therapies were developed to starve tumor blood supply. A new approach of normalizing structurally and functionally abnormal tumor vasculature is emerging. While TACE improves survival in selected patients, the resulting tumor hypoxia stimulates proliferation, angiogenesis, treatment resistance and metastasis, which limits its overall efficacy. Vessel normalization decreases hypoxia and improves anti-tumor immune infiltrate and drug delivery. Several pre-clinical agents aimed at normalizing tumor vasculature in HCC appear promising. Although anti-angiogenic agents with vessel normalizing potential have been trialed in advanced HCC with modest results, to date their primary intention had been to starve the tumor. Judicious use of anti-angiogenic therapies is required to achieve vessel normalization yet avoid excessive pruning of vessels. This balance, termed the normalization window, is yet uncharacterized in HCC. However, the optimal class, dose and schedule of vascular normalization agents, alone or in combination with other therapies needs to be explored further.
Collapse
Affiliation(s)
- Ken Liu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Xiang Zhang
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqi Xu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinbiao Chen
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Jun Yu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jennifer R Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, and University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
389
|
Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 2017; 20:185-204. [PMID: 28361267 PMCID: PMC5439974 DOI: 10.1007/s10456-017-9552-y] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Angiogenesis is defined as the formation of new blood vessels from preexisting vessels and has been characterized as an essential process for tumor cell proliferation and viability. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve tumor of nutrients and oxygen, primarily through blockade of VEGF/VEGFR signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, alone or in combination with chemotherapy or other targeted therapies. But this success had only limited impact on overall survival of cancer patients and rarely resulted in durable responses. Given the recent success of immunotherapies, combinations of anti-angiogenics with immune checkpoint blockers have become an attractive strategy. However, implementing such combinations will require a better mechanistic understanding of their interaction. Due to overexpression of pro-angiogenic factors in tumors, their vasculature is often tortuous and disorganized, with excessively branched leaky vessels. This enhances vascular permeability, which in turn is associated with high interstitial fluid pressure, and a reduction in blood perfusion and oxygenation. Judicious dosing of anti-angiogenic treatment can transiently normalize the tumor vasculature by decreasing vascular permeability and improving tumor perfusion and blood flow, and synergize with immunotherapy in this time window. However, anti-angiogenics may also excessively prune tumor vessels in a dose and time-dependent manner, which induces hypoxia and immunosuppression, including increased expression of the immune checkpoint programmed death receptor ligand (PD-L1). This review focuses on revisiting the concept of anti-angiogenesis in combination with immunotherapy as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Rakesh R Ramjiawan
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Cox-734, Boston, MA, 02114, USA
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dan G Duda
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Cox-734, Boston, MA, 02114, USA.
| |
Collapse
|
390
|
Abstract
In a new report in Nature, Tian and colleagues (2017) describe that T cell activation in tumors induces blood vessel normalization. Because abnormal vasculature in tumors is known to reduce chemotherapy effectiveness and T lymphocyte infiltration and to increase metastasis, this suggests an exciting novel angle for checkpoint immunotherapy.
Collapse
Affiliation(s)
- Bernard Thienpont
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium.
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
391
|
Urup T, Staunstrup LM, Michaelsen SR, Vitting-Seerup K, Bennedbæk M, Toft A, Olsen LR, Jønson L, Issazadeh-Navikas S, Broholm H, Hamerlik P, Poulsen HS, Lassen U. Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients. BMC Cancer 2017; 17:278. [PMID: 28420326 PMCID: PMC5395849 DOI: 10.1186/s12885-017-3251-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Background Bevacizumab combined with chemotherapy produces clinical durable response in 25–30% of recurrent glioblastoma patients. This group of patients has shown improved survival and quality of life. The aim of this study was to investigate changes in gene expression associated with response and resistance to bevacizumab combination therapy. Methods Recurrent glioblastoma patients who had biomarker-accessible tumor tissue surgically removed both before bevacizumab treatment and at time of progression were included. Patients were grouped into responders (n = 7) and non-responders (n = 14). Gene expression profiling of formalin-fixed paraffin-embedded tumor tissue was performed using RNA-sequencing. Results By comparing pretreatment samples of responders with those of non-responders no significant difference was observed. In a paired comparison analysis of pre- and posttreatment samples