401
|
A pathophysiological view of the long non-coding RNA world. Oncotarget 2015; 5:10976-96. [PMID: 25428918 PMCID: PMC4294373 DOI: 10.18632/oncotarget.2770] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Because cells are constantly exposed to micro-environmental changes, they require the ability to adapt to maintain a dynamic equilibrium. Proteins are considered critical for the regulation of gene expression, which is a fundamental process in determining the cellular responses to stimuli. Recently, revolutionary findings in RNA research and the advent of high-throughput genomic technologies have revealed a pervasive transcription of the human genome, which generates many long non-coding RNAs (lncRNAs) whose roles are largely undefined. However, there is evidence that lncRNAs are involved in several cellular physiological processes such as adaptation to stresses, cell differentiation, maintenance of pluripotency and apoptosis. The correct balance of lncRNA levels is crucial for the maintenance of cellular equilibrium, and the dysregulation of lncRNA expression is linked to many disorders; certain transcripts are useful prognostic markers for some of these pathologies. This review revisits the classic concept of cellular homeostasis from the perspective of lncRNAs specifically to understand how this novel class of molecules contributes to cellular balance and how its dysregulated expression can lead to the onset of pathologies such as cancer.
Collapse
|
402
|
Wang Y, Liu X, Zhang H, Sun L, Zhou Y, Jin H, Zhang H, Zhang H, Liu J, Guo H, Nie Y, Wu K, Fan D, Zhang H, Liu L. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 2015; 16:1094-106. [PMID: 25499222 PMCID: PMC4309257 DOI: 10.1016/j.neo.2014.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been implicated as a crucial microenvironmental factor that induces cancer metastasis. We previously reported that hypoxia could promote gastric cancer (GC) metastasis, but the underlying mechanisms are not clear. Long noncoding RNAs (lncRNAs) have recently emerged as important regulators of carcinogenesis that act on multiple pathways. However, whether lncRNAs are involved in hypoxia-induced GC metastasis remains unknown. In this study, we investigated the differentially expressed lncRNAs resulting from hypoxia-induced GC and normoxia conditions using microarrays and validated our results through real-time quantitative polymerase chain reaction. We found an lncRNA, AK058003, that is upregulated by hypoxia. AK058003 is frequently upregulated in GC samples and promotes GC migration and invasion in vivo and in vitro. Furthermore, AK058003 can mediate the metastasis of hypoxia-induced GC cells. Next, we identified γ-synuclein (SNCG), which is a metastasis-related gene regulated by AK058003. In addition, we found that the expression of SNCG is positively correlated with that of AK058003 in the clinical GC samples used in our study. Furthermore, we found that the SNCG gene CpG island methylation was significantly increased in GC cells depleted of AK058003. Intriguingly, SNCG expression is also increased by hypoxia, and SNCG upregulation by AK058003 mediates hypoxia-induced GC cell metastasis. These results advance our understanding of the role of lncRNA-AK058003 as a regulator of hypoxia signaling, and this newly identified hypoxia/lncRNA-AK058003/SNCG pathway may help in the development of new therapeutics.
Collapse
Affiliation(s)
- Yafang Wang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiangqiang Liu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hongbo Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Li Sun
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Yongan Zhou
- Department of thoracic surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Haifeng Jin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hui Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Jiaming Liu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hao Guo
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.
| | - Lili Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
403
|
Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, Schödel J, Green CM, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris AL, Mole DR. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 2015; 34:4482-90. [PMID: 25417700 PMCID: PMC4430310 DOI: 10.1038/onc.2014.378] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 12/18/2022]
Abstract
Activation of cellular transcriptional responses, mediated by hypoxia-inducible factor (HIF), is common in many types of cancer, and generally confers a poor prognosis. Known to induce many hundreds of protein-coding genes, HIF has also recently been shown to be a key regulator of the non-coding transcriptional response. Here, we show that NEAT1 long non-coding RNA (lncRNA) is a direct transcriptional target of HIF in many breast cancer cell lines and in solid tumors. Unlike previously described lncRNAs, NEAT1 is regulated principally by HIF-2 rather than by HIF-1. NEAT1 is a nuclear lncRNA that is an essential structural component of paraspeckles and the hypoxic induction of NEAT1 induces paraspeckle formation in a manner that is dependent upon both NEAT1 and on HIF-2. Paraspeckles are multifunction nuclear structures that sequester transcriptionally active proteins as well as RNA transcripts that have been subjected to adenosine-to-inosine (A-to-I) editing. We show that the nuclear retention of one such transcript, F11R (also known as junctional adhesion molecule 1, JAM1), in hypoxia is dependent upon the hypoxic increase in NEAT1, thereby conferring a novel mechanism of HIF-dependent gene regulation. Induction of NEAT1 in hypoxia also leads to accelerated cellular proliferation, improved clonogenic survival and reduced apoptosis, all of which are hallmarks of increased tumorigenesis. Furthermore, in patients with breast cancer, high tumor NEAT1 expression correlates with poor survival. Taken together, these results indicate a new role for HIF transcriptional pathways in the regulation of nuclear structure and that this contributes to the pro-tumorigenic hypoxia-phenotype in breast cancer.
