351
|
Carter SF, Embleton KV, Anton-Rodriguez JM, Burns A, Ralph MAL, Herholz K. Regional Neuronal Network Failure and Cognition in Late-Onset Sporadic Alzheimer Disease. AJNR Am J Neuroradiol 2014; 35:S18-30. [PMID: 24578281 DOI: 10.3174/ajnr.a3895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S F Carter
- From the Wolfson Molecular Imaging Centre (S.F.C., J.M.A.-R., K.H.)Institute of Population Health, Neuroscience and Aphasia Research Unit (S.F.C., M.A.L.R.)Alzheimer Neurobiology Centre (S.F.C.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | - A Burns
- Institute of Brain, Behaviour and Mental Health (A.B., K.H.), University of Manchester, Manchester, UK
| | - M A L Ralph
- Institute of Population Health, Neuroscience and Aphasia Research Unit (S.F.C., M.A.L.R.)
| | - K Herholz
- From the Wolfson Molecular Imaging Centre (S.F.C., J.M.A.-R., K.H.)Institute of Brain, Behaviour and Mental Health (A.B., K.H.), University of Manchester, Manchester, UK
| |
Collapse
|
352
|
Marinkovic K, Rosen BQ, Cox B, Hagler DJ. Spatio-temporal processing of words and nonwords: hemispheric laterality and acute alcohol intoxication. Brain Res 2014; 1558:18-32. [PMID: 24565928 DOI: 10.1016/j.brainres.2014.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/06/2014] [Accepted: 02/16/2014] [Indexed: 11/18/2022]
Abstract
This study examined neurofunctional correlates of reading by modulating semantic, lexical, and orthographic attributes of letter strings. It compared the spatio-temporal activity patterns elicited by real words (RW), pseudowords, orthographically regular, pronounceable nonwords (PN) that carry no meaning, and orthographically illegal, nonpronounceable nonwords (NN). A double-duty lexical decision paradigm instructed participants to detect RW while ignoring nonwords and to additionally respond to words that refer to animals (AW). Healthy social drinkers (N=22) participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Whole-head MEG signals were analyzed with an anatomically-constrained MEG method. Simultaneously acquired ERPs confirm previous evidence. Spatio-temporal MEG estimates to RW and PN are consistent with the highly replicable left-lateralized ventral visual processing stream. However, the PN elicit weaker activity than other stimuli starting at ~230 ms and extending to the M400 (magnetic equivalent of N400) in the left lateral temporal area, indicating their reduced access to lexicosemantic stores. In contrast, the NN uniquely engage the right hemisphere during the M400. Increased demands on lexicosemantic access imposed by AW result in greater activity in the left temporal cortex starting at ~230 ms and persisting through the M400 and response preparation stages. Alcohol intoxication strongly attenuates early visual responses occipito-temporally overall. Subsequently, alcohol selectively affects the left prefrontal cortex as a function of orthographic and semantic dimensions, suggesting that it modulates the dynamics of the lexicosemantic processing in a top-down manner, by increasing difficulty of semantic retrieval.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., 0841, La Jolla, CA 92093-0841, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Burke Q Rosen
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., 0841, La Jolla, CA 92093-0841, USA
| | - Brendan Cox
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., 0841, La Jolla, CA 92093-0841, USA
| |
Collapse
|
353
|
Halai AD, Welbourne SR, Embleton K, Parkes LM. A comparison of dual gradient-echo and spin-echo fMRI of the inferior temporal lobe. Hum Brain Mapp 2014; 35:4118-28. [PMID: 24677506 DOI: 10.1002/hbm.22463] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/17/2013] [Accepted: 01/06/2014] [Indexed: 11/11/2022] Open
Abstract
Magnetic susceptibility differences at tissue interfaces lead to signal loss in conventional gradient-echo (GE) EPI. This poses a problem for fMRI in language and memory paradigms, which activate the most affected regions. Two methods proposed to overcome this are spin-echo EPI and dual GE EPI, where two EPI read-outs are serially collected at a short and longer echo time. The spin-echo method applies a refocusing pulse to recover dephased MR signal due to static field inhomogeneities, but is known to have a relatively low blood oxygenation level dependant (BOLD) sensitivity. In comparison, GE has superior BOLD sensitivity, and by employing an additional shorter echo, in a dual GE sequence, it can reduce signal loss due to spin dephasing. We directly compared dual GE and spin-echo fMRI during a semantic categorization task, which has been shown to activate the inferior temporal region-a region known to be affected by magnetic susceptibility. A whole brain analysis showed that the dual GE resulted in significantly higher activation within the left inferior temporal fusiform (ITF) cortex, compared to spin-echo. The inferior frontal gyrus (IFG) was activated for dual GE, but not spin-echo. Regions of interest analysis was carried out on the anterior and posterior ITF, left and right IFG, and part of the cerebellum. Dual GE outperformed spin-echo in the anterior and posterior ITF and bilateral IFG regions, whilst being equal in the cerebellum. Hence, dual GE should be the method of choice for fMRI studies of inferior temporal regions.
Collapse
Affiliation(s)
- Ajay D Halai
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Manchester, United Kingdom
| | | | | | | |
Collapse
|
354
|
Chiou R, Rich AN. The role of conceptual knowledge in understanding synaesthesia: Evaluating contemporary findings from a "hub-and-spokes" perspective. Front Psychol 2014; 5:105. [PMID: 24653707 PMCID: PMC3949133 DOI: 10.3389/fpsyg.2014.00105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/26/2014] [Indexed: 11/30/2022] Open
Abstract
Synesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers) and synesthetic experiences (concurrents) may occur within the same modality (e.g., seeing colors while reading achromatic text) or span across different modalities (e.g., tasting flavors while listening to music). Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synesthesia, the focus of current neurocognitive models of synesthesia does not encompass many crucial psychophysical characteristics documented in behavioral research. Prominent theories of the neurophysiological basis of synesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioral studies, however, suggest an essential role for conceptual-level information in synesthesia. For example, there is evidence that synesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system), such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural levels. We then present a conceptual-mediation model of synesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This “inducer-to-concurrent” nexus is maintained within a supramodal “hub,” while the subjective (bodily) experience of its resultant concurrent (e.g., a color) may then require activation of “spokes” in the perception-related cortices. This hypothesized “hub-and-spoke” structure would engage a distributed network of cortical regions and may account for the full breadth of this intriguing phenomenon.