of non-responders 1 gene was significantly differentially expressed. In responders, this approach revealed 256 significantly differentially expressed genes (72 down- and 184 up-regulated genes at the time of progression). Genes differentially expressed in responders revealed a shift towards a more proneural and less mesenchymal phenotype at the time of progression. Conclusions Bevacizumab combination treatment demonstrated a significant impact on the transcriptional changes in responders; but only minimal changes in non-responders. This suggests that non-responding glioblastomas progress chaotically without following distinct gene expression changes while responding tumors adaptively respond or progress by means of the same transcriptional changes. In conclusion, we hypothesize that the identified gene expression changes of responding tumors are associated to bevacizumab response or resistance mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Urup
- Department of Radiation Biology, The Finsen Center, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Line Mærsk Staunstrup
- Section for Computational and RNA biology (SCARB), Department of Biology, University of Copenhagen, Ole Maaløesvej 5, DK-2200, Copenhagen, Denmark
| | - Signe Regner Michaelsen
- Department of Radiation Biology, The Finsen Center, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Section for Computational and RNA biology (SCARB), Department of Biology, University of Copenhagen, Ole Maaløesvej 5, DK-2200, Copenhagen, Denmark
| | - Marc Bennedbæk
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Anders Toft
- Department of Radiation Biology, The Finsen Center, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Ole Maaløesvej 5, DK-2200, Copenhagen, Denmark.,Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, DK-2800, Lyngby, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, BRIC, University of Copenhagen, Ole Maaløesvej 5, DK-2100, Copenhagen, Denmark
| | - Helle Broholm
- Department of Pathology, Center of Diagnostic Investigation, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Petra Hamerlik
- Department of Radiation Biology, The Finsen Center, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Brain Tumor Biology Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, The Finsen Center, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Radiation Biology, The Finsen Center, Section 6321, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Department of Oncology, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Phase I Unit, The Finsen Center, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| |
Collapse
|
392
|
Li C, Liu T, Bazhin AV, Yang Y. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia. J Cell Physiol 2017; 232:2312-2322. [PMID: 27935039 DOI: 10.1002/jcp.25726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Tumor angiogenesis has become a promising target for anti-tumor therapy. Unfortunately, the somewhat inevitable occurrence of resistance has limited the efficacy of anti-angiogenic therapy. In addition to their well-established role in immune suppression, bone marrow-derived myeloid cells actively contribute to tumor angiogenesis. More importantly, myeloid cells constitute one of the major mechanisms of resistance to angiogenesis inhibition. As the most pervasive feature in tumor microenvironment, hypoxia is able to initiate both pro-angiogenic and immunosuppressive capacities of myeloid cells. Tumor adapts to hypoxic stress primarily through signaling mediated by hypoxic inducible factors (HIFs) and consequently utilizes hypoxia to its own advantage. In this regard, hypoxia orchestrates both angiogenesis and immune evasion to support tumor growth. In this article, we will review available information on the sabotaging role of myeloid cells in anti-angiogenic therapy. We will also discuss how hypoxia coordinates the dual-role cellular and molecular participants in microenvironment to maximize the efficiency of angiogenesis and immunosuppression to promote tumor progression. J. Cell. Physiol. 232: 2312-2322, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
393
|
Abstract
Anti-angiogenic therapy has become an important component in the treatment of many solid tumors given the importance of adequate blood supply for tumor growth and metastasis. Despite promising preclinical data and early clinical trials, anti-angiogenic agents have failed to show a survival benefit in randomized controlled trials of patients with glioblastoma. In particular, agents targeting vascular endothelial growth factor (VEGF) appear to prolong progression free survival, possibly improve quality of life, and decrease steroid usage, yet the trials to date have demonstrated no extension of overall survival. In order to improve duration of response and convey a survival benefit, additional research is still needed to explore alternative pro-angiogenic pathways, mechanisms of resistance, combination strategies, and biomarkers to predict therapeutic response.
Collapse
Affiliation(s)
- Nancy Wang
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Rakesh K Jain
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
394
|
Wang J, Zhang L, Pan X, Dai B, Sun Y, Li C, Zhang J. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents. Sci Rep 2017; 7:45145. [PMID: 28332573 PMCID: PMC5362808 DOI: 10.1038/srep45145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/17/2017] [Indexed: 01/18/2023] Open
Abstract
Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis.
