401
|
Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 2009; 63:466-81. [PMID: 19709629 DOI: 10.1016/j.neuron.2009.08.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6. In both Lhx6 and Sox6 null animals, the expression of PV and SST and the position of both basket and Martinotti neurons are abnormal. We find that Sox6 functions downstream of Lhx6. Electrophysiological analysis of Sox6 mutant cortical interneurons revealed that basket cells, even when mispositioned, retain characteristic but immature fast-spiking physiological features. Our data suggest that Sox6 is not required for the specification of MGE-derived cortical interneurons. It is, however, necessary for their normal positioning and maturation. As a consequence, the specific removal of Sox6 from this population results in a severe epileptic encephalopathy.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Smilow Neuroscience Program and the Department of Cell Biology, Smilow Research Building, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
402
|
Flodby P, Borok Z, Banfalvi A, Zhou B, Gao D, Minoo P, Ann DK, Morrisey EE, Crandall ED. Directed expression of Cre in alveolar epithelial type 1 cells. Am J Respir Cell Mol Biol 2009; 43:173-8. [PMID: 19767448 DOI: 10.1165/rcmb.2009-0226oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary alveolar epithelium is comprised of two morphologically and functionally distinct cell types, alveolar epithelial type (AT) I and AT2 cells. Genetically modified mice with cell-specific Cre/loxP-mediated knockouts of relevant genes in each respective cell type would be useful to help elucidate the relative contributions of AT1 versus AT2 cells to alveolar homeostasis. Cre has previously been efficiently expressed in AT2 cells in mouse lung with the surfactant protein (SP)-C promoter; however, no transgenic mouse expressing Cre in AT1 cells has so far been available. To develop an AT1 cell-specific transgenic Cre mouse, we generated a knockin of a Cre-IRES-DsRed cassette into exon 1 of the endogenous aquaporin 5 (Aqp5) gene, a gene expressed specifically in AT1 cells in the distal lung epithelium, resulting in the mouse line, Aqp5-Cre-IRES-DsRed (ACID). Endogenous Aqp5 and transgenic Cre in ACID mice showed a very similar pattern of tissue distribution by RT-PCR. To analyze Cre activity, ACID was crossed to two Cre reporter strains, R26LacZ and mT/mG. Double-transgenic offspring demonstrated reporter gene expression in a very high fraction of AT1 cells in the distal lung, whereas AT2 cells were negative. As expected, variable reporter expression was detected in several other tissues where endogenous Aqp5 is expressed (e.g., submandibular salivary gland and stomach). ACID mice should be of major utility in analyzing the functional contribution of AT1 cells to alveolar epithelial properties in vivo with Cre/loxP-mediated gene deletion technology.
Collapse
Affiliation(s)
- Per Flodby
- Will Rogers Institute Pulmonary Research Center, Department of Medicine, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Magno L, Catanzariti V, Nitsch R, Krude H, Naumann T. Ongoing expression of Nkx2.1 in the postnatal mouse forebrain: potential for understanding NKX2.1 haploinsufficiency in humans? Brain Res 2009; 1304:164-86. [PMID: 19766601 DOI: 10.1016/j.brainres.2009.09.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 11/28/2022]
Abstract
Coordinated movements require the caudate-putamen and the globus pallidus, two nuclei belonging to the basal ganglia, to be intact and functioning properly. Many neurons populating these regions derive from the medial ganglionic eminence, a transient structure that expresses the transcription factor Nkx2.1 during prenatal development. Accordingly, the basal ganglia of Nkx2.1(-/-) mice are heavily affected and a substantial loss of several types of GABAergic interneurons has been observed. Interestingly, heterozygous mutation of the NKX2.1 gene in humans has been described as causing an unusual disorder from the second year of life onwards, which is mainly characterized by disturbances of motor abilities and delayed speech development. In the present study, we therefore investigated whether Nkx2.1 is still expressed in the young adult and aged mouse forebrain. After birth, the most intense immunolabeling for Nkx2.1 was detected in several components of the hypothalamic region, in the subventricular zone of the ventral tips lining the lateral ventricles, and in neighboring structures including the striatum, the globus pallidus and the various nuclei of the septal complex. Surprisingly, this staining pattern was substantially maintained into adulthood. Double immunocytochemistry for Nkx2.1 and various neuronal markers revealed that mainly parvalbumin-containing GABAergic neurons, but also cholinergic neurons, of the ventral forebrain express this protein. Moreover, in situ hybridization confirmed that these neurons maintain synthesis of Nkx2.1 throughout life. The robust expression of Nkx2.1 by these neurons points to a broad functional spectrum within the adult forebrain.