Collapse
Affiliation(s)
- Rocco Chiou
- Department of Cognitive Science, Macquarie University Sydney, NSW, Australia ; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University Sydney, NSW, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University Sydney, NSW, Australia
| | - Anina N Rich
- Department of Cognitive Science, Macquarie University Sydney, NSW, Australia ; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University Sydney, NSW, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
355
|
Lindquist KA, Gendron M, Barrett LF, Dickerson BC. Emotion perception, but not affect perception, is impaired with semantic memory loss. ACTA ACUST UNITED AC 2014; 14:375-87. [PMID: 24512242 DOI: 10.1037/a0035293] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For decades, psychologists and neuroscientists have hypothesized that the ability to perceive emotions on others' faces is inborn, prelinguistic, and universal. Concept knowledge about emotion has been assumed to be epiphenomenal to emotion perception. In this article, we report findings from 3 patients with semantic dementia that cannot be explained by this "basic emotion" view. These patients, who have substantial deficits in semantic processing abilities, spontaneously perceived pleasant and unpleasant expressions on faces, but not discrete emotions such as anger, disgust, fear, or sadness, even in a task that did not require the use of emotion words. Our findings support the hypothesis that discrete emotion concept knowledge helps transform perceptions of affect (positively or negatively valenced facial expressions) into perceptions of discrete emotions such as anger, disgust, fear, and sadness. These findings have important consequences for understanding the processes supporting emotion perception.
Collapse
Affiliation(s)
| | - Maria Gendron
- Affective Science Institute and Department of Psychology, Northeastern University
| | - Lisa Feldman Barrett
- Affective Science Institute and Department of Psychology, Northeastern University
| | | |
Collapse
|
356
|
Robson H, Zahn R, Keidel JL, Binney RJ, Sage K, Lambon Ralph MA. The anterior temporal lobes support residual comprehension in Wernicke's aphasia. ACTA ACUST UNITED AC 2014; 137:931-43. [PMID: 24519979 PMCID: PMC3927705 DOI: 10.1093/brain/awt373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Robson et al. use fMRI to investigate preserved written word and picture comprehension in Wernicke’s aphasia (impaired verbal comprehension following left temporoparietal damage). Bilaterally enhanced activation in the ventral and anterior temporal lobes as patients semantically process visually presented material emphasizes the importance of these regions for multimodal comprehension. Wernicke’s aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory–verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke’s aphasia and 12 control participants performed semantic animate–inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an ‘over-activation’ in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Collapse
Affiliation(s)
- Holly Robson
- 1 Neuroscience and Aphasia Research Unit, School Psychological Sciences, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
357
|
Functional overlap of top-down emotion regulation and generation: An fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 14:923-38. [DOI: 10.3758/s13415-013-0240-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
358
|
Frings L, Dressel K, Abel S, Mader I, Glauche V, Weiller C, Hüll M. Longitudinal cerebral diffusion changes reflect progressive decline of language and cognition. Psychiatry Res 2013; 214:395-401. [PMID: 24144508 DOI: 10.1016/j.pscychresns.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
Language deficits are regularly found in cortical neurodegenerative diseases. The progression of language deficits shows a considerable inter-individual variability even within one diagnostic group. We aimed at detecting patterns of altered diffusion as well as atrophy of cerebral gray and white matter which underlie ongoing language-related deterioration in patients with cortical neurodegenerative diseases. Diffusion tensor imaging and T1-weighted MRI data of 26 patients with clinically diagnosed neurodegenerative disorders were acquired at baseline and 14 months later in this prospective study. Language functions were assessed with a confrontation naming test and the Token Test. Diffusion and voxel-based morphometric measures were calculated and correlates of language performance were evaluated. Across all patients, the naming impairment was related to diffusion (false discovery rate-corrected P<0.05 at baseline) and atrophy abnormalities (family-wise error (FWE)-corrected P<0.05 at follow-up) primarily in the left temporal lobe. Deficits in the Token Test were correlated with predominantly left frontal MRI abnormalities (FWE-corrected P<0.05). The Token Test performance decline over 14 months was accompanied by further increasing abnormalities in the frontal cortex, left caudate, parietal cortex (all FWE-corrected P<0.05), and posterior callosal body (FWE-corrected P=0.055). Both diffusion and structural MRI were apt to elucidate the underpinnings of inter-individual differences in language-related deficits and to detect longitudinal changes that accompanied ongoing cognition and language decline, with mean diffusivity appearing most sensitive. This might indicate the usefulness of diffusion measures as markers for successful intervention in therapy studies.
Collapse
Affiliation(s)
- Lars Frings
- Center of Geriatrics and Gerontology Freiburg, University Medical Center, University of Freiburg, Germany; Section of Geriatric Psychiatry and Neuropsychology, University Medical Center, University of Freiburg, Germany; Department of Radiation Oncology, University Medical Center, University of Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
359
|
Automatic semantic facilitation in anterior temporal cortex revealed through multimodal neuroimaging. J Neurosci 2013; 33:17174-81. [PMID: 24155321 DOI: 10.1523/jneurosci.1018-13.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization-critical for separating automatic semantic facilitation from other mechanisms-has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing.
Collapse
|
360
|
Chiou R, Sowman PF, Etchell AC, Rich AN. A conceptual lemon: theta burst stimulation to the left anterior temporal lobe untangles object representation and its canonical color. J Cogn Neurosci 2013; 26:1066-74. [PMID: 24345174 DOI: 10.1162/jocn_a_00536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.
Collapse
|
361
|
Piai V, Roelofs A, Acheson DJ, Takashima A. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production. Front Hum Neurosci 2013; 7:832. [PMID: 24368899 PMCID: PMC3856851 DOI: 10.3389/fnhum.2013.00832] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/18/2013] [Indexed: 11/27/2022] Open
Abstract
Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.
Collapse
Affiliation(s)
- Vitória Piai
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
- International Max Planck Research School for Language SciencesNijmegen, Netherlands
| | - Ardi Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| | - Daniel J. Acheson
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
- Neurobiology of Language Department, Max Planck Institute for PsycholinguisticsNijmegen, Netherlands
| | - Atsuko Takashima
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
- Behavioural Science Institute, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
362
|
Abstract
Conceptual knowledge reflects our multi-modal 'semantic database'. As such, it brings meaning to all verbal and non-verbal stimuli, is the foundation for verbal and non-verbal expression and provides the basis for computing appropriate semantic generalizations. Multiple disciplines (e.g. philosophy, cognitive science, cognitive neuroscience and behavioural neurology) have striven to answer the questions of how concepts are formed, how they are represented in the brain and how they break down differentially in various neurological patient groups. A long-standing and prominent hypothesis is that concepts are distilled from our multi-modal verbal and non-verbal experience such that sensation in one modality (e.g. the smell of an apple) not only activates the intramodality long-term knowledge, but also reactivates the relevant intermodality information about that item (i.e. all the things you know about and can do with an apple). This multi-modal view of conceptualization fits with contemporary functional neuroimaging studies that observe systematic variation of activation across different modality-specific association regions dependent on the conceptual category or type of information. A second vein of interdisciplinary work argues, however, that even a smorgasbord of multi-modal features is insufficient to build coherent, generalizable concepts. Instead, an additional process or intermediate representation is required. Recent multidisciplinary work, which combines neuropsychology, neuroscience and computational models, offers evidence that conceptualization follows from a combination of modality-specific sources of information plus a transmodal 'hub' representational system that is supported primarily by regions within the anterior temporal lobe, bilaterally.
