401
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
402
|
Madireddy A, Gerhardt J. Replication Through Repetitive DNA Elements and Their Role in Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:549-581. [PMID: 29357073 DOI: 10.1007/978-981-10-6955-0_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cells contain various repetitive DNA sequences, which can be a challenge for the DNA replication machinery to travel through and replicate correctly. Repetitive DNA sequence can adopt non-B DNA structures, which could block the DNA replication. Prolonged stalling of the replication fork at the endogenous repeats in human cells can have severe consequences such as genome instability that includes repeat expansions, contractions, and chromosome fragility. Several neurological and muscular diseases are caused by a repeat expansion. Furthermore genome instability is the major cause of cancer. This chapter describes some of the important classes of repetitive DNA sequences in the mammalian genome, their ability to form secondary DNA structures, their contribution to replication fork stalling, and models for repeat expansion as well as chromosomal fragility. Included in this chapter are also some of the strategies currently employed to detect changes in DNA replication and proteins that could prevent the repeat-mediated disruption of DNA replication in human cells. Additionally summarized are the consequences of repeat-associated perturbation of the DNA replication, which could lead to specific human diseases.
Collapse
|
403
|
Tang BL. Amyotrophic lateral sclerosis disease modifying therapeutics: a cell biological perspective. Neural Regen Res 2017; 12:407-408. [PMID: 28469654 PMCID: PMC5399717 DOI: 10.4103/1673-5374.202943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
404
|
|
405
|
Bishop KM. Progress and promise of antisense oligonucleotide therapeutics for central nervous system diseases. Neuropharmacology 2016; 120:56-62. [PMID: 27998711 DOI: 10.1016/j.neuropharm.2016.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/15/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotide (ASO) drugs are an emerging class of therapeutics that have recently demonstrated progress and promise to treat diseases of the central nervous system (CNS). ASOs for a variety of targets and mechanisms are currently being investigated in clinical trials and pre-clinically for a number of CNS diseases. This review examines the available data regarding central ASO delivery, distribution, pharmacokinetics, pharmacodynamics and therapeutic opportunities. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
|
406
|
Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016; 539:197-206. [PMID: 27830784 DOI: 10.1038/nature20413] [Citation(s) in RCA: 1453] [Impact Index Per Article: 161.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.
Collapse
Affiliation(s)
- J Paul Taylor
- Howard Hughes Medical Institute and the Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
407
|
Turner MR. Motor neuron disease: biomarker development for an expanding cerebral syndrome. Clin Med (Lond) 2016; 16. [PMID: 27956443 PMCID: PMC6329564 DOI: 10.7861/clinmedicine.16-6s-s60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Descriptions of motor neuron disease (MND) documented more than a century ago remain instantly recognisable to the physician. The muscle weakness, typically with signs of upper and lower motor neuron dysfunction, is uniquely relentless. Over the last 30 years, a wider cerebral pathology has emerged, despite the lack of overt cognitive impairment in the majority of patients. From the initial linkage of a small number of cases to mutations in SOD1, diverse cellular pathways have been implicated in pathogenesis. An increasingly complex clinical heterogeneity has emerged around a significant variability in survival. Defining a cellular signature of aggregated TDP-43 common to nearly all MND and a large proportion of frontotemporal dementia (FTD), has placed MND alongside more traditional cerebral neurodegeneration. With new genetic causes, most notably a hexanucleotide expansion in C9orf72 associated with both MND and FTD, the development of biomarkers against which to test therapeutic candidates is a priority.
Collapse
Affiliation(s)
- Martin R Turner
- AMedical Research Council senior clinical fellow, Nuffield Department of Clinical Neurosciences, University of Oxford, UK,Address for correspondence: Professor Martin Turner, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
408
|
Abstract
Descriptions of motor neuron disease (MND) documented more than a century ago remain instantly recognisable to the physician. The muscle weakness, typically with signs of upper and lower motor neuron dysfunction, is uniquely relentless. Over the last 30 years, a wider cerebral pathology has emerged, despite the lack of overt cognitive impairment in the majority of patients. From the initial linkage of a small number of cases to mutations in SOD1, diverse cellular pathways have been implicated in pathogenesis. An increasingly complex clinical heterogeneity has emerged around a significant variability in survival. Defining a cellular signature of aggregated TDP-43 common to nearly all MND and a large proportion of frontotemporal dementia (FTD), has placed MND alongside more traditional cerebral neurodegeneration. With new genetic causes, most notably a hexanucleotide expansion in C9orf72 associated with both MND and FTD, the development of biomarkers against which to test therapeutic candidates is a priority.
