351
|
The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. Pharm Res 2017; 34:1339-1363. [PMID: 28389707 DOI: 10.1007/s11095-017-2134-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Ten years after Fire and Melo's Nobel Prize for discovery of gene silencing by double-stranded RNA, a remarkable progress was achieved in RNA interference (RNAi). Changes in the chemical structure of synthetic oligonucleotides make them more stable and specific, and new delivery strategies became progressively available. The attention of pharmaceutical industry rapidly turned to RNAi, as an opportunity to explore new drug targets. This review addresses nine small-interfering RNAs (siRNAs) and one unique microRNA (miRNA) inhibitor, which entered the phase 2-3 clinical trials. The siRNAs in focus are PF-04523655, TKM-080301, Atu027, SYL040012, SYL1001, siG12D-LODER (phase 2), QPI-1002, QPI-1007, and patisiran (phase 3). Regarding miRNAs, their content can be down- or up-regulated, by using miRNA inhibitors (AntimiRs) or miRNA mimics. Miravirsen is an AntimiR-122 for hepatitis C virus infection. The flexibility of RNAi technology is easily understood taking into account: (i) the different drug targets (i.e. p53, caspase 2, PKN3, β2-adrenergic receptor, mutated KRAS, microRNAs); (ii) therapeutic conditions, including ophthalmic diseases, kidney injury, amyloidosis, pancreatic cancer, viral hepatitis; and (iii) routes of administration (ocular, intravenous, subcutaneous, intratumoral). Although some issues are still matters of concern (delivery, toxicity, cost, and biological barriers), RNAi definitively opens a wide avenue for drug development.
Collapse
|
352
|
Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf B Biointerfaces 2017; 154:297-306. [PMID: 28363190 DOI: 10.1016/j.colsurfb.2017.03.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/22/2022]
Abstract
Nose to brain delivery and nanotechnology are the combination of innovative strategies for molecules to reach the brain and to bypass blood brain barriers. In this work we investigated the fate of two rhodamine B labeled polymeric nanoparticles (Z-ave <250nm) of opposite surface charge in different areas of the brain after intranasal administration in rats. A preliminary screening was carried out to select the suitable positive (chitosan/poly-l-lactide-co-glycolide) nanocarrier through photon correlation spectroscopy and turbiscan. Physico-chemical and technological characterizations of poly-l-lactide-co-glycolide (negative) and chitosan/poly-l-lactide-co-glycolide (positive) fluorescent labeled nanoparticles were performed. The animals were allocated to three groups receiving negative and positive polymeric nanoparticles via single intranasal administration or no treatment. The localization of both nanocarriers in different brain areas was detected using fluorescent microscopy. Our data revealed that both nanocarriers reach the brain and are able to persist in the brain up to 48h after intranasal administration. Surface charge influenced the involved pathways in their translocation from the nasal cavity to the central nervous system. The positive charge of nanoparticles slows down brain reaching and the trigeminal pathway is involved, while the olfactory pathway may be responsible for the transport of negatively charged nanoparticles, and systemic pathways are not excluded.
Collapse
|
353
|
Simon-Yarza T, Bataille I, Letourneur D. Cardiovascular Bio-Engineering: Current State of the Art. J Cardiovasc Transl Res 2017; 10:180-193. [DOI: 10.1007/s12265-017-9740-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
|
354
|
Ebrahimian M, Taghavi S, Mokhtarzadeh A, Ramezani M, Hashemi M. Co-delivery of Doxorubicin Encapsulated PLGA Nanoparticles and Bcl-xL shRNA Using Alkyl-Modified PEI into Breast Cancer Cells. Appl Biochem Biotechnol 2017; 183:126-136. [DOI: 10.1007/s12010-017-2434-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
|
355
|
Fathi M, Barar J. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. ACTA ACUST UNITED AC 2017; 7:49-57. [PMID: 28546953 PMCID: PMC5439389 DOI: 10.15171/bi.2017.07] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
![]()
Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics.
Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature.
Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity.
Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
356
|
Li B, Li Q, Mo J, Dai H. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front Pharmacol 2017; 8:51. [PMID: 28261093 PMCID: PMC5306366 DOI: 10.3389/fphar.2017.00051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) have been reported to play critical roles in tumor initiation, propagation, and regeneration of cancer. Nano-size vehicles are employed to deliver drugs to target the CSCs for cancer therapy. Polymeric nanoparticles have been considered as the most efficient vehicles for drug delivery due to their excellent pharmacokinetic properties. The CSCs specific antibodies or ligands can be conjugated onto the surface or interior of nanoparticles to successfully target and finally eliminate CSCs. In this review, we focus on the approaches of polymeric nanoparticles design for loading drug, and their potential application for CSCs targeting in cancer therapy.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan, China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan, China
| | - Qinghua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical UniversityGuilin, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of EducationGuangzhou, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan, China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan, China
| |
Collapse
|
357
|
Liu J, Xu J, Zhou J, Zhang Y, Guo D, Wang Z. Fe 3O 4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int J Nanomedicine 2017; 12:1113-1126. [PMID: 28223802 PMCID: PMC5310639 DOI: 10.2147/ijn.s123228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thrombotic disease is a great threat to human health, and early detection is particularly important. Magnetic resonance (MR) molecular imaging provides noninvasive imaging with the potential for early disease diagnosis. In this study, we developed Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) surface-modified with a cyclic Arg-Gly-Asp (cRGD) peptide as an MR contrast agent for the detection of thrombosis. The physical and chemical characteristics, biological toxicity, ability to target thrombi, and biodistribution of the NPs were studied. The Fe3O4-PLGA-cRGD NPs were constructed successfully, and hematologic and pathologic assays indicated no in vivo toxicity of the NPs. In a rat model of FeCl3-induced abdominal aorta thrombosis, the NPs readily and selectively accumulated on the surface of the thrombosis and under vascular endothelial cells ex vivo and in vivo. In the in vivo experiment, the biodistribution of the NPs suggested that the NPs might be internalized by the macrophages of the reticuloendothelial system in the liver and the spleen. The T2 signal decreased at the mural thrombus 10 min after injection and then gradually increased until 50 min. These results suggest that the NPs are suitable for in vivo molecular imaging of thrombosis under high shear stress conditions and represent a very promising MR contrast agent for sensitive and specific detection of thrombosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Wang
- Department of Ultrasound, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, People's Republic of China
| |
Collapse
|
358
|
Zheng Y, Cheng Y, Chen J, Ding J, Li M, Li C, Wang JC, Chen X. Injectable Hydrogel-Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3487-3496. [PMID: 28067493 DOI: 10.1021/acsami.6b15245] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent years, in situ chemotherapy mediated by biodegradable polymer platforms has attracted increased attention. Herein, an advanced drug delivery system, combretastatin A-4 (CA4) and docetaxel (DTX)-loaded microsphere embedded in injectable thermosensitive polypeptide hydrogel (i.e., hydrogel-microsphere (Gel-MP) construct), was reported for sequential release of drugs with different mechanisms to treat osteosarcoma synergistically. The Gel-MP construct showed sequential biodegradability and excellent biocompatibility. CA4 was preferentially released from hydrogel with faster degradation to disturb the vascular structure of the tumor and reduce the exchange of nutrients between the tumor and surrounding tissues, which created interstitial space in the tissue for DTX penetration to inhibit tumor cell proliferation. The in vivo treatment with Gel/CA4-MP/DTX efficiently suppressed the growth of mouse K7 osteosarcoma compared to other formulations. More importantly, by systematical study of histopathology and immunohistochemistry, the Gel-MP construct can significantly upregulate antiproliferation effect and reduce toxicity of drugs. Therefore, this injectable and locally sequential delivery system has a bright prospect in clinical application of in situ synergistic chemotherapy.