Collapse
Affiliation(s)
- Matthew A. Lambon Ralph
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester M13 9PL, UK
| |
Collapse
|
363
|
|
364
|
Schapiro AC, McClelland JL, Welbourne SR, Rogers TT, Lambon Ralph MA. Why Bilateral Damage Is Worse than Unilateral Damage to the Brain. J Cogn Neurosci 2013; 25:2107-23. [DOI: 10.1162/jocn_a_00441] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Human and animal lesion studies have shown that behavior can be catastrophically impaired after bilateral lesions but that unilateral damage often produces little or no effect, even controlling for lesion extent. This pattern is found across many different sensory, motor, and memory domains. Despite these findings, there has been no systematic, computational explanation. We found that the same striking difference between unilateral and bilateral damage emerged in a distributed, recurrent attractor neural network. The difference persists in simple feedforward networks, where it can be understood in explicit quantitative terms. In essence, damage both distorts and reduces the magnitude of relevant activity in each hemisphere. Unilateral damage reduces the relative magnitude of the contribution to performance of the damaged side, allowing the intact side to dominate performance. In contrast, balanced bilateral damage distorts representations on both sides, which contribute equally, resulting in degraded performance. The model's ability to account for relevant patient data suggests that mechanisms similar to those in the model may operate in the brain.
Collapse
|
365
|
A broader view of perirhinal function: from recognition memory to fluency-based decisions. J Neurosci 2013; 33:14466-74. [PMID: 24005298 DOI: 10.1523/jneurosci.1413-13.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although it is well established that the perirhinal cortex (PRC) makes an important contribution to recognition memory, the specific nature of this contribution remains uncertain. The finding that PRC activity is reduced for old compared with new items is typically attributed to the recovery of a long-term memory (LTM) signal. However, because old items are processed more easily or fluently than new items, reduced PRC activity could reflect increased fluency rather than LTM retrieval per se. We tested this hypothesis in humans using fMRI and a well-validated method to manipulate fluency: the masked priming paradigm. Some words during an old-new recognition test were preceded by conceptually related words (primes) that were subliminally presented (masked). The behavioral results replicated previous findings using this paradigm, whereby the fluency manipulation increased "oldness" responses to both old and new items. The fMRI analyses yielded two main sets of results. First, in the case of new items, which are independent from LTM retrieval, masked priming reduced PRC activity and predicted behavioral misattribution of fluency to oldness. Second, in the case of old items, the same PRC region showing fluency-related reductions for new items also contributed to "old" responding to old items. Individual differences in PRC attenuation also predicted oldness ratings to old items, and fluency modulated PRC connectivity with other brain regions associated with processing oldness signals, including visual cortex and right lateral prefrontal cortex. These results support a broader view in which the PRC serves a function more general than memory.
Collapse
|
366
|
Noonan KA, Jefferies E, Visser M, Lambon Ralph MA. Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex. J Cogn Neurosci 2013; 25:1824-50. [PMID: 23859646 DOI: 10.1162/jocn_a_00442] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Semantic cognition requires a combination of semantic representations and executive control processes to direct activation in a task- and time-appropriate fashion [Jefferies, E., & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132–2147, 2006]. We undertook a formal meta-analysis to investigate which regions within the large-scale semantic network are specifically associated with the executive component of semantic cognition. Previous studies have described in detail the role of left ventral pFC in semantic regulation. We examined 53 studies that contrasted semantic tasks with high > low executive requirements to determine whether cortical regions beyond the left pFC show the same response profile to executive semantic demands. Our findings revealed that right pFC, posterior middle temporal gyrus (pMTG) and dorsal angular gyrus (bordering intraparietal sulcus) were also consistently recruited by executively demanding semantic tasks, demonstrating patterns of activation that were highly similar to the left ventral pFC. These regions overlap with the lesions in aphasic patients who exhibit multimodal semantic impairment because of impaired regulatory control (semantic aphasia)—providing important convergence between functional neuroimaging and neuropsychological studies of semantic cognition. Activation in dorsal angular gyrus and left ventral pFC was consistent across all types of executive semantic manipulation, regardless of whether the task was receptive or expressive, whereas pMTG activation was only observed for manipulation of control demands within receptive tasks. Second, we contrasted executively demanding tasks tapping semantics and phonology. Our findings revealed substantial overlap between the two sets of contrasts within left ventral pFC, suggesting this region underpins domain-general control mechanisms. In contrast, we observed relative specialization for semantic control within pMTG as well as the most ventral aspects of left pFC (BA 47), consistent with our proposal of a distributed network underpinning semantic control.