Collapse
Affiliation(s)
- Martin R Turner
- Medical Research Council senior clinical fellow, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
409
|
Jiang J, Cleveland DW. Bidirectional Transcriptional Inhibition as Therapy for ALS/FTD Caused by Repeat Expansion in C9orf72. Neuron 2016; 92:1160-1163. [DOI: 10.1016/j.neuron.2016.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
410
|
Ugolino J, Ji YJ, Conchina K, Chu J, Nirujogi RS, Pandey A, Brady NR, Hamacher-Brady A, Wang J. Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling. PLoS Genet 2016; 12:e1006443. [PMID: 27875531 PMCID: PMC5119725 DOI: 10.1371/journal.pgen.1006443] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor EB (TFEB), a master regulator of lysosomal and autophagy genes, which is negatively regulated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular models. Consistent with reduced mTOR activity and increased TFEB levels, loss of C9orf72 enhances autophagic flux, suggesting that C9orf72 is a negative regulator of autophagy. We identified a protein complex consisting of C9orf72 and SMCR8, both of which are homologous to DENN-like proteins. The depletion of C9orf72 or SMCR8 leads to significant down-regulation of each other’s protein level. Loss of SMCR8 alters mTOR signaling and autophagy. These results demonstrate that the C9orf72-SMCR8 protein complex functions in the regulation of metabolism and provide evidence that loss of C9orf72 function may contribute to the pathogenesis of relevant diseases. C9orf72 is one of many uncharacterized genes in the human genome. The presence of repeated nucleotides in the non-coding region of the C9orf72 gene (GGGGCC) has been linked to the neurodegenerative diseases Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FTD). However, how the presence of these repeats in the gene leads to neurodegeneration is unknown. One possible explanation is that the repeats lead to a reduced expression of the C9orf72 gene and loss of function of the C9orf72 protein. Although C9orf72 is well-conserved among multi-cellular organisms, its protein function remains to be determined. In this study, we demonstrated that loss of C9orf72 reduces mTOR signaling and enhances autophagy. mTOR signaling and autophagy are important for the cellular maintenance of metabolic balances, especially under stress conditions. C9orf72 protein exists in a complex with another DENN-like protein, SMCR8, which also regulates mTOR signaling and autophagy. We generated mice lacking C9orf72, which died prematurely and showed dramatic upregulation of TFEB, a crucial transcriptional regulator of autophagy and lysosomal genes, that integrates mTOR activity state and autophagic capacity. We propose that C9orf72 function is important for metabolic control and its deficiency can contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janet Ugolino
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yon Ju Ji
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Karen Conchina
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Justin Chu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Nathan R. Brady
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Maryland, United States of America
| | - Anne Hamacher-Brady
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Maryland, United States of America
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
411
|
Kumar V, kashav T, Islam A, Ahmad F, Hassan MI. Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochem Int 2016; 100:11-20. [DOI: 10.1016/j.neuint.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
|
412
|
Webster CP, Smith EF, Grierson AJ, De Vos KJ. C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases 2016; 9:399-408. [PMID: 27768524 PMCID: PMC5997165 DOI: 10.1080/21541248.2016.1240495] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in the first intron of the C9orf72 gene is the most common genetic defect associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Haploinsufficiency and a resulting loss of C9orf72 protein function has been suggested as a possible pathogenic mechanism in C9ALS/FTD. C9ALS/FTD patients exhibit specific ubiquitin and p62/sequestosome-1 positive but TDP-43 negative inclusions in the cerebellum and hippocampus, indicating possible autophagy deficits in these patients. In a recent study, we investigated this possibility by reducing expression of C9orf72 in cell lines and primary neurons and found that C9orf72 regulates the initiation of autophagy. C9orf72 interacts with Rab1a, preferentially in its GTP-bound state, as well as the ULK1 autophagy initiation complex. As an effector of Rab1a, C9orf72 controls the Rab1a-dependent trafficking of the ULK1 initiation complex prior to autophagosome formation. In line with this function, C9orf72 depletion in cell lines and primary neurons caused the accumulation of p62/sequestosome-1-positive inclusions. In support of a role in disease pathogenesis, C9ALS/FTD patient-derived iNeurons showed markedly reduced levels of autophagy. In this Commentary we summarise recent findings supporting the key role of C9orf72 in Rab GTPase-dependent regulation of autophagy and discuss autophagy dysregulation as a pathogenic mechanism in ALS/FTD.