Collapse
Affiliation(s)
- Yuhao Zheng
- Department of Orthopedics, Second Hospital of Jilin University , Changchun 130041, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yilong Cheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Mingqiang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Chen Li
- Department of Orthopedics, Second Hospital of Jilin University , Changchun 130041, People's Republic of China
| | - Jin-Cheng Wang
- Department of Orthopedics, Second Hospital of Jilin University , Changchun 130041, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| |
Collapse
|
359
|
Cossé A, König C, Lamprecht A, Wagner KG. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants. AAPS PharmSciTech 2017; 18:15-26. [PMID: 27193002 DOI: 10.1208/s12249-016-0548-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.
Collapse
|
360
|
Sharma M, Bhowmick R, Gappa-Fahlenkamp H. Drug-Loaded Nanoparticles Embedded in a Biomembrane Provide a Dual-Release Mechanism for Drug Delivery to the Eye. J Ocul Pharmacol Ther 2016; 32:565-573. [DOI: 10.1089/jop.2016.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Munish Sharma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Rudra Bhowmick
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|
361
|
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240:77-92. [PMID: 26518723 PMCID: PMC4896846 DOI: 10.1016/j.jconrel.2015.10.049] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has - and will continue to have - a profound impact on both clinical outcomes and the development of new products.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Lauren K Macri
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
362
|
dos Santos PP, Flôres SH, de Oliveira Rios A, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
363
|
Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Front Pharmacol 2016; 7:185. [PMID: 27445821 PMCID: PMC4923250 DOI: 10.3389/fphar.2016.00185] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/11/2016] [Indexed: 01/07/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide.
Collapse
Affiliation(s)
- Felicity Y. Han
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbane, QLD, Australia
- Centre for Advanced Imaging, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence in Convergent BioNano Science and TechnologyBrisbane, QLD, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbane, QLD, Australia
- ARC Centre of Excellence in Convergent BioNano Science and TechnologyBrisbane, QLD, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
- School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
364
|
Sun D, Xue A, Zhang B, Xue X, Zhang J, Liu W. Enhanced oral bioavailability of acetylpuerarin by poly(lactide-co-glycolide) nanoparticles optimized using uniform design combined with response surface methodology. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2029-39. [PMID: 27382256 PMCID: PMC4922808 DOI: 10.2147/dddt.s108185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetylpuerarin (AP), an acetylated derivative of puerarin, shows brain-protective effects in animals. However, AP has low oral bioavailability because of its poor water solubility. The objective of this study was to design and develop poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) to enhance the oral bioavailability of AP. The NPs were prepared using a solvent diffusion method optimized via uniform design (UD) combined with response surface methodology (RSM) and characterized by their morphology, particle size, zeta (ζ)-potential, encapsulation efficiency (EE), drug loading (DL), and in vitro drug release. A pharmacokinetic study was conducted in Wistar rats administered a single oral dose of 30 mg/kg AP. The optimized NPs were spherical and uniform in shape, with an average particle size of 145.0 nm, a polydispersity index (PI) of 0.153, and a ζ-potential of −14.81 mV. The release of AP from the PLGA NPs showed an initial burst release followed by a sustained release, following Higuchi’s model. The EE and DL determined in the experiments were 90.51% and 17.07%, respectively. The area under the plasma concentration-time curve (AUC0−∞) of AP-PLGA-NPs was 6,175.66±350.31 h ng/mL, which was 2.75 times greater than that obtained from an AP suspension. This study showed that PLGA NPs can significantly enhance the oral bioavailability of AP.
Collapse
Affiliation(s)
- Deqing Sun
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People's Republic of China; School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Aiying Xue
- Department of Cardiology, the Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Bin Zhang
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Xia Xue
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Jie Zhang
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Wenjie Liu
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
365
|
Zawbaa HM, Szlȩk J, Grosan C, Jachowicz R, Mendyk A. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection. PLoS One 2016; 11:e0157610. [PMID: 27315205 PMCID: PMC4912096 DOI: 10.1371/journal.pone.0157610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.