Collapse
Affiliation(s)
- H Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - A Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford, UK
| | - M Morotti
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford, UK
| | - S Haider
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford, UK
| | - D Moralli
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - J Smythies
- The Henry Wellcome Building for Molecular Physiology, University of Oxford, Headington, Oxford, UK
| | - J Schödel
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - C M Green
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - C Camps
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | - F Buffa
- Old Road Campus Research Building, University of Oxford, Headington, Oxford, UK
| | - P Ratcliffe
- The Henry Wellcome Building for Molecular Physiology, University of Oxford, Headington, Oxford, UK
| | - J Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- BSRC Alexander Fleming, Athens, Greece
| | - A L Harris
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford, UK
| | - D R Mole
- The Henry Wellcome Building for Molecular Physiology, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
404
|
LincRNA-p21: Implications in Human Diseases. Int J Mol Sci 2015; 16:18732-40. [PMID: 26270659 PMCID: PMC4581268 DOI: 10.3390/ijms160818732] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/04/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases.
Collapse
|
405
|
PU.1-Regulated Long Noncoding RNA lnc-MC Controls Human Monocyte/Macrophage Differentiation through Interaction with MicroRNA 199a-5p. Mol Cell Biol 2015; 35:3212-24. [PMID: 26149389 DOI: 10.1128/mcb.00429-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/26/2015] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in mammalian development, but little is known about their roles in monocyte/macrophage differentiation. Here we identified a long noncoding monocytic RNA (lnc-MC) that exhibits increased expression during monocyte/macrophage differentiation of THP-1 and HL-60 cells as well as CD34(+) hematopoietic stem/progenitor cells (HSPCs) and is transcriptionally activated by PU.1. Gain- and loss-of-function assays demonstrate that lnc-MC promotes monocyte/macrophage differentiation of THP-1 cells and CD34(+) HSPCs. Mechanistic investigation reveals that lnc-MC acts as a competing endogenous RNA to sequester microRNA 199a-5p (miR-199a-5p) and alleviate repression on the expression of activin A receptor type 1B (ACVR1B), an important regulator of monocyte/macrophage differentiation. We also noted a repressive effect of miR-199a-5p on lnc-MC expression and function, but PU.1-dominant downregulation of miR-199a-5p weakens the role of miR-199a-5p in the reciprocal regulation between miR-199a-5p and lnc-MC. Altogether, our work demonstrates that two PU.1-regulated noncoding RNAs, lnc-MC and miR-199a-5p, have opposing roles in monocyte/macrophage differentiation and that lnc-MC facilitates the differentiation process, enhancing the effect of PU.1, by soaking up miR-199a-5p and releasing ACVR1B expression. Thus, we reveal a novel regulatory mechanism, comprising PU.1, lnc-MC, miR-199a-5p, and ACVR1B, in monocyte/macrophage differentiation.