Collapse
Affiliation(s)
- Krist A. Noonan
- 1Research Institute for the Care of Older People, Bath, UK
- 2University of Manchester
| | | | | | | |
Collapse
|
367
|
Specht K. Neuronal basis of speech comprehension. Hear Res 2013; 307:121-35. [PMID: 24113115 DOI: 10.1016/j.heares.2013.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 01/18/2023]
Abstract
Verbal communication does not rely only on the simple perception of auditory signals. It is rather a parallel and integrative processing of linguistic and non-linguistic information, involving temporal and frontal areas in particular. This review describes the inherent complexity of auditory speech comprehension from a functional-neuroanatomical perspective. The review is divided into two parts. In the first part, structural and functional asymmetry of language relevant structures will be discus. The second part of the review will discuss recent neuroimaging studies, which coherently demonstrate that speech comprehension processes rely on a hierarchical network involving the temporal, parietal, and frontal lobes. Further, the results support the dual-stream model for speech comprehension, with a dorsal stream for auditory-motor integration, and a ventral stream for extracting meaning but also the processing of sentences and narratives. Specific patterns of functional asymmetry between the left and right hemisphere can also be demonstrated. The review article concludes with a discussion on interactions between the dorsal and ventral streams, particularly the involvement of motor related areas in speech perception processes, and outlines some remaining unresolved issues. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; Department for Medical Engineering, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
368
|
Specht K. Mapping a lateralization gradient within the ventral stream for auditory speech perception. Front Hum Neurosci 2013; 7:629. [PMID: 24106470 PMCID: PMC3788379 DOI: 10.3389/fnhum.2013.00629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/11/2013] [Indexed: 01/18/2023] Open
Abstract
Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Department for Medical Engineering, Haukeland University Hospital Bergen, Norway
| |
Collapse
|
369
|
Chow HM, Mar RA, Xu Y, Liu S, Wagage S, Braun AR. Embodied comprehension of stories: interactions between language regions and modality-specific neural systems. J Cogn Neurosci 2013; 26:279-95. [PMID: 24047383 DOI: 10.1162/jocn_a_00487] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The embodied view of language processing proposes that comprehension involves multimodal simulations, a process that retrieves a comprehender's perceptual, motor, and affective knowledge through reactivation of the neural systems responsible for perception, action, and emotion. Although evidence in support of this idea is growing, the contemporary neuroanatomical model of language suggests that comprehension largely emerges as a result of interactions between frontotemporal language areas in the left hemisphere. If modality-specific neural systems are involved in comprehension, they are not likely to operate in isolation but should interact with the brain regions critical to language processing. However, little is known about the ways in which language and modality-specific neural systems interact. To investigate this issue, we conducted a functional MRI study in which participants listened to stories that contained visually vivid, action-based, and emotionally charged content. Activity of neural systems associated with visual-spatial, motor, and affective processing were selectively modulated by the relevant story content. Importantly, when functional connectivity patterns associated with the left inferior frontal gyrus (LIFG), the left posterior middle temporal gyrus (pMTG), and the bilateral anterior temporal lobes (aTL) were compared, both LIFG and pMTG, but not the aTL, showed enhanced connectivity with the three modality-specific systems relevant to the story content. Taken together, our results suggest that language regions are engaged in perceptual, motor, and affective simulations of the described situation, which manifest through their interactions with modality-specific systems. On the basis of our results and past research, we propose that the LIFG and pMTG play unique roles in multimodal simulations during story comprehension.
Collapse
|
370
|
Fan L, Wang J, Zhang Y, Han W, Yu C, Jiang T. Connectivity-Based Parcellation of the Human Temporal Pole Using Diffusion Tensor Imaging. Cereb Cortex 2013; 24:3365-78. [DOI: 10.1093/cercor/bht196] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
371
|
Thompson HE, Jefferies E. Semantic control and modality: An input processing deficit in aphasia leading to deregulated semantic cognition in a single modality. Neuropsychologia 2013; 51:1998-2015. [DOI: 10.1016/j.neuropsychologia.2013.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/27/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
|
372
|
Huang J, Wang S, Jia S, Mo D, Chen HC. Cortical dynamics of semantic processing during sentence comprehension: evidence from event-related optical signals. PLoS One 2013; 8:e70671. [PMID: 23936464 PMCID: PMC3731242 DOI: 10.1371/journal.pone.0070671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022] Open
Abstract
Using the event-related optical signal (EROS) technique, this study investigated the dynamics of semantic brain activation during sentence comprehension. Participants read sentences constituent-by-constituent and made a semantic judgment at the end of each sentence. The EROSs were recorded simultaneously with ERPs and time-locked to expected or unexpected sentence-final target words. The unexpected words evoked a larger N400 and a late positivity than the expected ones. Critically, the EROS results revealed activations first in the left posterior middle temporal gyrus (LpMTG) between 128 and 192 ms, then in the left anterior inferior frontal gyrus (LaIFG), the left middle frontal gyrus (LMFG), and the LpMTG in the N400 time window, and finally in the left posterior inferior frontal gyrus (LpIFG) between 832 and 864 ms. Also, expected words elicited greater activation than unexpected words in the left anterior temporal lobe (LATL) between 192 and 256 ms. These results suggest that the early lexical-semantic retrieval reflected by the LpMTG activation is followed by two different semantic integration processes: a relatively rapid and transient integration in the LATL and a relatively slow but enduring integration in the LaIFG/LMFG and the LpMTG. The late activation in the LpIFG, however, may reflect cognitive control.
Collapse
Affiliation(s)
- Jian Huang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou, China
- Department of Psychology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Suiping Wang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou, China
- * E-mail: ) (SW); (HCC)
| | - Shiwei Jia
- Department of Psychology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Deyuan Mo
- Department of Psychology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
| | - Hsuan-Chih Chen
- Department of Psychology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.A.R., China
- * E-mail: ) (SW); (HCC)
| |
Collapse
|
373
|
Chen Y, Davis MH, Pulvermüller F, Hauk O. Task modulation of brain responses in visual word recognition as studied using EEG/MEG and fMRI. Front Hum Neurosci 2013; 7:376. [PMID: 23888133 PMCID: PMC3719031 DOI: 10.3389/fnhum.2013.00376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
Do task demands change the way we extract information from a stimulus, or only how we use this information for decision making? In order to answer this question for visual word recognition, we used EEG/MEG as well as fMRI to determine the latency ranges and spatial areas in which brain activation to words is modulated by task demands. We presented letter strings in three tasks (lexical decision, semantic decision, silent reading), and measured combined EEG/MEG as well as fMRI responses in two separate experiments. EEG/MEG sensor statistics revealed the earliest reliable task effects at around 150 ms, which were localized, using minimum norm estimates (MNE), to left inferior temporal, right anterior temporal and left precentral gyri. Later task effects (250 and 480 ms) occurred in left middle and inferior temporal gyri. Our fMRI data showed task effects in left inferior frontal, posterior superior temporal and precentral cortices. Although there was some correspondence between fMRI and EEG/MEG localizations, discrepancies predominated. We suggest that fMRI may be less sensitive to the early short-lived processes revealed in our EEG/MEG data. Our results indicate that task-specific processes start to penetrate word recognition already at 150 ms, suggesting that early word processing is flexible and intertwined with decision making.