Collapse
Affiliation(s)
- Lorenza Magno
- Institute of Cell Biology and Neurobiology, Center of Anatomy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
404
|
The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 2009; 29:9380-9. [PMID: 19625528 DOI: 10.1523/jneurosci.0604-09.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
GABA-containing (GABAergic) interneurons play an important role in the function of the cerebral cortex. Through mostly inhibitory mechanisms, interneurons control hyperexcitability and synchronize and shape the spatiotemporal dynamics of cortical activity underlying various brain functions. Studies over the past 10 years have demonstrated that, in most mammals, interneurons originate during development from the subcortical telencephalon--the subpallium--and reach the cerebral cortex through tangential migration. Until now, interneurons have been demonstrated to derive exclusively from two subpallial regions, the medial ganglionic eminence and the caudal ganglionic eminence. Here, we show that another subpallial structure, the preoptic area, is a novel source of cortical GABAergic interneurons in the mouse. In utero labeling and genetic lineage-tracing experiments demonstrate that neurons born in this region migrate to the neocortex and hippocampus, where they differentiate into a distinct population of GABAergic interneurons with relatively uniform neurochemical, morphological, and electrophysiological properties.
Collapse
|
405
|
Development and evolution of the subpallium. Semin Cell Dev Biol 2009; 20:735-43. [DOI: 10.1016/j.semcdb.2009.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022]
|
406
|
Li C, Li A, Li M, Xing Y, Chen H, Hu L, Tiozzo C, Anderson S, Taketo MM, Minoo P. Stabilized beta-catenin in lung epithelial cells changes cell fate and leads to tracheal and bronchial polyposis. Dev Biol 2009; 334:97-108. [PMID: 19631635 DOI: 10.1016/j.ydbio.2009.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/15/2009] [Accepted: 07/09/2009] [Indexed: 01/22/2023]
Abstract
The precise mechanisms by which beta-catenin controls morphogenesis and cell differentiation remain largely unknown. Using embryonic lung development as a model, we deleted exon 3 of beta-catenin via Nkx2.1-cre in the Catnb[+/lox(ex3)] mice and studied its impact on epithelial morphogenesis. Robust selective accumulation of truncated, stabilized beta-catenin was found in Nkx2.1-cre;Catnb[+/lox(ex3)] lungs that were associated with the formation of polyp-like structures in the trachea and main-stem bronchi. Characterization of polyps suggests that accumulated beta-catenin impacts epithelial morphogenesis in at least two ways. "Intracellular" accumulation of beta-catenin blocked differentiation of spatially-appropriate airway epithelial cell types, Clara cells, ciliated cells and basal cells, and activated UCHL1, a marker for pulmonary neuroendocrine cells. There was also evidence for a "paracrine" impact of beta-catenin accumulation, potentially mediated via activation of Bmp4 that inhibited Clara and ciliated, but not basal cell differentiation. Thus, excess beta-catenin can alter cell fate determination by both direct and paracrine mechanisms.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Women's and Children's Hospital, USC Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Batista-Brito R, Fishell G. The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol 2009; 87:81-118. [PMID: 19427517 DOI: 10.1016/s0070-2153(09)01203-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The central goal of this manuscript is to survey our present knowledge of how cortical interneuron subtypes are generated. To achieve this, we will first define what is meant by subtype diversity. To this end, we begin by considering the mature properties that differentiate between the different populations of cortical interneurons. This requires us to address the difficulties involved in determining which characteristics allow particular interneurons to be assigned to distinct subclasses. Having grappled with this thorny issue, we will then proceed to review the progressive events in development involved in the generation of interneuron diversity. Starting with their origin and specification within the subpallium, we will follow them up through the first postnatal weeks during their integration into a functional network. Finally, we will conclude by calling the readers attention to the devastating consequences that result from developmental failures in the formation of inhibitory circuits within the cortex.