Collapse
|
406
|
Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:209-21. [PMID: 26141605 DOI: 10.1016/j.bbagrm.2015.06.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/13/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022]
Abstract
Aging is a process during which progressive deteriorating of cells, tissues, and organs over time lead to loss of function, disease, and death. Towards the goal of extending human health span, there is escalating interest in understanding the mechanisms that govern aging-associated pathologies. Adequate regulation of expression of coding and noncoding genes is critical for maintaining organism homeostasis and preventing disease processes. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression at all levels--transcriptional, post-transcriptional and post-translational. In this review, we discuss our emerging understanding of lncRNAs implicated in aging illnesses. We focus on diseases arising from age-driven impairment in energy metabolism (obesity, diabetes), the declining capacity to respond homeostatically to proliferative and damaging stimuli (cancer, immune dysfunction), and neurodegeneration. We identify the lncRNAs involved in these ailments and discuss the rising interest in lncRNAs as diagnostic and therapeutic targets to ameliorate age-associated pathologies and prolong health. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
407
|
Zhou C, Ye L, Jiang C, Bai J, Chi Y, Zhang H. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol 2015; 36:9179-88. [DOI: 10.1007/s13277-015-3453-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/10/2015] [Indexed: 01/17/2023] Open
|
408
|
Miano JM, Long X. The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci 2015; 72:3457-88. [PMID: 26022065 DOI: 10.1007/s00018-015-1936-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
Abstract
The two principal cell types of importance for normal vessel wall physiology are smooth muscle cells and endothelial cells. Much progress has been made over the past 20 years in the discovery and function of transcription factors that coordinate proper differentiation of these cells and the maintenance of vascular homeostasis. More recently, the converging fields of bioinformatics, genomics, and next generation sequencing have accelerated discoveries in a number of classes of noncoding sequences, including transcription factor binding sites (TFBS), microRNA genes, and long noncoding RNA genes, each of which mediates vascular cell differentiation through a variety of mechanisms. Alterations in the nucleotide sequence of key TFBS or deviations in transcription of noncoding RNA genes likely have adverse effects on normal vascular cell phenotype and function. Here, the subject of noncoding sequences that influence smooth muscle cell or endothelial cell phenotype will be summarized as will future directions to further advance our understanding of the increasingly complex molecular circuitry governing normal vascular cell differentiation and how such information might be harnessed to combat vascular diseases.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA,
| | | |
Collapse
|
409
|
Wang L, Zhang Y, Lv W, Lu J, Mu J, Liu Y, Dong P. Long non-coding RNA Linc-ITGB1 knockdown inhibits cell migration and invasion in GBC-SD/M and GBC-SD gallbladder cancer cell lines. Chem Biol Drug Des 2015; 86:1064-71. [PMID: 25893892 DOI: 10.1111/cbdd.12573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/17/2015] [Accepted: 04/12/2015] [Indexed: 12/23/2022]
Abstract
Gallbladder cancer is a highly aggressive malignancy with a low 5-year survival rate. Despite advances in the molecular understanding of the initiation and progression in gallbladder cancer, treatment modalities such as surgery, radiotherapy, or chemotherapy in advanced cases did not yield promising outcomes. Therefore, it is of great importance to uncover new mechanism underlying gallbladder cancer growth and metastasis. In this study, we identified a differentially expressed long intergenic non-coding RNA, linc-ITGB1, in a pair of higher and lower metastatic gallbladder cancer cell sublines. Then, the potential role of linc-ITGB1 in gallbladder cancer cell proliferation, migration, and invasion was explored using a lentivirus-mediated RNA interference system. Functional analysis showed that knockdown of linc-ITGB1 significantly inhibited gallbladder cancer cell proliferation. Moreover, cell migration and invasion were reduced by over twofold in linc-ITGB1 knockdown cells probably due to upregulation of β-catenin and downregulation of vimentin, slug, and TCF8. In conclusion, linc-ITGB1 potentially promoted gallbladder cancer invasion and metastasis by accelerating the process of epithelial-to-mesenchymal transition, and the application of RNA interference targeting linc-ITGB1 might be a potential form of gallbladder cancer treatment in advanced cases.
Collapse
Affiliation(s)
- Lei Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yunjiao Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenjie Lv
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jianhua Lu
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| |
Collapse
|
410
|
Mikawa T, LLeonart ME, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H. Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci 2015; 72:1881-92. [PMID: 25609364 PMCID: PMC11113496 DOI: 10.1007/s00018-015-1840-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Enhanced glycolysis in cancer, called the Warburg effect, is a well-known feature of cancer metabolism. Recent advances revealed that the Warburg effect is coupled to many other cancer properties, including adaptation to hypoxia and low nutrients, immortalisation, resistance to oxidative stress and apoptotic stimuli, and elevated biomass synthesis. These linkages are mediated by various oncogenic molecules and signals, such as c-Myc, p53, and the insulin/Ras pathway. Furthermore, several regulators of glycolysis have been recently identified as oncogene candidates, including the hypoxia-inducible factor pathway, sirtuins, adenosine monophosphate-activated kinase, glycolytic pyruvate kinase M2, phosphoglycerate mutase, and oncometabolites. The interplay between glycolysis and oncogenic events will be the focus of this review.