Collapse
Affiliation(s)
- Y. Chen
- Neuroscience and Aphasia Research Unit, University of ManchesterUK
| | - M. H. Davis
- MRC Cognition and Brain Sciences UnitCambridge, UK
| | - F. Pulvermüller
- MRC Cognition and Brain Sciences UnitCambridge, UK
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität BerlinBerlin, Germany
| | - O. Hauk
- MRC Cognition and Brain Sciences UnitCambridge, UK
| |
Collapse
|
374
|
Axelrod V, Yovel G. The challenge of localizing the anterior temporal face area: a possible solution. Neuroimage 2013; 81:371-380. [PMID: 23684864 DOI: 10.1016/j.neuroimage.2013.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022] Open
Abstract
Humans recognize faces exceptionally well. However, the neural correlates of face recognition are still elusive. Accumulated evidence in recent years suggests that the anterior temporal lobe (ATL), in particular face-selective region in the ATL, is a probable locus of face recognition. Unfortunately, functional MRI (fMRI) studies encounter severe signal drop-out in the ventral ATL, where that ATL face area resides. Consequently, all previous studies localized this region in no more than half of the subjects and its volume was relatively small. Thus, a systematic exploration of the properties of the ATL face area is scarce. In the current high-resolution fMRI study we used coronal slice orientation, which permitted us to localize the ATL face area in all the subjects. Furthermore, the volume of the area was much larger than was reported in previous studies. Direct within subjects comparison with data collected with the commonly used axial slice orientation confirmed that the advantage of the coronal slice orientation in revealing a reliable and larger face-selective area in the ATL. Finally, by displaying the face-selective activations resultant from coronal and axial scanning together, we demonstrate an organization principle of a chain of face-selective regions along the posterior-anterior axis in the ventral temporal lobe that is highly reproducible across all subjects. By using the procedure proposed here, a significant progress can be made in studying the neural correlates of face recognition.
Collapse
Affiliation(s)
- Vadim Axelrod
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Galit Yovel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
375
|
Heath S, McMahon KL, Nickels L, Angwin A, MacDonald AD, van Hees S, McKinnon E, Johnson K, Copland DA. Facilitation of naming in aphasia with auditory repetition: an investigation of neurocognitive mechanisms. Neuropsychologia 2013; 51:1534-48. [PMID: 23684849 DOI: 10.1016/j.neuropsychologia.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/19/2013] [Accepted: 05/07/2013] [Indexed: 11/13/2022]
Abstract
Prior phonological processing can enhance subsequent picture naming performance in individuals with aphasia, yet the neurocognitive mechanisms underlying this effect and its longevity are unknown. This study used functional magnetic resonance imaging to examine the short-term (within minutes) and long-term (within days) facilitation effects from a phonological task in both participants with aphasia and age-matched controls. Results for control participants suggested that long-term facilitation of subsequent picture naming may be driven by a strengthening of semantic-phonological connections, while semantic and object recognition mechanisms underlie more short-term effects. All participants with aphasia significantly improved in naming accuracy following both short- and long-term facilitation. A descriptive comparison of the neuroimaging results identified different patterns of activation for each individual with aphasia. The exclusive engagement of a left hemisphere phonological network underlying facilitation was not revealed. The findings suggest that improved naming in aphasia with phonological tasks may be supported by changes in right hemisphere activity in some individuals and reveal the potential contribution of the cerebellum to improved naming following phonological facilitation. Conclusions must be interpreted with caution, however, due to the comparison of corrected group control results to that of individual participants with aphasia, which were not corrected for multiple comparisons.
Collapse
Affiliation(s)
- Shiree Heath
- University of Queensland, Language Neuroscience Laboratory, Centre for Clinical Research, Royal Brisbane & Women's Hospital, Level 3, Building 71/918, Herston, Queensland 4029, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Hassler U, Friese U, Martens U, Trujillo-Barreto N, Gruber T. Repetition priming effects dissociate between miniature eye movements and induced gamma-band responses in the human electroencephalogram. Eur J Neurosci 2013; 38:2425-33. [DOI: 10.1111/ejn.12244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Uwe Hassler
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| | - Uwe Friese
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ulla Martens
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| | | | - Thomas Gruber
- Institute of Psychology; Osnabrück University; Seminarstrasse 20 49074 Osnabrück Germany
| |
Collapse
|
377
|
|
378
|
Lubin A, Rossi S, Simon G, Lanoë C, Leroux G, Poirel N, Pineau A, Houdé O. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study. Front Psychol 2013; 4:197. [PMID: 23630510 PMCID: PMC3635020 DOI: 10.3389/fpsyg.2013.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 11/24/2022] Open
Abstract
Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.
Collapse
Affiliation(s)
- Amélie Lubin
- Laboratory for the Psychology of Child Development and Education, Sorbonne, CNRS, Unit 3521 Paris, France ; Sorbonne-Paris-Cité Alliance for Higher Education and Research, Paris Descartes University Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Kemmerer D, Miller L, MacPherson MK, Huber J, Tranel D. An investigation of semantic similarity judgments about action and non-action verbs in Parkinson's disease: implications for the Embodied Cognition Framework. Front Hum Neurosci 2013; 7:146. [PMID: 23616759 PMCID: PMC3629304 DOI: 10.3389/fnhum.2013.00146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
The Embodied Cognition Framework maintains that understanding actions requires motor simulations subserved in part by premotor and primary motor regions. This hypothesis predicts that disturbances to these regions should impair comprehension of action verbs but not non-action verbs. We evaluated the performances of 10 patients with Parkinson's disease (PD) and 10 normal comparison (NC) participants on a semantic similarity judgment task (SSJT) that included four classes of action verbs and two classes of non-action verbs. The patients were tested both ON and OFF medication. The most salient results involved the accuracies and reaction times (RTs) for the action verbs taken as a whole and the non-action verbs taken as a whole. With respect to accuracies, the patients did not perform significantly worse than the NC participants for either the action verbs or the non-action verbs, regardless of whether they were ON or OFF their medication. And with respect to RTs, although the patients' responses were significantly slower than those of the NC participants for the action verbs, comparable processing delays were also observed for the non-action verbs; moreover, there was again no notable influence of medication. The major dissociation was therefore not between action and non-action verbs, but rather between accuracies (relatively intact) and RTs (relatively delayed). Overall, the data suggest that semantic similarity judgments for both action and non-action verbs are correct but slow in individuals with PD. These results provide new insights about language processing in PD, and they raise important questions about the explanatory scope of the Embodied Cognition Framework.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue UniversityWest Lafayette, IN, USA
- Department of Psychological Sciences, Purdue UniversityWest Lafayette, IN, USA
- Division of Cognitive Neuroscience, Department of Neurology, University of IowaIowa city, IA, USA
| | - Luke Miller
- Department of Cognitive Science, University of CaliforniaSan Diego, CA, USA
| | - Megan K. MacPherson
- Department of Speech, Language, and Hearing Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Jessica Huber
- Department of Speech, Language, and Hearing Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Daniel Tranel
- Division of Cognitive Neuroscience, Department of Neurology, University of IowaIowa city, IA, USA
| |
Collapse
|
380
|
Memory for action sequences in semantic dementia. Neuropsychologia 2013; 51:1481-7. [PMID: 23499723 DOI: 10.1016/j.neuropsychologia.2013.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/22/2022]
Abstract
Semantic dementia (SD) is associated with a progressive, relatively selective, degeneration of semantic memory (both verbal and nonverbal facts and knowledge). Episodic memory, however, is thought to be relatively preserved. This study aimed to further assess the nonverbal, incidental, episodic memory profile associated with SD using deferred imitation, which measures recall by the nonverbal imitation of novel action sequences after a 24-h delay. The performance of six individuals with SD was compared to that of 10 healthy age- and education-matched controls. After a baseline phase, where sets of objects were presented for manipulation to measure the spontaneous production of relevant action sequences, participants were shown eight novel three-step action sequences with the sets of objects. The component actions of the sequences were causally related in four of the eight series and arbitrarily related in the remaining four, to investigate the influence of sequence structure on memory performance. All participants produced more target actions and pairs in the arbitrary sequences 24-h after demonstration compared to baseline, indicating memory for the sequences, but only the control group showed significant memory for the order of the causal sequences (pairs). Furthermore, and perhaps more strikingly, only the control participants showed a recall advantage for the causal relative to the arbitrary sequences, indicating that they, but not the patients, could take advantage of the semantic nature of these sequences. Together these findings suggest that individuals with SD show some nonverbal episodic memory, even after a 24-h delay, and that new anterograde memory can to some extent be established without significant support from semantic memory.