Collapse
Affiliation(s)
- Hossam M. Zawbaa
- Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania
- Faculty of Computers and Information, Beni-Suef University, Beni-Suef, Egypt
| | - Jakub Szlȩk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| | - Crina Grosan
- Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania
- College of Engineering, Design and Physical Sciences, Brunel University, London, United Kingdom
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
366
|
Indolfi L, Ligorio M, Ting DT, Xega K, Tzafriri AR, Bersani F, Aceto N, Thapar V, Fuchs BC, Deshpande V, Baker AB, Ferrone CR, Haber DA, Langer R, Clark JW, Edelman ER. A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma. Biomaterials 2016; 93:71-82. [PMID: 27082874 DOI: 10.1016/j.biomaterials.2016.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 02/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating and painful cancers. It is often highly resistant to therapy owing to inherent chemoresistance and the desmoplastic response that creates a barrier of fibrous tissue preventing transport of chemotherapeutics into the tumor. The growth of the tumor in pancreatic cancer often leads to invasion of other organs and partial or complete biliary obstruction, inducing intense pain for patients and necessitating tumor resection or repeated stenting. Here, we have developed a delivery device to provide enhanced palliative therapy for pancreatic cancer patients by providing high concentrations of chemotherapeutic compounds locally at the tumor site. This treatment could reduce the need for repeated procedures in advanced PDAC patients to debulk the tumor mass or stent the obstructed bile duct. To facilitate clinical translation, we created the device out of currently approved materials and drugs. We engineered an implantable poly(lactic-co-glycolic)-based biodegradable device that is able to linearly release high doses of chemotherapeutic drugs for up to 60 days. We created five patient-derived PDAC cell lines and tested their sensitivity to approved chemotherapeutic compounds. These in vitro experiments showed that paclitaxel was the most effective single agent across all cell lines. We compared the efficacy of systemic and local paclitaxel therapy on the patient-derived cell lines in an orthotopic xenograft model in mice (PDX). In this model, we found up to a 12-fold increase in suppression of tumor growth by local therapy in comparison to systemic administration and reduce retention into off-target organs. Herein, we highlight the efficacy of a local therapeutic approach to overcome PDAC chemoresistance and reduce the need for repeated interventions and biliary obstruction by preventing local tumor growth. Our results underscore the urgent need for an implantable drug-eluting platform to deliver cytotoxic agents directly within the tumor mass as a novel therapeutic strategy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Laura Indolfi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Matteo Ligorio
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Health Sciences, University of Genoa, Genoa, Italy
| | - David T Ting
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kristina Xega
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Francesca Bersani
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Aceto
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vishal Thapar
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan C Fuchs
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Cristina R Ferrone
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel A Haber
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey W Clark
- Departments of Surgery, Medicine, and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
367
|
Cheng GZ, San Jose Estepar R, Folch E, Onieva J, Gangadharan S, Majid A. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease. Chest 2016; 149:1136-42. [PMID: 26976347 DOI: 10.1016/j.chest.2016.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. Therefore, it is important for clinicians to keep abreast of this rapidly developing field in order to benefit. In this Ahead of the Curve, we review the history of 3D printing from its inception to the most recent biomedical applications. Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector.
Collapse
Affiliation(s)
- George Z Cheng
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA.
