401
|
Effect of SLC26 anion transporter disease-causing mutations on the stability of the homologous STAS domain of E. coli DauA (YchM). Biochem J 2015; 473:615-26. [PMID: 26635355 DOI: 10.1042/bj20151025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
Abstract
The human solute carrier 26 (SLC26) family of anion transporters consists of ten members that are found in various organs in the body including the stomach, intestine, kidney, thyroid and ear where they transport anions including bicarbonate, chloride and sulfate, typically in an exchange mode. Mutations in these genes cause a plethora of diseases such as diastrophic dysplasia affecting sulfate uptake into chondrocytes (SLC26A2), congenital chloride-losing diarrhoea (SLC26A3) affecting chloride secretion in the intestine and Pendred's syndrome (SLC26A4) resulting in hearing loss. To understand how these mutations affect the structures of the SLC26 membrane proteins and their ability to function properly, 12 human disease-causing mutants from SLC26A2, SLC26A3 and SLC26A4 were introduced into the equivalent sites of the sulfate transporter anti-sigma factor antagonist (STAS) domain of a bacterial homologue SLC26 protein DauA (YchM). Biophysical analyses including size-exclusion chromatography, circular dichroism (CD), differential scanning fluorimetry (DSF) and tryptophan fluorescence revealed that most mutations caused protein instability and aggregation. The mutation A463K, equivalent to N558K in human SLC26A4, which is located within α-helix 1 of the DauA STAS domain, stabilized the protein. CD measurements showed that most disease-related mutants had a mildly reduced helix content, but were more sensitive to thermal denaturation. Fluorescence spectroscopy showed that the mutants had more open structures and were more readily denatured by urea, whereas DSF indicated more labile folds. Overall, we conclude that the disease-associated mutations destabilized the STAS domain resulting in an increased propensity to misfold and aggregate.
Collapse
|
402
|
Wu W, Bush KT, Liu HC, Zhu C, Abagyan R, Nigam SK. Shared Ligands Between Organic Anion Transporters (OAT1 and OAT6) and Odorant Receptors. Drug Metab Dispos 2015; 43:1855-63. [PMID: 26358290 PMCID: PMC4658493 DOI: 10.1124/dmd.115.065250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022] Open
Abstract
The multispecific organic anion drug transporters OAT6 (SLC22A20) and OAT1 (SLC22A6) are expressed in nasal epithelial cells and both can bind odorants. Sequence analysis of OAT6 revealed an evolutionarily conserved 79-amino acid (AA) fragment present not only in OAT6 but also in other SLC22 transporters, such as the organic anion transporter (OAT), organic carnitine transporter (OCTN), and organic cation transporter (OCT) subfamilies. A similar fragment is also conserved in some odorant receptors (ORs) in both humans and rodents. This fragment is located in regions believed to be important for ligand/substrate preference and recognition in both classes of proteins, raising the possibility that it may be part of a potential common ligand/substrate recognition site in certain ORs and SLC22 transporters. In silico screening of an odorant database containing known OR ligands with a pharmacophore hypothesis (generated from a set of odorants known to bind OAT6 and/or OAT1), followed by in vitro uptake assays in transfected cells, identified OR ligands capable of inhibiting OAT6- and/or OAT1-mediated transport, albeit with different affinities. The conservation of the AA fragments between these two different classes of proteins, together with their coexpression in olfactory as well as other tissues, suggests the possibility that ORs and SLC22 transporters function in concert, and raises the question as to whether these transporters function in remote sensing and signaling and/or as transceptors.
Collapse
Affiliation(s)
- Wei Wu
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Christopher Zhu
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Ruben Abagyan
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| | - Sanjay K Nigam
- Departments of Pediatrics (K.T.B., S.K.N.), Medicine (Division of Nephrology and Hypertension)(W.W., S.K.N.), Bioengineering (H.C.L.), Biomedical Sciences (C.Z.), School of Pharmacy/Pharmaceutical Science (R.A.), and Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California
| |
Collapse
|
403
|
Loganathan SK, Lukowski CM, Casey JR. The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11. Am J Physiol Cell Physiol 2015; 310:C161-74. [PMID: 26582474 DOI: 10.1152/ajpcell.00246.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022]
Abstract
Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl(-)/HCO3(-) exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function.
Collapse
Affiliation(s)
- Sampath K Loganathan
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chris M Lukowski
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph R Casey
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
404
|
O’Hagan S, Kell DB. The apparent permeabilities of Caco-2 cells to marketed drugs: magnitude, and independence from both biophysical properties and endogenite similarities. PeerJ 2015; 3:e1405. [PMID: 26618081 PMCID: PMC4655101 DOI: 10.7717/peerj.1405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/25/2015] [Indexed: 12/25/2022] Open
Abstract
We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate measurements) of the apparent permeability (P app) of Caco-2 cells to marketed drugs. While in some cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not especially permeable through Caco-2 cells, with the median P app value being some 16 ⋅ 10(-6) cm s(-1). This value is considerably lower than those (1,310 and 230 ⋅ 10(-6) cm s(-1)) recently used in some simulations that purported to show that P app values were too great to be transporter-mediated only. While these values are outliers, all values, and especially the comparatively low values normally observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly correlated with either simple biophysical properties, the extent of molecular similarity to endogenous metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water partition coefficient, logP, shows negligible correlation with Caco-2 permeability. The data are best explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of comparatively weak specificity.
Collapse
Affiliation(s)
- Steve O’Hagan
- School of Chemistry & The Manchester Institute of Biotechnology and Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, Manchester, Lancs, United Kingdom
| | - Douglas B. Kell
- School of Chemistry & The Manchester Institute of Biotechnology and Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, Manchester, Lancs, United Kingdom
| |
Collapse
|
405
|
Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS One 2015; 10:e0140569. [PMID: 26536134 PMCID: PMC4633038 DOI: 10.1371/journal.pone.0140569] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term "Oat-related" (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.
Collapse
Affiliation(s)
- Christopher Zhu
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Kabir B. Nigam
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Rishabh C. Date
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin T. Bush
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Stevan A. Springer
- Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Departments of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Wei Wu
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (SKN); (WW)
| | - Sanjay K. Nigam
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
- Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (SKN); (WW)
| |
Collapse
|
406
|
Mendes P, Oliver SG, Kell DB. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly. Trends Pharmacol Sci 2015; 36:710-723. [PMID: 26538313 PMCID: PMC4642801 DOI: 10.1016/j.tips.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed 'randomly' they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single 'random' transporter could account for the flux 42% of the time, and that two transporters can achieve 10·10(-6)cm·s(-1) 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that 'phospholipid bilayer diffusion (of drugs) is negligible' is not disproved by the calculations of 'likely' transporter-based fluxes.
Collapse
Affiliation(s)
- Pedro Mendes
- School of Computer Science; Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom; Center for Quantitative Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-6033, USA
| | - Stephen G Oliver
- Cambridge Systems Biology Centre; Dept of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom; School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
407
|
|
408
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|