Collapse
|
381
|
Merck C, Jonin PY, Vichard H, Boursiquot SLM, Leblay V, Belliard S. Relative category-specific preservation in semantic dementia? Evidence from 35 cases. BRAIN AND LANGUAGE 2013; 124:257-267. [PMID: 23410963 DOI: 10.1016/j.bandl.2013.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
Category-specific deficits have rarely been reported in semantic dementia (SD). To our knowledge, only four previous studies have documented category-specific deficits, and these have focused on the living versus non-living things contrast rather than on more fine-grained semantic categories. This study aimed to determine whether a category-specific effect could be highlighted by a semantic sorting task administered to 35 SD patients once at baseline and again after 2 years and to 10 Alzheimer's disease patients (AD). We found a relative preservation of fruit and vegetables only in SD. This relative preservation of fruit and vegetables could be considered with regard to the importance of color knowledge in their discrimination. Indeed, color knowledge retrieval is known to depend on the left posterior fusiform gyrus which is relatively spared in SD. Finally, according to predictions of semantic memory models, our findings best fitted the Devlin and Gonnerman's computational account.
Collapse
Affiliation(s)
- Catherine Merck
- CHU Pontchaillou, Service de neurologie, CMRR, Rennes, France.
| | | | | | | | | | | |
Collapse
|
382
|
Jefferies E. The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex 2013; 49:611-25. [PMID: 23260615 DOI: 10.1016/j.cortex.2012.10.008] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/24/2011] [Accepted: 01/09/2012] [Indexed: 10/27/2022]
|
383
|
Abstract
Humans are able to flexibly devise and implement rules to reach their desired goals. For simple situations, we can use single rules, such as "if traffic light is green then cross the street." In most cases, however, more complex rule sets are required, involving the integration of multiple layers of control. Although it has been shown that prefrontal cortex is important for rule representation, it has remained unclear how the brain encodes more complex rule sets. Here, we investigate how the brain represents the order in which different parts of a rule set are evaluated. Participants had to follow compound rule sets that involved the concurrent application of two single rules in a specific order, where one of the rules always had to be evaluated first. The rules and their assigned order were independently manipulated. By applying multivariate decoding to fMRI data, we found that the identity of the current rule was encoded in a frontostriatal network involving right ventrolateral prefrontal cortex, right superior frontal gyrus, and dorsal striatum. In contrast, rule order could be decoded in the dorsal striatum and in the right premotor cortex. The nonhomogeneous distribution of information across brain areas was confirmed by follow-up analyses focused on relevant regions of interest. We argue that the brain encodes complex rule sets by "decomposing" them in their constituent features, which are represented in different brain areas, according to the aspect of information to be maintained.
Collapse
|
384
|
Increased local synchronization of resting-state fMRI signal after episodic memory encoding reflects off-line memory consolidation. Neuroreport 2013; 23:873-8. [PMID: 22955145 DOI: 10.1097/wnr.0b013e3283587c96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The changes of spontaneous activity from before and after a memory or learning task had been considered to be related to off-line memory consolidation process in human brain by using resting-state functional connectivity (RSFC) MRI (fMRI). However, RSFC reflects temporal synchronization of timecourses of spatially distinct brain regions and therefore could not determine which specific brain region is involved in the memory consolidation process. Here we used regional homogeneity (ReHo), a method for measuring local synchronization, to link the local spontaneous activity change to off-line episodic memory consolidation. We hypothesized that the spontaneous activity change would be different between people with better memory performance and those with worse performance in memory-related regions. All participants completed two resting-state sessions, that is, before (REST-1) and after (REST-2) an episodic memory encoding task (picture indoor or outdoor judgment). Then, based on the d' of a later surprise memory retrieval test, a high-performance group and a low-performance group, each consisting of 16 participants, were chosen from whole 58 participants. We defined a ReHo ratio, that is, ReHo of REST-2 divided by ReHo of REST-1, as a change induced by memory consolidation. The high-performance group showed a significant higher ReHo ratio than low-performance group in medial temporal lobe (MTL) including parahippocampal and anterior temporal regions. The current results provide neuroimaging evidence supporting that the MTL is involved in off-line memory consolidation of episodic memory. Moreover, this study may provide a paradigm for understanding of episodic memory deficit in Alzheimer's disease.
Collapse
|
385
|
Harvey DY, Wei T, Ellmore TM, Hamilton AC, Schnur TT. Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control. Neuropsychologia 2013; 51:789-801. [PMID: 23395830 DOI: 10.1016/j.neuropsychologia.2013.01.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 01/17/2013] [Accepted: 01/31/2013] [Indexed: 11/24/2022]
Abstract
Understanding a word requires mapping sounds to a word-form and then identifying its correct meaning, which in some cases necessitates the recruitment of cognitive control processes to direct the activation of semantic knowledge in a task appropriate manner (i.e., semantic control). Neuroimaging and neuropsychological studies identify a fronto-temporal network important for word comprehension. However, little is known about the connectional architecture subserving controlled retrieval and selection of semantic knowledge during word comprehension. We used diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) in aphasic individuals with varying degrees of word comprehension deficits to examine the role of three white matter pathways within this network: the uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), and inferior fronto-occipital fasciculus (IFOF). Neuroimaging data from a group of age-matched controls were also collected in order to establish that the patient group had decreased structural and functional connectivity profiles. We obtained behavioral data from aphasic participants on two measures of single word comprehension that involve semantic control, and assessed pathway functional significance by correlating patients' performance with indices of pathway structural integrity and the functional connectivity profiles of regions they connect. Both the structural integrity of the UF and the functional connectivity strength of regions it connects predicted patients' performance. This result suggests the semantic control impairment in word comprehension resulted from poor neural communication between regions the UF connects. Inspections of other subcortical and cortical structures revealed no relationship with patients' performance. We conclude that the UF mediates semantic control during word comprehension by connecting regions specialized for cognitive control with those storing word meanings. These findings also support a relationship between structural and functional connectivity measures, as the rs-fMRI results provide converging evidence with those obtained using DTI.