Collapse
Affiliation(s)
- Takumi Mikawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Matilde E. LLeonart
- Department of Pathology, Hospital Vall de’Hebron, Paseo Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
- Department of Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Translational Research Center, Kyoto University Hospital, Kyoto, 606-8507 Japan
| | - Hiroshi Kondoh
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
- Geriatric Unit, Kyoto University Hospital, Kyoto, 606-8507 Japan
| |
Collapse
|
411
|
Spurlock CF, Tossberg JT, Guo Y, Collier SP, Crooke PS, Aune TM. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun 2015; 6:6932. [PMID: 25903499 PMCID: PMC4410435 DOI: 10.1038/ncomms7932] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate an array of biological processes in cells and organ systems. Less is known about their expression and function in lymphocyte lineages. Here we have identified >2000 lncRNAs expressed in human T-cell cultures and those that display a TH lineage-specific pattern of expression and are intragenic or adjacent to TH lineage-specific genes encoding proteins with immunologic functions. One lncRNA cluster selectively expressed by the effector TH2 lineage consists of four alternatively spliced transcripts that regulate the expression of TH2 cytokines, IL-4, IL-5 and IL-13. Genes encoding this lncRNA cluster in humans overlap the RAD50 gene and thus are contiguous with the previously described TH2 locus control region (LCR) in the mouse. Given its genomic synteny with the TH2-LCR, we refer to this lncRNA cluster as TH2-LCR lncRNA.
Collapse
Affiliation(s)
| | - John T. Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, TN 37232
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, TN 37213
| | - Sarah P. Collier
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, TN 37232
| | | | - Thomas M. Aune
- Department of Medicine, Vanderbilt University School of Medicine, TN 37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, TN 37232
| |
Collapse
|
412
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
413
|
Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 2015; 6:e1700. [PMID: 25789975 PMCID: PMC4385943 DOI: 10.1038/cddis.2015.67] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
LincRNA-p21 is a long noncoding RNA and a transcriptional target of p53 and HIF-1α. LincRNA-p21 regulates gene expression in cis and trans, mRNA translation, protein stability, the Warburg effect, and p53-dependent apoptosis and cell cycle arrest in doxorubicin-treated mouse embryo fibroblasts. p53 plays a key role in the response of skin keratinocytes to UVB-induced DNA damage by inducing cell cycle arrest and apoptosis. In skin cancer development, UVB-induced mutation of p53 allows keratinocytes upon successive UVB exposures to evade apoptosis and cell cycle arrest. We hypothesized that lincRNA-p21 has a key functional role in UVB-induced apoptosis and/or cell cycle arrest in keratinocytes and loss of lincRNA-p21 function results in the evasion of apoptosis and/or cell cycle arrest. We observed that lincRNA-p21 transcripts are highly inducible by UVB in mouse and human keratinocytes in culture and in mouse skin in vivo. LincRNA-p21 is regulated at the transcriptional level in response to UVB, and the UVB induction of lincRNA-p21 in keratinocytes and in vivo in mouse epidermis is primarily through a p53-dependent pathway. Knockdown of lincRNA-p21 blocked UVB-induced apoptosis in mouse and human keratinocytes, and lincRNA-p21 was responsible for the majority of UVB-induced and p53-mediated apoptosis in keratinocytes. Knockdown of lincRNA-p21 had no effect on cell proliferation in untreated or UVB-treated keratinocytes. An early event in skin cancer is the mutation of a single p53 allele. We observed that a mutant p53+/R172H allele expressed in mouse epidermis (K5Cre+/tg;LSLp53+/R172H) showed a significant dominant-negative inhibitory effect on UVB-induced lincRNA-p21 transcription and apoptosis in epidermis. We conclude lincRNA-p21 is highly inducible by UVB and has a key role in triggering UVB-induced apoptotic death. We propose that the mutation of a single p53 allele provides a pro-oncogenic function early in skin cancer development through a dominant inhibitory effect on UVB-induced lincRNA-p21 expression and the subsequent evasion of UVB-induced apoptosis.
Collapse
|
414
|
Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M, Song E. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015; 27:370-81. [PMID: 25759022 DOI: 10.1016/j.ccell.2015.02.004] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 02/05/2023]
Abstract
NF-κB is a critical link between inflammation and cancer, but whether long non-coding RNAs (lncRNAs) regulate its activation remains unknown. Here, we identify an NF-KappaB Interacting LncRNA (NKILA), which is upregulated by NF-κB, binds to NF-κB/IκB, and directly masks phosphorylation motifs of IκB, thereby inhibiting IKK-induced IκB phosphorylation and NF-κB activation. Unlike DNA that is dissociated from NF-κB by IκB, NKILA interacts with NF-κB/IκB to form a stable complex. Importantly, NKILA is essential to prevent over-activation of NF-κB pathway in inflammation-stimulated breast epithelial cells. Furthermore, low NKILA expression is associated with breast cancer metastasis and poor patient prognosis. Therefore, lncRNAs can directly interact with functional domains of signaling proteins, serving as a class of NF-κB modulators to suppress cancer metastasis.