Collapse
|
408
|
Tiozzo C, De Langhe S, Yu M, Londhe VA, Carraro G, Li M, Li C, Xing Y, Anderson S, Borok Z, Bellusci S, Minoo P. Deletion of Pten expands lung epithelial progenitor pools and confers resistance to airway injury. Am J Respir Crit Care Med 2009; 180:701-12. [PMID: 19574443 DOI: 10.1164/rccm.200901-0100oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pten is a tumor-suppressor gene involved in stem cell homeostasis and tumorigenesis. In mouse, Pten expression is ubiquitous and begins as early as 7 days of gestation. Pten(-/-) mouse embryos die early during gestation indicating a critical role for Pten in embryonic development. OBJECTIVES To test the role of Pten in lung development and injury. METHODS We conditionally deleted Pten throughout the lung epithelium by crossing Pten(flox/flox) with Nkx2.1-cre driver mice. The resulting Pten(Nkx2.1-cre) mutants were analyzed for lung defects and response to injury. MEASUREMENTS AND MAIN RESULTS Pten(Nkx2.1-cre) embryonic lungs showed airway epithelial hyperplasia with no branching abnormalities. In adult mice, Pten(Nkx2.1-cre) lungs exhibit increased progenitor cell pools composed of basal cells in the trachea, CGRP/CC10 double-positive neuroendocrine cells in the bronchi, and CC10/SPC double-positive cells at the bronchioalveolar duct junctions. Pten deletion affected differentiation of various lung epithelial cell lineages, with a decreased number of terminally differentiated cells. Over time, Pten(Nxk2.1-cre) epithelial cells residing in the bronchioalveolar duct junctions underwent proliferation and formed uniform masses, supporting the concept that the cells residing in this distal niche may also be the source of procarcinogenic stem cells. Finally, increased progenitor cells in all the lung compartments conferred an overall selective advantage to naphthalene injury compared with wild-type control mice. CONCLUSIONS Pten has a pivotal role in lung stem cell homeostasis, cell differentiation, and consequently resistance to lung injury.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Department of Pediatrics, Division of Neonatology, Women's and Children's Hospital, USC Keck School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci 2009; 29:7040-52. [PMID: 19474331 DOI: 10.1523/jneurosci.0105-09.2009] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are attributable to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. Although embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first 4 postnatal weeks and that these changes are correlated with primarily monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of two-pore K(+) leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells.
Collapse
|
410
|
Long JE, Cobos I, Potter GB, Rubenstein JLR. Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. ACTA ACUST UNITED AC 2009; 19 Suppl 1:i96-106. [PMID: 19386638 DOI: 10.1093/cercor/bhp045] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here we define the expression of approximately 100 transcription factors (TFs) in progenitors and neurons of the developing mouse medial and caudal ganglionic eminences, anlage of the basal ganglia and pallial interneurons. We have begun to elucidate the transcriptional hierarchy of these genes with respect to the Dlx homeodomain genes, which are essential for differentiation of most gamma-aminobutyric acidergic projection neurons of the basal ganglia. This analysis identified Dlx-dependent and Dlx-independent pathways. The Dlx-independent pathway depends in part on the function of the Mash1 basic helix-loop-helix (b-HLH) TF. These analyses define core transcriptional components that differentially specify the identity and differentiation of the globus pallidus, basal telencephalon, and pallial interneurons.