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Erik Folch
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jorge Onieva
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sidhu Gangadharan
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Adnan Majid
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
368
|
Coon D, Chen L, Boctor EM, Prince JL, Bojovic B. Proof-of-Concept Studies for Marker-Based Ultrasound Doppler Analysis of Microvascular Anastomoses in a Modified Large Animal Model. J Reconstr Microsurg 2015; 32:251-5. [PMID: 26645155 DOI: 10.1055/s-0035-1568158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background Despite attempts to solve the problem of flap monitoring, assessing the patency of vascular anastomoses postoperatively remains challenging. In addition, experimental data suggest that near-total vessel occlusion is necessary to produce significant changes in clinical appearance or monitoring devices. We sought to develop an ultrasound-based system that would provide definitive data on anastomotic function. Methods A system was developed consisting of a resorbable marker made from poly-lactic-co-glycolic acid (PLGA) implanted during the time of surgery coupled with ultrasound software to detect the anastomotic site and perform Doppler flow analysis. Surgical procedures consisting of microvascular free tissue transfer or femoral vessel cutdown were performed followed by marker placement, closure, and ultrasound monitoring. Transient vascular occlusion was produced via vessel-loop constriction. Permanent thrombosis was induced via an Arduino-controlled system applying current to the vessel intima. Results Four surgeries (one femoral vessel cutdown and three microvascular tissue transfer) were successfully performed in Yorkshire swine. The markers were readily visualized under ultrasound and provided a bounding area for Doppler analysis as well as orientation guidance. Transient spasm and partial occlusion were detected based on changes in Doppler data, while complete occlusion was evident as the total loss of color Doppler. Conclusion In this preliminary report, we have conceptualized and developed a novel system that enables the real-time visualization of vascular pedicle flow at the bedside using Doppler ultrasound and a surgically implanted marker. In a large animal model, use of the system allowed identification of the anastomosis, flow analysis, and real-time detection of flow loss.
Collapse
Affiliation(s)
- Devin Coon
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Lei Chen
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Emad M Boctor
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Branko Bojovic
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
369
|
Marbofloxacin-encapsulated microparticles provide sustained drug release for treatment of veterinary diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:511-517. [PMID: 26706558 DOI: 10.1016/j.msec.2015.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 11/23/2022]
Abstract
Fluoroquinolone antibiotics with concentration-dependent killing effects and a well-established broad spectrum of activity are used commonly to treat infectious diseases caused by bacteria. However, frequent and excessive administration of these antibiotics is a serious problem, and leads to increased number of drug-resistant bacteria. Thus, there is an urgent need for novel fluoroquinolone antibiotic formulations that minimize the risk of resistance while maximizing their efficacy. In this study, we developed intramuscularly injectable polymeric microparticles (MPs) that encapsulated with marbofloxacin (MAR) and were composed of poly(D,L-lactide-co-glycolic acid) (PLGA) and poloxamer (POL). MAR-encapsulated MP (MAR-MP) had a spherical shape with particle size ranging from 80 μm to 120 μm. Drug loading efficiency varied from 55 to 85% (w/w) at increasing amount of hydrophilic agent, POL. Drug release from MAR-MP demonstrated a significant and sustained increase at increased ratios of POL to PLGA. These results indicate that MAR-MP is an improved drug delivery carrier for fluoroquinolone antibiotics, which can reduce the number of doses needed and sustain a high release rate of MAR for 2-3 days. As a novel and highly effective drug delivery platform, MAR-MP has great potential for use in a broad range of applications for the treatment of various veterinary diseases.
Collapse
|
370
|
Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitro release. Int J Pharm 2015; 496:676-88. [PMID: 26561725 DOI: 10.1016/j.ijpharm.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
Polymeric microparticles (MPs)-in-gel formulations for extended delivery of octreotide were developed. We investigated influence of polymer composition on acylation of octreotide and kinetics of release during in vitro release from biodegradable polymeric formulations. Polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid (PGA) and polyethylene glycol (PEG) based triblock (TB≈PCL10k-PEG2k-PCL10k) and pentablock (PBA≈PLA3k-PCL7k-PEG2k-PCL7k-PLA3k and PBB≈PGA3k-PCL7k-PEG2k-PCL7k-PGA3k) polymers were investigated. Octreotide was encapsulated in MPs using methanol-oil/water emulsion solvent evaporation method. The particles were characterized for size, morphology, encapsulation efficiency, drug loading and in vitro release. Release samples were subjected to HPLC analysis for quantitation and HPLC-MS analysis for identification of native and chemically modified octreotide adducts. Entrapment efficiency of methanol-oil/water method with TB, PBA and PBB polymers were 45%, 60%, and 82%, respectively. A significant fraction of released octreotide was acylated from lactide and glycolide based PBA (53%) and PBB (92%) polymers. Substantial amount of peptide was not released from PBB polymers after 330 days of incubation. Complete release of octreotide was achieved from TB polymer over a period of 3 months with minimal acylation of peptide (13%). PCL based polymers resulted in minimal acylation of peptide and hence may be suitable for extended peptide and protein delivery. Conversely, polymers having PLA and PGA blocks may not be appropriate for peptide delivery due to acylation and incomplete release.