Collapse
Affiliation(s)
- Bodu Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lijuan Sun
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaobin Lv
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ling Lin
- Department of Internal Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Herui Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fengxi Su
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dangsheng Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Erwei Song
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
415
|
Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis. PLoS One 2015; 10:e0118663. [PMID: 25738776 PMCID: PMC4349452 DOI: 10.1371/journal.pone.0118663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022] Open
Abstract
Muscle type of pyruvate kinase (PKM) is one of the key mediators of the Warburg effect and tumor metabolism. Due to alternative splicing, there are at least 12 known isoforms of the PKM gene, of which PKM1 and PKM2 are two major isoforms with only a 23 amino acid sequenced difference but quite different characteristics and functions. It was previously thought the isoform switch from PKM1 to PKM2 resulted in high PKM2 expression in tumors, providing a great advantage to tumor cells. However, this traditional view was challenged by two recent studies; one study claimed that this isoform switch does not occur during the Warburg effect; the other study asserted that the isoform switch is tissue-specific. Here, we re-analyzed the RNA sequencing data of 25 types of human tumors from The Cancer Genome Atlas Data Portal, and confirmed that PKM2 was the major isoform in the tumors and was highly elevated in addition to the entire PKM gene. We further demonstrated that the expression level of PKM1 significantly declined even though there was substantially increased expression of the entire PKM gene. The proportion of PKM1 in total transcript variants also significantly declined in tumors but the proportion of PKM2 did not change accordingly. Therefore, we conclude that the isoform switch of PKM1 does indeed occur, but it switches to other isoforms rather than PKM2. Considering the change in the expression levels of PKM1, PKM2 and the entire PKM gene, we propose that the upregulation of PKM2 is primarily due to elevated transcriptional levels of the entire PKM gene, instead of the isoform switch.
Collapse
|
416
|
Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol 2015; 66:2947-57. [PMID: 25077978 DOI: 10.1002/art.38805] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine interrelationships between the expression of long intergenic (noncoding) RNA-p21 (lincRNA-p21), NF-κB activity, and responses to methotrexate (MTX) in rheumatoid arthritis (RA) by analyzing patient blood samples and cell culture models. METHODS Expression levels of long noncoding RNA and messenger RNA (mRNA) were determined by quantitative reverse transcription-polymerase chain reaction. Western blotting and flow cytometry were used to quantify levels of intracellular proteins. Intracellular NF-κB activity was determined using an NF-κB luciferase reporter plasmid. RESULTS Patients with RA expressed reduced basal levels of lincRNA-p21 and increased basal levels of phosphorylated p65 (RelA), a marker of NF-κB activation. Patients with RA who were not treated with MTX expressed lower levels of lincRNA-p21 and higher levels of phosphorylated p65 compared with RA patients treated with low-dose MTX. In cell culture using primary cells and transformed cell lines, MTX induced lincRNA-p21 through a DNA-dependent protein kinase catalytic subunit (DNA PKcs)-dependent mechanism. Deficiencies in the levels of PRKDC mRNA in patients with RA were also corrected by MTX in vivo. Furthermore, MTX reduced NF-κB activity in tumor necrosis factor α-treated cells through a DNA PKcs-dependent mechanism via induction of lincRNA-p21. Finally, we observed that depressed levels of TP53 and lincRNA-p21 increased NF-κB activity in cell lines. Decreased levels of lincRNA-p21 did not alter NFKB1 or RELA transcripts; rather, lincRNA-p21 physically bound to RELA mRNA. CONCLUSION Our findings support a model whereby depressed levels of lincRNA-p21 in RA contribute to increased NF-κB activity. MTX decreases basal levels of NF-κB activity by increasing lincRNA-p21 levels through a DNA PKcs-dependent mechanism.