Collapse
Affiliation(s)
- Jason E Long
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California at San Francisco, San Francisco, CA 94158-2324, USA
| | | | | | | |
Collapse
|
411
|
Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G. Characterization of Nkx6-2-derived neocortical interneuron lineages. ACTA ACUST UNITED AC 2009; 19 Suppl 1:i1-10. [PMID: 19363146 PMCID: PMC2693535 DOI: 10.1093/cercor/bhp038] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventral telencephalic progenitors expressing the homeodomain transcription factor Nkx6-2 have been shown to give rise to a multitude of cortical interneuron subtypes usually associated with origin in either the medial ganglionic eminence or the caudal ganglionic eminence. The function of Nkx6-2 in directing the fate of those progenitors has, however, not been thoroughly analyzed. We used a combination of genetic inducible fate mapping and in vivo loss-of-function to analyze the requirement of Nkx6-2 in determining the fate of cortical interneurons. We have found that interneuron subtypes are born with a characteristic temporal pattern. Furthermore, we extend the characterization of interneurons from the Nkx6-2 lineage through the application of electrophysiological methods. Analysis of these populations in Nkx6-2 null mice suggests that there is a small and partially penetrant loss of delayed non-fast spiking somatostatin/calretinin double positive cortical interneurons in the absence of Nkx6-2 gene function.
Collapse
Affiliation(s)
- Vitor H Sousa
- Neuroscience Program, Smilow Research Center, New York University, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
412
|
Real MA, Heredia R, del Carmen Labrador M, Dávila JC, Guirado S. Expression of somatostatin and neuropeptide Y in the embryonic, postnatal, and adult mouse amygdalar complex. J Comp Neurol 2009; 513:335-48. [DOI: 10.1002/cne.21970] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
413
|
COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci 2009; 28:13582-91. [PMID: 19074032 DOI: 10.1523/jneurosci.2132-08.2008] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While the cortical interneurons derived from the medial ganglionic eminence (MGE) migrate rather diffusely into the cortex, interneurons that migrate out from the caudal ganglionic eminence (CGE) mainly move caudally into the caudal cerebral cortex and the hippocampus in the form of the caudal migratory stream (CMS) (Yozu et al., 2005). Although transplantation experiments at embryonic day 13.5 had revealed that the migrating cells in these two populations are already intrinsically different in regard to their ability to respond to the CGE environment (Yozu et al., 2005), it is not known how the CGE cells are specified and how their migratory behavior is determined. In this study we showed that, although CGE and lateral ganglionic eminence (LGE) express almost the same marker molecules, LGE cells do not migrate caudally when transplanted into the CGE, suggesting that LGE cells are intrinsically different from CGE cells. We therefore compared the transcriptomes of the CGE, MGE, and LGE, and the results showed that COUP-TFII was expressed preferentially in the CGE as well as in the migrating interneurons in the CMS. Transplantation experiments revealed that COUP-TFII is sufficient to change the direction of MGE cell migration to caudal when transplanted into the CGE environment, and knockdown of COUP-TFII inhibited the caudal migration of the CGE cells. These results suggest that COUP-TFII is both required and sufficient for the CGE-cell-specific migratory behavior in the caudal direction. Thus, a locally expressed transcription factor determines the migratory direction of the cortical interneurons in a region-specific manner.