Collapse
Affiliation(s)
- Jinfeng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| | - Lin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| | - Ying Sun
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| | - Chuansheng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, P.R. China
| |
Collapse
|
395
|
Applebaum MA, Desai AV, Glade Bender JL, Cohn SL. Emerging and investigational therapies for neuroblastoma. Expert Opin Orphan Drugs 2017; 5:355-368. [PMID: 29062613 PMCID: PMC5649635 DOI: 10.1080/21678707.2017.1304212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Treatment for children with clinically aggressive, high-risk neuroblastoma remains challenging. Less than 50% of patients with high-risk neuroblastoma will survive long-term with current therapies, and survivors are at risk for serious treatment-related late toxicities. Here, we review new and evolving treatments that may ultimately improve outcome for children with high-risk neuroblastoma with decreased potential for late adverse events. AREAS COVERED New strategies for treating high-risk neuroblastoma are reviewed including: radiotherapy, targeted cytotoxics, biologics, immunotherapy, and molecularly targeted agents. Recently completed and ongoing neuroblastoma clinical trials testing these novel treatments are highlighted. In addition, we discuss ongoing clinical trials designed to evaluate precision medicine approaches that target actionable somatic mutations and oncogenic cellular pathways. EXPERT OPINION Advances in genomic medicine and molecular biology have led to the development of early phase studies testing biologically rational therapies targeting aberrantly activated cellular pathways. Because many of these drugs have a wider therapeutic index than standard chemotherapeutic agents, these treatments may be more effective and less toxic than current strategies. However, to effectively integrate these targeted strategies, robust predictive biomarkers must be developed that will identify patients who will benefit from these approaches and rapidly match treatments to patients at diagnosis.
Collapse
Affiliation(s)
- Mark A. Applebaum
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Julia L. Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, New York, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, 10032
| | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
396
|
Hatzikirou H, López Alfonso JC, Leschner S, Weiss S, Meyer-Hermann M. Therapeutic Potential of Bacteria against Solid Tumors. Cancer Res 2017; 77:1553-1563. [PMID: 28202530 DOI: 10.1158/0008-5472.can-16-1621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
Intentional bacterial infections can produce efficacious antitumor responses in mice, rats, dogs, and humans. However, low overall success rates and intense side effects prevent such approaches from being employed clinically. In this work, we titered bacteria and/or the proinflammatory cytokine TNFα in a set of established murine models of cancer. To interpret the experiments conducted, we considered and calibrated a tumor-effector cell recruitment model under the influence of functional tumor-associated vasculature. In this model, bacterial infections and TNFα enhanced immune activity and altered vascularization in the tumor bed. Information to predict bacterial therapy outcomes was provided by pretreatment tumor size and the underlying immune recruitment dynamics. Notably, increasing bacterial loads did not necessarily produce better long-term tumor control, suggesting that tumor sizes affected optimal bacterial loads. Short-term treatment responses were favored by high concentrations of effector cells postinjection, such as induced by higher bacterial loads, but in the longer term did not correlate with an effective restoration of immune surveillance. Overall, our findings suggested that a combination of intermediate bacterial loads with low levels TNFα administration could enable more favorable outcomes elicited by bacterial infections in tumor-bearing subjects. Cancer Res; 77(7); 1553-63. ©2017 AACR.
Collapse
Affiliation(s)
- Haralampos Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Juan Carlos López Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Sara Leschner
- Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
397
|
Abstract
Metronomic dosing of chemotherapy-defined as frequent administration at lower doses-has been shown to be more efficacious than maximum tolerated dose treatment in preclinical studies, and is currently being tested in the clinic. Although multiple mechanisms of benefit from metronomic chemotherapy have been proposed, how these mechanisms are related to one another and which one is dominant for a given tumor-drug combination is not known. To this end, we have developed a mathematical model that incorporates various proposed mechanisms, and report here that improved function of tumor vessels is a key determinant of benefit from metronomic chemotherapy. In our analysis, we used multiple dosage schedules and incorporated interactions among cancer cells, stem-like cancer cells, immune cells, and the tumor vasculature. We found that metronomic chemotherapy induces functional normalization of tumor blood vessels, resulting in improved tumor perfusion. Improved perfusion alleviates hypoxia, which reprograms the immunosuppressive tumor microenvironment toward immunostimulation and improves drug delivery and therapeutic outcomes. Indeed, in our model, improved vessel function enhanced the delivery of oxygen and drugs, increased the number of effector immune cells, and decreased the number of regulatory T cells, which in turn killed a larger number of cancer cells, including cancer stem-like cells. Vessel function was further improved owing to decompression of intratumoral vessels as a result of increased killing of cancer cells, setting up a positive feedback loop. Our model enables evaluation of the relative importance of these mechanisms, and suggests guidelines for the optimal use of metronomic therapy.