Collapse
|
417
|
Nangaku M, Inagi R, Mimura I, Tanaka T. Epigenetic Changes Induced by Hypoxia-Inducible Factor: a Long Way Still To Go as a Target for Therapy? J Am Soc Nephrol 2015; 26:1478-80. [PMID: 25587069 DOI: 10.1681/asn.2014121161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, and
| | - Imari Mimura
- Research Center for Advanced Science and Technology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
418
|
Ye LEC, Zhu DEX, Qiu JJ, Xu J, Wei Y. Involvement of long non-coding RNA in colorectal cancer: From benchtop to bedside (Review). Oncol Lett 2015; 9:1039-1045. [PMID: 25663854 PMCID: PMC4315074 DOI: 10.3892/ol.2015.2846] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancer (CRC) is one of the greatest threats to public health. Recent advances in whole-genome transcriptome analyses have enabled the identification of numerous members of a novel class of non-coding (nc)RNA, long ncRNA (lncRNA), which is broadly defined as RNA molecules that are >200 nt in length and lacking an open reading frame. In the present review, all lncRNAs associated with CRC are briefly summarized, with a particular focus on their potential roles as clinical biomarkers. CRC-associated lncRNAs involved in the underlying mechanisms of CRC progression are also initially included. This should benefit the development of novel markers and effective therapeutic targets for patients with CRC.
Collapse
Affiliation(s)
- LE-Chi Ye
- Department of Oncological Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - DE-Xiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun-Jun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
419
|
Li S, Wang J, Wei Y, Liu Y, Ding X, Dong B, Xu Y, Wang Y. Critical role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J Cell Sci 2015; 128:3317-29. [PMID: 26187851 DOI: 10.1242/jcs.173161] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcriptional factor responsible for the expression of a broad range of genes that facilitate acclimatization to hypoxia. Its stability is predominantly controlled by rapid hydroxylation of two prolines on its α subunit. However, how the rapid hydroxylation of HIF-1α is regulated is not fully understood. Here, we report that transient receptor potential canonical (TRPC) 6 channels control hydroxylation and stability of HIF-1α in human glioma cells under hypoxia. TRPC6 was rapidly activated by IGF-1R-PLCγ-IP3R pathway in hypoxia. Inhibition of TRPC6 enhanced the levels of α-ketoglutarate (α-KG) and promoted hydroxylation of HIF-1α to suppress HIF-1α accumulation without affecting its transcription or translation. Dimethyloxalylglycine N-(methoxyoxoacetyl)-glycine methyl ester (DMOG), an analog of α-KG, reversed the inhibition of HIF-1α accumulation. Moreover, TRPC6 regulated GLUT1 expression depending on HIF-1α accumulation to affect glucose uptake in hypoxia. Our results suggest that TRPC6 regulates metabolism to affect HIF-1α stability and consequent glucose metabolism in human glioma cells under hypoxia.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinkui Wang
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Wei
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yongjian Liu
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xia Ding
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Dong
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yinghui Xu
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
420
|
Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, Song H, Chen Y, Lai K, Yin M, Xu L, Zhou L, Chen J, Wang D, Qin B, Frampton J, Tse HF, Pei D, Wang H, Zhang B, Esteban MA. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res 2014; 25:80-92. [PMID: 25512341 DOI: 10.1038/cr.2014.165] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/20/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation.
Collapse
Affiliation(s)
- Xichen Bao
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Haitao Wu
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihua Zhu
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangpeng Guo
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhiwei Luo
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Hong Song
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yongqiang Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Keyu Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Menghui Yin
- Laboratory of RNA Chemical Biology, State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Lingxiao Xu
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Liang Zhou
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dongye Wang
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] Drug Discovery Pipeline Group, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Baoming Qin
- 1] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Jon Frampton
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hung-Fat Tse
- 1] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China [2] Cardiology Division, Department of medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China [3] Shenzhen Institutes of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China
| | - Duanqing Pei
- 1] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Biliang Zhang
- Laboratory of RNA Chemical Biology, State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Miguel A Esteban
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| |
Collapse
|
421
|
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in a variety of physiological and pathological processes, including cancer. In prostate cancer, prostate cancer gene expression marker 1 (PCGEM1) is an androgen-induced prostate-specific lncRNA whose overexpression is highly associated with prostate tumors. PCGEM1's tumorigenic potential has been recently shown to be in part due to its ability to activate androgen receptor (AR). Here, we report a novel function of PCGEM1 that provides growth advantages for cancer cells by regulating tumor metabolism via c-Myc activation. PCGEM1 promotes glucose uptake for aerobic glycolysis, coupling with the pentose phosphate shunt to facilitate biosynthesis of nucleotide and lipid, and generates NADPH for redox homeostasis. We show that PCGEM1 regulates metabolism at a transcriptional level that affects multiple metabolic pathways, including glucose and glutamine metabolism, the pentose phosphate pathway, nucleotide and fatty acid biosynthesis, and the tricarboxylic acid cycle. The PCGEM1-mediated gene regulation takes place in part through AR activation, but predominantly through c-Myc activation, regardless of hormone or AR status. Significantly, PCGEM1 binds directly to target promoters, physically interacts with c-Myc, promotes chromatin recruitment of c-Myc, and enhances its transactivation activity. We also identified a c-Myc binding domain on PCGEM1 that contributes to the PCGEM1-dependent c-Myc activation and target induction. Together, our data uncover PCGEM1 as a key transcriptional regulator of central metabolic pathways in prostate cancer cells. By being a coactivator for both c-Myc and AR, PCGEM1 reprograms the androgen network and the central metabolism in a tumor-specific way, making it a promising target for therapeutic intervention.