Collapse
|
414
|
Delaunay D, Heydon K, Miguez A, Schwab M, Nave KA, Thomas JL, Spassky N, Martinez S, Zalc B. Genetic tracing of subpopulation neurons in the prethalamus of mice (Mus musculus). J Comp Neurol 2009; 512:74-83. [PMID: 18973275 DOI: 10.1002/cne.21904] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genetic labeling based on the Cre/lox reporter system has allowed the creation of fate maps for progenitor cells and their offspring. In the diencephalon, pools of progenitors express the plp transcripts in the zona limitans intrathalamica (ZLI), the basal plate of the diencephalon (bpD), and the posterior part of the hypothalamus. We used plp-Cre transgenics crossed with either Rosa26-lox-lacZ (R26R) or actin-lox gfp (Z/EG) reporter mice to investigate the progeny of plp-expressing ventricular cells in the diencephalon. We describe the subpopulations of prethalamic neurons derived from plp-activated progenitors, their possible migratory routes as development proceeds, and their final positional identity. Neurons derived from plp-expressing progenitors issued from the ZLI contribute to GABAergic cells in the zona incerta, the subgeniculate nucleus, the ventral lateral geniculate, and the intergeniculate leaflet. Plp(+) progenitors in the bpD and posterior hypothalamus appear to generate glutamatergic neurons in the subthalamic nucleus and GABAergic neurons in the mammillary and retromammillary tegmentum derivatives. In all these nuclei the contribution of plp(+) progenitors is only partial, illustrating the heterogeneity of origin of neurons in prethalamic and caudal hypothalamic nuclei.
Collapse
|
415
|
Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala. Nat Neurosci 2009; 12:141-9. [PMID: 19136974 PMCID: PMC2747779 DOI: 10.1038/nn.2241] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/13/2008] [Indexed: 11/08/2022]
Abstract
The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.
Collapse
|
416
|
Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat Neurosci 2008; 11:1383-91. [PMID: 18997789 DOI: 10.1038/nn.2226] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/14/2008] [Indexed: 12/29/2022]
Abstract
Development of the telencephalon involves the coordinated growth of diversely patterned brain structures. Previous studies have demonstrated the importance of beta-catenin-mediated Wnt signaling in proliferation and fate determination during cerebral cortical development. We found that beta-catenin-mediated Wnt signaling critically maintained progenitor proliferation in the subcortical (pallidal) telencephalon. Targeted deletion of beta-catenin in mice severely impaired proliferation in the medial ganglionic eminence without grossly altering differentiated fate. Several lines of evidence suggest that this phenotype is primarily the result of a loss of canonical Wnt signaling. As previous studies have suggested that the ventral patterning factor Sonic Hedgehog (Shh) also stimulates dorsal telencephalic proliferation, we propose a model whereby Wnt and Shh signaling promote distinct dorsal-ventral patterning while also having broader effects on proliferation that serve to coordinate the growth of telencephalic subregions.
Collapse
|
417
|
Potter GB, Petryniak MA, Shevchenko E, McKinsey GL, Ekker M, Rubenstein JLR. Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons. Mol Cell Neurosci 2008; 40:167-86. [PMID: 19026749 DOI: 10.1016/j.mcn.2008.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 09/25/2008] [Accepted: 10/02/2008] [Indexed: 11/15/2022] Open
Abstract
DLX1 and DLX2 transcription factors are necessary for forebrain GABAergic neuron differentiation, migration, and survival. We generated transgenic mice that express Cre-recombinase under the control of two ultra-conserved DNA elements near the Dlx1 and 2 locus termed I12b and URE2. We show that Cre-recombinase is active in a "Dlx-pattern" in the embryonic forebrain of transgenic mice. I12b-Cre is more active than URE2-Cre in the medial ganglionic eminences and its derivatives. Fate-mapping of EGFP+ cells in adult Cre;Z/EG animals demonstrated that GABAergic neurons, but not glia, are labeled. Most NPY+, nNOS+, parvalbumin+, and somatostatin+ cells are marked by I12b-Cre in the cortex and hippocampus, while 25-40% of these interneuron subtypes are labeled by URE2-Cre. Labeling of neurons generated between E12.5 to E15.5 indicated differences in birth-dates of EGFP+ cells that populate the olfactory bulb, hippocampus, and cortex. Finally, we provide the first in vivo evidence that both I12b and URE2 are direct targets of DLX2 and require Dlx1 and Dlx2 expression for proper activity.