Collapse
|
371
|
Ji J, Torrealba D, Ruyra À, Roher N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. BIOLOGY 2015; 4:664-96. [PMID: 26492276 PMCID: PMC4690013 DOI: 10.3390/biology4040664] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
Fish disease treatments have progressed significantly over the last few years and have moved from the massive use of antibiotics to the development of vaccines mainly based on inactivated bacteria. Today, the incorporation of immunostimulants and antigens into nanomaterials provide us with new tools to enhance the performance of immunostimulation. Nanoparticles are dispersions or solid particles designed with specific physical properties (size, surface charge, or loading capacity), which allow controlled delivery and therefore improved targeting and stimulation of the immune system. The use of these nanodelivery platforms in fish is in the initial steps of development. Here we review the advances in the application of nanoparticles to fish disease prevention including: the type of biomaterial, the type of immunostimulant or vaccine loaded into the nanoparticles, and how they target the fish immune system.
Collapse
Affiliation(s)
- Jie Ji
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Debora Torrealba
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Àngels Ruyra
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina-Parc de Recerca UAB, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
372
|
|
373
|
Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv 2015; 12:1837-49. [PMID: 26289673 DOI: 10.1517/17425247.2015.1071791] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Nanotechnology has opened up the way to the engineering of new organized materials endowed with improved performances. In the past decade, engineered nanoparticles (NPs) have been progressively implemented by exploiting synthetic strategies that yield complex materials capable of performing functions with applications also in medicine. Indeed, in the field of 'nanomedicine' it has been explored the possibility to design multifunctional nanosystems, characterized by high analytical performances and stability, low toxicity and specificity towards a given cell target. AREA COVERED In this review article, we summarize the advances in the engineering of NPs for biomedical applications, from optical imaging (OI) to multimodal OI and targeted drug delivery. For this purpose, we will provide some examples of how investigations in nanomedicine can support preclinical and clinical research generating innovative diagnostic and therapeutic strategies in oncology. EXPERT OPINION The progressive breakthroughs in nanomedicine have supported the development of multifunctional and multimodal NPs. In particular, NPs are significantly impacting the diagnostic and therapeutic strategies since they allow the development of: NP-based OI probes containing more than one modality-specific contrast agent; surface functionalized NPs for specific 'molecular recognition'. Therefore, the design and characterization of innovative NP-based systems/devices have great applicative potential into the medical field.
Collapse
Affiliation(s)
- Stefania Biffi
- a 1 Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , via dell'Istria, 65/1, 34137 Trieste, Italy +39 040 3757722 ; +39 040 3785210 ;
| | - Rebecca Voltan
- b 2 University of Ferrara, LTTA Centre, Department of Morphology, Surgery and Experimental Medicine , Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Enrico Rampazzo
- c 3 University of Bologna, Department of Chemistry "G. Ciamician" , Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- d 4 University of Bologna, Department of Chemistry "G. Ciamician" , Via Selmi 2, 40126 Bologna, Italy
| | - Giorgio Zauli
- e 5 Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" , via dell'Istria, 65/1, 34137 Trieste, Italy +39 040 3785478 ; +39 040 3785210;
| | - Paola Secchiero
- f 6 University of Ferrara, LTTA Centre, Department of Morphology, Surgery and Experimental Medicine , Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|