Collapse
|
422
|
Yu C, Xue J, Zhu W, Jiao Y, Zhang S, Cao J. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol 2014; 36:81-94. [DOI: 10.1007/s13277-014-2875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022] Open
|
423
|
Li Z, Li X, Wu S, Xue M, Chen W. Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 2014; 105:951-5. [PMID: 24890811 PMCID: PMC4317864 DOI: 10.1111/cas.12461] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/06/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022] Open
Abstract
Cancer cells preferentially metabolize glucose through aerobic glycolysis, a phenomenon known as the Warburg effect. Emerging evidence has shown that long non-coding RNAs (lncRNAs) act as key regulators of multiple cancers. However, it remains largely unexplored whether and how lncRNA regulates glucose metabolism in cancer cells. In this study, we show that lncRNA UCA1 promotes glycolysis in bladder cancer cells, and that UCA1-induced hexokinase 2 (HK2) functions as an important mediator in this process. We further show that UCA1 activates mTOR to regulate HK2 through both activation of STAT3 and repression of microRNA143. Taken together, these findings provide the first evidence that UCA1 plays a positive role in cancer cell glucose metabolism through the cascade of mTOR–STAT3/microRNA143–HK2, and reveal a novel link between lncRNA and the altered glucose metabolism in cancer cells.
Collapse
Affiliation(s)
- Zhengkun Li
- Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
424
|
Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci 2014; 51:344-57. [PMID: 25123609 DOI: 10.3109/10408363.2014.944299] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve as novel biomarkers for diagnostic, prognostic and monitoring purposes. (9) Tissue specificity of lncRNAs enables the development of selective therapeutic options. (10) Long non-coding RNAs are emerging as commercial biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale , Slovenia
| | | | | | | | | |
Collapse
|
425
|
Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA, Jacks T. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 2014; 54:777-90. [PMID: 24857549 DOI: 10.1016/j.molcel.2014.04.025] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
The p53-regulated long noncoding RNA lincRNA-p21 has been proposed to act in trans via several mechanisms ranging from repressing genes in the p53 transcriptional network to regulating mRNA translation and protein stability. To further examine lincRNA-p21 function, we generated a conditional knockout mouse model. We find that lincRNA-p21 predominantly functions in cis to activate expression of its neighboring gene, p21. Mechanistically, we show that lincRNA-p21 acts in concert with hnRNP-K as a coactivator for p53-dependent p21 transcription. Additional phenotypes of lincRNA-p21 deficiency could be attributed to diminished p21 levels, including deregulated expression and altered chromatin state of some Polycomb target genes, a defective G1/S checkpoint, increased proliferation rates, and enhanced reprogramming efficiency. These findings indicate that lincRNA-p21 affects global gene expression and influences the p53 tumor suppressor pathway by acting in cis as a locus-restricted coactivator for p53-mediated p21 expression.
Collapse
Affiliation(s)
- Nadya Dimitrova
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Jesse R Zamudio
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Robyn M Jong
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Dylan Soukup
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Rebecca Resnick
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Kavitha Sarma
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Amanda J Ward
- Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
426
|
Li X, Wu Z, Fu X, Han W. lncRNAs: insights into their function and mechanics in underlying disorders. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:1-21. [PMID: 25485593 DOI: 10.1016/j.mrrev.2014.04.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Genomes of complex organisms are characterized by the pervasive expression of different types of noncoding RNAs (ncRNAs). lncRNAs constitute a large family of long—arbitrarily defined as being longer than 200 nucleotides—ncRNAs that are expressed throughout the cell and that include thousands of different species. While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown at present. Existing examples suggest that lncRNAs have fulfilled a wide variety of regulatory roles at almost every stage of gene expression. These roles, which encompass signal, decoy, scaffold and guide capacities, derive from folded modular domains in lncRNAs. Early discoveries support a paradigm in which lncRNAs regulate transcription networks via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including posttranscriptional processing. In addition, long intergenic ncRNAs (lincRNAs) are strongly enriched for trait-associated SNPs, which suggest a new mechanism by which intergenic trait-associated regions might function. Moreover, multiple lines of evidence increasingly link mutations and dysregulations of lncRNAs to diverse human diseases, especially disorders related to aging. In this article, we review the current state of the knowledge of the lncRNA field, discussing what is known about the genomic contexts, biological functions and mechanisms of action of these molecules. We highlight the growing evidence for the importance of lncRNAs in diverse human disorders and the indications that their dysregulations and mutations underlie some aging-related disorders. Finally, we consider the potential medical implications, and future potential in the application of lncRNAs as therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaobing Fu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China; Key Laboratory of Wound Healing and Cell Biology, Institute of Burns, The First Affiliated Hospital to the Chinese PLA General Hospital, Trauma Center of Postgraduate Medical School, Beijing 100037, China.