Collapse
Affiliation(s)
- Denise Y Harvey
- Rice University, Department of Psychology, MS-25, PO Box 1892, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
386
|
Von Der Heide RJ, Skipper LM, Olson IR. Anterior temporal face patches: a meta-analysis and empirical study. Front Hum Neurosci 2013; 7:17. [PMID: 23378834 PMCID: PMC3561664 DOI: 10.3389/fnhum.2013.00017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
Evidence suggests the anterior temporal lobe (ATL) plays an important role in person identification and memory. In humans, neuroimaging studies of person memory report consistent activations in the ATL to famous and personally familiar faces and studies of patients report resection or damage of the ATL causes an associative prosopagnosia in which face perception is intact but face memory is compromised. In addition, high-resolution fMRI studies of non-human primates and electrophysiological studies of humans also suggest regions of the ventral ATL are sensitive to novel faces. The current study extends previous findings by investigating whether similar subregions in the dorsal, ventral, lateral, or polar aspects of the ATL are sensitive to personally familiar, famous, and novel faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in previous high-resolution fMRI studies of non-human primates. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL.
Collapse
|
387
|
Abstract
Interaction with everyday objects requires the representation of conceptual object properties, such as where and how an object is used. What are the neural mechanisms that support this knowledge? While research on semantic dementia has provided evidence for a critical role of the anterior temporal lobes (ATLs) in object knowledge, fMRI studies using univariate analysis have primarily implicated regions outside the ATL. In the present human fMRI study we used multivoxel pattern analysis to test whether activity patterns in ATLs carry information about conceptual object properties. Participants viewed objects that differed on two dimensions: where the object is typically found (in the kitchen or the garage) and how the object is commonly used (with a rotate or a squeeze movement). Anatomical region-of-interest analyses covering the ventral visual stream revealed that information about the location and action dimensions increased from posterior to anterior ventral temporal cortex, peaking in the temporal pole. Whole-brain multivoxel searchlight analysis confirmed these results, revealing highly significant and regionally specific information about the location and action dimensions in the anterior temporal lobes bilaterally. In contrast to conceptual object properties, perceptual and low-level visual properties of the objects were reflected in activity patterns in posterior lateral occipitotemporal cortex and occipital cortex, respectively. These results provide fMRI evidence that object representations in the anterior temporal lobes are abstracted away from perceptual properties, categorizing objects in semantically meaningful groups to support conceptual object knowledge.
Collapse
|
388
|
The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 2012; 17:26-49. [PMID: 23265839 DOI: 10.1016/j.tics.2012.10.011] [Citation(s) in RCA: 745] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects.
Collapse
|
389
|
Emmorey K, McCullough S, Mehta S, Ponto LLB, Grabowski TJ. The biology of linguistic expression impacts neural correlates for spatial language. J Cogn Neurosci 2012; 25:517-33. [PMID: 23249348 DOI: 10.1162/jocn_a_00339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual-spatial representations into a body-centered reference frame and reach toward target locations within signing space.
Collapse
|
390
|
Olson IR, McCoy D, Klobusicky E, Ross LA. Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 2012; 8:123-33. [PMID: 23051902 DOI: 10.1093/scan/nss119] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Memory for people and their relationships, along with memory for social language and social behaviors, constitutes a specific type of semantic memory termed social knowledge. This review focuses on how and where social knowledge is represented in the brain. We propose that portions of the anterior temporal lobe (ATL) play a critical role in representing and retrieving social knowledge. This includes memory about people, their names and biographies and more abstract forms of social memory such as memory for traits and social concepts. This hypothesis is based on the convergence of several lines of research including anatomical findings, lesion evidence from both humans and non-human primates and neuroimaging evidence. Moreover, the ATL is closely interconnected with cortical nuclei of the amygdala and orbitofrontal cortex via the uncinate fasciculus. We propose that this pattern of connectivity underlies the function of the ATL in encoding and storing emotionally tagged knowledge that is used to guide orbitofrontal-based decision processes.
Collapse
Affiliation(s)
- Ingrid R Olson
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA.
| | | | | | | |
Collapse
|
391
|
Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci 2012; 13:713-26. [PMID: 22992647 DOI: 10.1038/nrn3338] [Citation(s) in RCA: 918] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
392
|
Burke SN, Ryan L, Barnes CA. Characterizing cognitive aging of recognition memory and related processes in animal models and in humans. Front Aging Neurosci 2012; 4:15. [PMID: 22988437 PMCID: PMC3439640 DOI: 10.3389/fnagi.2012.00015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/05/2012] [Indexed: 11/13/2022] Open
Abstract
Analyses of complex behaviors across the lifespan of animals can reveal the brain regions that are impacted by the normal aging process, thereby, elucidating potential therapeutic targets. Recent data from rats, monkeys, and humans converge, all indicating that recognition memory and complex visual perception are impaired in advanced age. These cognitive processes are also disrupted in animals with lesions of the perirhinal cortex, indicating that the the functional integrity of this structure is disrupted in old age. This current review summarizes these data, and highlights current methodologies for assessing perirhinal cortex-dependent behaviors across the lifespan.
Collapse
Affiliation(s)
- Sara N Burke
- Evelyn F. McKnight Brain Institute, University of Arizona Tucson, AZ, USA ; Memory and Aging, ARL Division of Neural Systems, University of Arizona Tucson, AZ, USA
| | | | | |
Collapse
|
393
|
Oosterwijk S, Lindquist KA, Anderson E, Dautoff R, Moriguchi Y, Barrett LF. States of mind: emotions, body feelings, and thoughts share distributed neural networks. Neuroimage 2012; 62:2110-28. [PMID: 22677148 PMCID: PMC3453527 DOI: 10.1016/j.neuroimage.2012.05.079] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/30/2022] Open
Abstract
Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed.