Collapse
Affiliation(s)
- Gregory B Potter
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA.
| | | | | | | | | | | |
Collapse
|
418
|
Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JLR. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 2008; 510:79-99. [PMID: 18613121 DOI: 10.1002/cne.21772] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we analyze the role of the Lhx6 lim-homeobox transcription factor in regulating the development of subsets of neocortical, hippocampal, and striatal interneurons. An Lhx6 loss-of-function allele, which expresses placental alkaline phosphatase (PLAP), allowed analysis of the development and fate of Lhx6-expressing interneurons in mice lacking this homeobox transcription factor. There are Lhx6+;Dlx+ and Lhx6-;Dlx+ subtypes of tangentially migrating interneurons. Most interneurons in Lhx6(PLAP/PLAP) mutants migrate to the cortex, although less efficiently, and exhibit defects in populating the marginal zone and superficial parts of the neocortical plate. By contrast, migration to superficial parts of the hippocampus is not seriously affected. Furthermore, whereas parvalbumin+ and somatostatin+ interneurons do not differentiate, NPY+ interneurons are present; we suggest that these NPY+ interneurons are derived from the Lhx6-;Dlx+ subtype. Striatal interneurons show deficits distinct from pallial interneurons, including a reduction in the NPY+ subtype. We provide evidence that Lhx6 mediates these effects through promoting expression of receptors that regulate interneuron migration (ErbB4, CXCR4, and CXCR7), and through promoting the expression of transcription factors either known (Arx) or implicated (bMaf, Cux2, and NPAS1) in controlling interneuron development.
Collapse
Affiliation(s)
- Yangu Zhao
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
419
|
Carney RSE, Cocas LA, Hirata T, Mansfield K, Corbin JG. Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2. ACTA ACUST UNITED AC 2008; 19:745-59. [PMID: 18701439 DOI: 10.1093/cercor/bhn123] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the embryonic telencephalon, the pallial-subpallial boundary (PSB) separates the dorsal Pax6+ pallium from the ventral Gsh2+ subpallium. Previous studies have revealed that this region is a source of cells that will populate both the olfactory bulb and basal telencephalic limbic system. However, the level of progenitor cell heterogeneity and developmental genetic regulation of this progenitor region remains to be fully elucidated. In this study we carried out a comprehensive analysis of gene expression patterns at the PSB, in addition to an examination of the combinatorial function of Pax6 and Gsh2 in the specification of the PSB. First, we reveal that the PSB is comprised of a complex mix of molecularly distinct progenitor pools. In addition, by analysis of single Sey, Gsh2, and Sey/Gsh2 double mutant mice, we demonstrate that both Pax6 and Gsh2 are directly required for major aspects of PSB progenitor specification. Our analysis also reveals that the establishment of the epidermal growth factor receptor positive lateral cortical stream migratory route to the basal telencephalon is Pax6 dependent. Thus, in addition to their well-characterized cross-repressive roles in dorsal/ventral patterning our analyses reveal important novel functions of Gsh2 and Pax6 in the regulation of PSB progenitor pool specification and patterning.