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
427
|
Xue M, Li X, Li Z, Chen W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol 2014; 35:6901-12. [PMID: 24737584 DOI: 10.1007/s13277-014-1925-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/01/2014] [Indexed: 12/14/2022] Open
Abstract
Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Peoples Republic of China
| | | | | | | |
Collapse
|
428
|
Kornfeld JW, Brüning JC. Regulation of metabolism by long, non-coding RNAs. Front Genet 2014; 5:57. [PMID: 24723937 PMCID: PMC3971185 DOI: 10.3389/fgene.2014.00057] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/18/2022] Open
Abstract
Our understanding of genomic regulation was revolutionized by the discovery that the genome is pervasively transcribed, giving rise to thousands of mostly uncharacterized non-coding ribonucleic acids (ncRNAs). Long, ncRNAs (lncRNAs) have thus emerged as a novel class of functional RNAs that impinge on gene regulation by a broad spectrum of mechanisms such as the recruitment of epigenetic modifier proteins, control of mRNA decay and DNA sequestration of transcription factors. We review those lncRNAs that are implicated in differentiation and homeostasis of metabolic tissues and present novel concepts on how lncRNAs might act on energy and glucose homeostasis. Finally, the control of circadian rhythm by lncRNAs is an emerging principles of lncRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Jan-Wilhelm Kornfeld
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases Köln, Germany ; Max-Planck-Institute for Neurological Research Köln, Germany
| | - Jens C Brüning
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases Köln, Germany ; Max-Planck-Institute for Neurological Research Köln, Germany ; Department of Mouse Genetics and Metabolism and Center for Molecular Medicine Cologne, Institute for Genetics at the University Hospital of Cologne, University of Cologne Cologne, Germany ; Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, University of Cologne, Cologne Germany
| |
Collapse
|
429
|
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| |
Collapse
|
430
|
Joven JC, Mabilangan LM, Santos-Jesalva PM. Clinical trials with bephenium hydroxy naphthoate in intestinal parasitism. Oncogene 1966; 37:1062-1074. [PMID: 29106390 PMCID: PMC5851116 DOI: 10.1038/onc.2017.368] [Citation(s) in RCA: 189] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Glycolysis is critical for cancer stem cell reprogramming; however, the underlying regulatory mechanisms remain elusive. Here, we show that pyruvate dehydrogenase kinase 1 (PDK1) is enriched in breast cancer stem cells (BCSCs), whereas depletion of PDK1 remarkably diminishes ALDH+ subpopulations, decreases stemness-related transcriptional factor expression, and inhibits sphere-formation ability and tumor growth. Conversely, high levels of PDK1 enhance BCSC properties and are correlated with poor overall survival. In mouse xenograft tumor, PDK1 is accumulated in hypoxic regions and activates glycolysis to promote stem-like traits. Moreover, through screening hypoxia-related long non-coding RNAs (lncRNAs) in PDK1-positive tissue, we find that lncRNA H19 is responsible for glycolysis and BCSC maintenance. Furthermore, H19 knockdown decreases PDK1 expression in hypoxia, and ablation of PDK1 counteracts H19-mediated glycolysis and self-renewal ability in vitro and in vivo. Accordingly, H19 and PDK1 expression exhibits strong correlations in primary breast carcinomas. H19 acting as a competitive endogenous RNA sequesters miRNA let-7 to release Hypoxia-inducible factor 1α, leading to an increase in PDK1 expression. Lastly, aspirin markedly attenuates glycolysis and cancer stem-like characteristics by suppressing both H19 and PDK1. Thus, these novel findings demonstrate that the glycolysis gatekeeper PDK1 has a critical role in BCSC reprogramming and provides a potential therapeutic strategy for breast malignancy.
Collapse
|