Collapse
Affiliation(s)
- Suzanne Oosterwijk
- Northeastern University, Department of Psychology, Boston, MA 02115-5000, USA.
| | | | | | | | | | | |
Collapse
|
394
|
Marini A, Urgesi C. Please get to the point! A cortical correlate of linguistic informativeness. J Cogn Neurosci 2012; 24:2211-22. [PMID: 22905815 DOI: 10.1162/jocn_a_00283] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The production of informative messages is an effortful endeavor that relies on the interaction between microlinguistic (i.e., lexical and grammatical) and macrolinguistic (i.e., pragmatic and discourse) levels of processing. Although the neural correlates of microlinguistic processing have been extensively studied, investigation of the ability to organize the macrolinguistic aspects of message production is scanty. In this article, we show that repetitive TMS of the dorsal portion of the anterior left, but not right, inferior frontal gyrus reduces the levels of lexical informativeness and global coherence of narratives produced by healthy individuals. Interestingly, levels of productivity and microlinguistic processing were unaffected by the stimulation. These results suggest that the dorsal aspect of the anterior left inferior frontal gyrus is an epicenter of a wider neural network subserving the selection of contextually appropriate semantic representations.
Collapse
|
395
|
Visser M, Jefferies E, Embleton KV, Lambon Ralph MA. Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of Information Convergence in the Temporal Lobes. J Cogn Neurosci 2012; 24:1766-78. [PMID: 22621260 DOI: 10.1162/jocn_a_00244] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Most contemporary theories of semantic memory assume that concepts are formed from the distillation of information arising in distinct sensory and verbal modalities. The neural basis of this distillation or convergence of information was the focus of this study. Specifically, we explored two commonly posed hypotheses: (a) that the human middle temporal gyrus (MTG) provides a crucial semantic interface given the fact that it interposes auditory and visual processing streams and (b) that the anterior temporal region—especially its ventral surface (vATL)—provides a critical region for the multimodal integration of information. By utilizing distortion-corrected fMRI and an established semantic association assessment (commonly used in neuropsychological investigations), we compared the activation patterns observed for both the verbal and nonverbal versions of the same task. The results are consistent with the two hypotheses simultaneously: Both MTG and vATL are activated in common for word and picture semantic processing. Additional planned, ROI analyses show that this result follows from two principal axes of convergence in the temporal lobe: both lateral (toward MTG) and longitudinal (toward the anterior temporal lobe).
Collapse
|
396
|
Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex 2012; 48:805-25. [DOI: 10.1016/j.cortex.2011.04.006] [Citation(s) in RCA: 477] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/18/2011] [Accepted: 04/04/2011] [Indexed: 11/17/2022]
|
397
|
Bemis DK, Pylkkanen L. Basic Linguistic Composition Recruits the Left Anterior Temporal Lobe and Left Angular Gyrus During Both Listening and Reading. Cereb Cortex 2012; 23:1859-73. [DOI: 10.1093/cercor/bhs170] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
398
|
Domoto-Reilly K, Sapolsky D, Brickhouse M, Dickerson BC. Naming impairment in Alzheimer's disease is associated with left anterior temporal lobe atrophy. Neuroimage 2012; 63:348-55. [PMID: 22728617 DOI: 10.1016/j.neuroimage.2012.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022] Open
Abstract
There is considerable debate about the neuroanatomic localization of semantic memory, the knowledge of culturally shared elements such as objects, concepts, and people. Two recent meta-analyses of functional imaging studies (fMRI and PET) sought to identify cortical regions involved in semantic processing. Binder and colleagues (Binder et al., 2009) identified several regions of interest, widely distributed throughout the frontal, parietal, and temporal cortices. In contrast, Lambon Ralph and colleagues (2010) focused on the anterior temporal lobe, and found that when the potential for signal loss is accounted for (due, for example, to distortion artifact or field of view restriction), significant regional activation is detected. We set out to determine whether the anterior temporal lobe plays a significant role in picture naming, a task which relies on semantic memory. We examined a relatively large sample of patients with early Alzheimer's disease (N=145), a multifocal disease process typically characterized in the early stages by problems with episodic memory and executive function. Hypothesis-driven analyses based on regions of interest derived from the meta-analyses as well as exploratory analyses across the entire cerebral cortex demonstrated a highly specific correlation between cortical thinning of the left anterior temporal lobe and impaired naming performance. These findings lend further support to theories that include a prominent role for the anterior temporal lobe in tasks that rely on semantic memory.
Collapse
Affiliation(s)
- Kimiko Domoto-Reilly
- Frontotemporal Dementia Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | |
Collapse
|
399
|
Knowlton BJ, Morrison RG, Hummel JE, Holyoak KJ. A neurocomputational system for relational reasoning. Trends Cogn Sci 2012; 16:373-81. [PMID: 22717468 DOI: 10.1016/j.tics.2012.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 01/07/2023]
Abstract
The representation and manipulation of structured relations is central to human reasoning. Recent work in computational modeling and neuroscience has set the stage for developing more detailed neurocomputational models of these abilities. Several key neural findings appear to dovetail with computational constraints derived from a model of analogical processing, 'Learning and Inference with Schemas and Analogies' (LISA). These include evidence that (i) coherent oscillatory activity in the gamma and theta bands enables long-distance communication between the prefrontal cortex and posterior brain regions where information is stored; (ii) neurons in prefrontal cortex can rapidly learn to represent abstract concepts; (iii) a rostral-caudal abstraction gradient exists in the PFC; and (iv) the inferior frontal gyrus exerts inhibitory control over task-irrelevant information.
Collapse
Affiliation(s)
- Barbara J Knowlton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
400
|
Gow DW. The cortical organization of lexical knowledge: a dual lexicon model of spoken language processing. BRAIN AND LANGUAGE 2012; 121:273-88. [PMID: 22498237 PMCID: PMC3348354 DOI: 10.1016/j.bandl.2012.03.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 02/08/2012] [Accepted: 03/13/2012] [Indexed: 05/14/2023]
Abstract
Current accounts of spoken language assume the existence of a lexicon where wordforms are stored and interact during spoken language perception, understanding and production. Despite the theoretical importance of the wordform lexicon, the exact localization and function of the lexicon in the broader context of language use is not well understood. This review draws on evidence from aphasia, functional imaging, neuroanatomy, laboratory phonology and behavioral results to argue for the existence of parallel lexica that facilitate different processes in the dorsal and ventral speech pathways. The dorsal lexicon, localized in the inferior parietal region including the supramarginal gyrus, serves as an interface between phonetic and articulatory representations. The ventral lexicon, localized in the posterior superior temporal sulcus and middle temporal gyrus, serves as an interface between phonetic and semantic representations. In addition to their interface roles, the two lexica contribute to the robustness of speech processing.
Collapse
Affiliation(s)
- David W Gow
- Neuropsychology Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|