Collapse
|
398
|
Kieber-Emmons T, Monzavi-Karbassi B, Hutchins LF, Pennisi A, Makhoul I. Harnessing benefit from targeting tumor associated carbohydrate antigens. Hum Vaccin Immunother 2017; 13:323-331. [PMID: 27929800 PMCID: PMC5328237 DOI: 10.1080/21645515.2017.1264789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integrating additive or synergistic antitumor effects that focus on distinct elements of tumor biology are the most rational strategies for cancer treatment. Treatments for breast cancer have increased overall survival, but remain limited by lack of efficacy in a subset of breast cancer patients. The real challenge is to define what elements of tumor biology make the most sense to be integrated. An emerging strategy is to consider a systems biology approach to impact multiple interactions in networks as compare with hitting a specific protein-protein interaction target. In this review, we consider how targeting tumor associated carbohydrate antigens (TACA) that are fundamental to signal pathways might be tailored to harness benefit from combination therapy of sustained immunity with chemotherapy. An approach we are developing makes use of a carbohydrate mimetic peptide (CMP) to induce polyspecific antibodies, which by their nature have numerous on and off target effects. Linking multi-target TACA recognition with mechanisms affecting tumor growth in the context of network heterogeneity and concepts of immune surveillance to tumor cells and the type of breast cancer patients that would benefit from such an approach provides a novel integrative treatment.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Laura F. Hutchins
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela Pennisi
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
399
|
Tazzari M, Indio V, Vergani B, De Cecco L, Rini F, Negri T, Camisaschi C, Fiore M, Stacchiotti S, Dagrada GP, Casali PG, Gronchi A, Astolfi A, Pantaleo MA, Villa A, Lombardo C, Arienti F, Pilotti S, Rivoltini L, Castelli C. Adaptive Immunity in Fibrosarcomatous Dermatofibrosarcoma Protuberans and Response to Imatinib Treatment. J Invest Dermatol 2017; 137:484-493. [DOI: 10.1016/j.jid.2016.06.634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/07/2023]
|
400
|
Cantelmo AR, Pircher A, Kalucka J, Carmeliet P. Vessel pruning or healing: endothelial metabolism as a novel target? Expert Opin Ther Targets 2017; 21:239-247. [PMID: 28081641 PMCID: PMC5526136 DOI: 10.1080/14728222.2017.1282465] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Antiangiogenic drugs were originally designed to starve tumors by cutting off their vascular supply. Unfortunately, when these agents are used as monotherapy or in combination with chemotherapy, they provide only modest survival benefits in the order of weeks to months in most cancer patients. Strategies normalizing the disorganized tumor vasculature offer the potential to increase tumor perfusion and oxygenation, and to improve the efficacy of radio-, chemo- and immunotherapy, while reducing metastasis. Areas covered: This review discusses tumor vascular normalization (TVN) as an alternative strategy for anti-angiogenic cancer treatment. We summarize (pre)-clinical strategies that have been developed to normalize tumor vessels as well as their potential to enhance standard therapy. Notably, we describe how targeting endothelial cell metabolism offers new possibilities for antiangiogenic therapy through evoking TVN. Expert opinion: Several drugs targeting VEGF signaling are now clinically used for antiangiogenic cancer treatment. However, excessive blood vessel pruning impedes perfusion and causes tumor hypoxia, known to promote cancer cell dissemination and impair radio-, chemo- and immunotherapy. Normalized vessels lessen tumor hypoxia, impair cancer cell intravasation and enhance anticancer treatment. New data indicate that targeting endothelial cell metabolism is an alternative strategy of antiangiogenic cancer treatment via promotion of TVN.
Collapse
Affiliation(s)
- Anna Rita Cantelmo
- a Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology , KU Leuven , Leuven , Belgium.,b Laboratory of Angiogenesis and Vascular Metabolism , Vesalius Research Center, Center for Cancer Biology (CCB), VIB , Leuven , Belgium
| | - Andreas Pircher
- a Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology , KU Leuven , Leuven , Belgium.,b Laboratory of Angiogenesis and Vascular Metabolism , Vesalius Research Center, Center for Cancer Biology (CCB), VIB , Leuven , Belgium
| | - Joanna Kalucka
- a Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology , KU Leuven , Leuven , Belgium.,b Laboratory of Angiogenesis and Vascular Metabolism , Vesalius Research Center, Center for Cancer Biology (CCB), VIB , Leuven , Belgium
| | - Peter Carmeliet
- a Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology , KU Leuven , Leuven , Belgium.,b Laboratory of Angiogenesis and Vascular Metabolism , Vesalius Research Center, Center for Cancer Biology (CCB), VIB , Leuven , Belgium
| |
Collapse
|