Collapse
Affiliation(s)
- Rosalind S E Carney
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
420
|
Xing Y, Li C, Hu L, Tiozzo C, Li M, Chai Y, Bellusci S, Anderson S, Minoo P. Mechanisms of TGFbeta inhibition of LUNG endodermal morphogenesis: the role of TbetaRII, Smads, Nkx2.1 and Pten. Dev Biol 2008; 320:340-50. [PMID: 18602626 DOI: 10.1016/j.ydbio.2008.04.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/23/2008] [Accepted: 04/30/2008] [Indexed: 11/26/2022]
Abstract
Transforming growth factor-beta is a multifunctional growth factor with roles in normal development and disease pathogenesis. One such role is in inhibition of lung branching morphogenesis, although the precise mechanism remains unknown. In an explant model, all three TGFbeta isoforms inhibited FGF10-induced morphogenesis of mesenchyme-free embryonic lung endoderm. Inhibition of budding by TGFbeta was partially abrogated in endodermal explants from Smad3(-/-) or conditional endodermal-specific Smad4(Delta/Delta) embryonic lungs. Endodermal explants from conditional TGFbeta receptor II knockout lungs were entirely refractive to TGFbeta-induced inhibition. Inhibition of morphogenesis was associated with dedifferentiation of endodermal cells as documented by a decrease in key transcriptional factor, NKX2.1 protein, and its downstream target, surfactant protein C (SpC). TGFbeta reduced the proliferation of wild-type endodermal cells within the explants as assessed by BrdU labeling. Gene expression analysis showed increased levels of mRNA for Pten, a key regulator of cell proliferation. Conditional, endodermal-specific deletion of Pten overcame TGFbeta's inhibitory effect on cell proliferation, but did not restore morphogenesis. Thus, the mechanisms by which TGFbeta inhibits FGF10-induced lung endodermal morphogenesis may entail both inhibition of cell proliferation, through increased Pten, as well as inhibition or interference with morphogenetic mediators such as Nkx2.1. Both of the latter are dependent on signaling through TbetaRII.
Collapse
Affiliation(s)
- Yiming Xing
- Department of Pediatrics, Division of Neonatology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Rajaii F, Bitzer ZT, Xu Q, Sockanathan S. Expression of the dominant negative retinoid receptor, RAR403, alters telencephalic progenitor proliferation, survival, and cell fate specification. Dev Biol 2008; 316:371-82. [PMID: 18329011 DOI: 10.1016/j.ydbio.2008.01.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/26/2008] [Accepted: 01/28/2008] [Indexed: 01/22/2023]
Abstract
Retinoic acid (RA) signaling plays critical roles in diverse cellular processes during nervous system development. In mouse models, the roles for RA signals in telencephalic development remain unclear, partly because of the ambiguity of RA telencephalic sources after E8.75. Here, we have developed a genetic approach that utilizes Cre-lox technology to conditionally express a potent dominant negative retinoid receptor, RAR403, in vivo. This approach blocks RA signaling pathways at the receptor level, enabling the disruption of RA signals in contexts in which the RA source is unknown. RAR403 expression throughout the developing telencephalon causes pronounced hypoplasia resulting from defective proliferation in dorsal telencephalic progenitors and extensive cell death. Furthermore, Nkx2.1(+) progenitors in the medial ganglionic eminence (MGE) are misspecified such that they acquire a subset of lateral ganglionic eminence (LGE)-specific properties at the expense of MGE fates. This genetic approach reveals new roles for RA signaling in telencephalic proliferation, survival and fate specification, and underscores its utility in investigating the function of retinoid signaling pathways throughout peri- and postnatal development.
Collapse
Affiliation(s)
- Fatemeh Rajaii
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
422
|
A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol 2007; 314:127-36. [PMID: 18155689 DOI: 10.1016/j.ydbio.2007.11.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 11/14/2007] [Accepted: 11/14/2007] [Indexed: 11/21/2022]
Abstract
Although it is well established that the ventral telencephalon is the primary source of GABAergic cortical interneurons in rodents, little is known about the specification of specific interneuron subtypes. It is also unclear whether the potential to achieve a given fate is established at their place of origin or by signals received during their migration to or during their maturation within the cerebral cortex. Using both in vivo and in vitro transplantation techniques, we find that two major interneuron subgroups have largely distinct origins within the MGE. Somatostatin (SST)-expressing interneurons are primarily generated within the dorsal MGE, while parvalbumin (PV)-expressing interneurons primarily originate from the ventral MGE. In addition, we show that significant heterogeneity exists between gene expression patterns in the dorsal and ventral MGE. These results suggest that, like the spinal cord, neuronal fate determination in the ventral telencephalon is largely the result of spatially segregated, molecularly distinct microdomains arranged on the dorsal-ventral axis.
Collapse
|