Collapse
Affiliation(s)
- Christopher P Webster
- a Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience , University of Sheffield , Sheffield , UK
| | - Emma F Smith
- a Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience , University of Sheffield , Sheffield , UK
| | - Andrew J Grierson
- a Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience , University of Sheffield , Sheffield , UK
| | - Kurt J De Vos
- a Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience , University of Sheffield , Sheffield , UK
| |
Collapse
|
413
|
Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A, Lojewski X, Sterneckert J, Hermann A, Shaw PJ, Ince PG, Mann M, Meissner F, Sendtner M. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci 2016; 19:1610-1618. [PMID: 27723745 DOI: 10.1038/nn.4407] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell-derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics.
Collapse
Affiliation(s)
- Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Carsten Drepper
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Frank
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Anna Hansel
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Xenia Lojewski
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
414
|
Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron 2016; 92:383-391. [PMID: 27720481 DOI: 10.1016/j.neuron.2016.09.015] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/15/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR)80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR)80 or (GR)80-induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR)80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD.
Collapse
|
415
|
Wen X, Westergard T, Pasinelli P, Trotti D. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neurosci Lett 2016; 636:16-26. [PMID: 27619540 DOI: 10.1016/j.neulet.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two apparently distinct neurodegenerative diseases, the former characterized by selective loss of motor neurons in the brain and spinal cord and the latter characterized by selective atrophy of frontal and temporal lobes. Over the years, however, growing evidence from clinical, pathological and genetic findings has suggested that ALS and FTD belong to the same clinic-pathological spectrum disorder. This concept has been further supported by the identification of the most common genetic cause for both diseases, an aberrantly expanded hexanucleotide repeat GGGGCC/ CCCCGG sequence located in a non-coding region of the gene C9orf72. Three hypotheses have been proposed to explain how this repeats expansion causes diseases: 1) C9orf72 haploinsufficiency-expanded repeats interfere with transcription or translation of the gene, leading to decreased expression of the C9orf72 protein; 2) RNA gain of function-RNA foci formed by sense and antisense transcripts of expanded repeats interact and sequester essential RNA binding proteins, causing neurotoxicity; 3) Repeat associated non-ATG initiated (RAN) translation of expanded sense GGGGCC and antisense CCCCGG repeats produces potential toxic dipeptide repeat protein (DPR). In this review, we assess current evidence supporting or arguing against each proposed mechanism in C9 ALS/FTD disease pathogenesis. Additionally, controversial findings are also discussed. Lastly, we discuss the possibility that the three pathogenic mechanisms are not mutually exclusive and all three might be involved in disease.
Collapse
Affiliation(s)
- Xinmei Wen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Thomas Westergard
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
416
|
Cardon LR, Harris T. Precision medicine, genomics and drug discovery. Hum Mol Genet 2016; 25:R166-R172. [PMID: 27538422 DOI: 10.1093/hmg/ddw246] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
The hope for precision medicine has long been on the drug discovery horizon, well before the Human Genome Project gave it promise at the turn of the 21st century. In oncology, the concept has finally been realized and is now firmly embedded in ongoing drug discovery programs, and with many recent therapies involving some level of patient/disease stratification, including some highly personalized treatments. In addition, several drugs for rare diseases have been recently approved or are in late-stage clinical development, and new delivery modalities in cell and gene therapy and oligonucleotide approaches are yielding exciting new medicines for rare diseases of unmet need. For common complex diseases, however, the GWAS-driven advances in annotation of the genetic architecture over the past decade have not led to a concomitant shift in refined treatments. Similarly, attempts to disentangle treatment responders from non-responders via genetic predictors in pharmacogenetics studies have not met their anticipated success. It is possible that common diseases are simply lagging behind due to the inherent time lag with drug discovery, but it is also possible that their inherent multifactorial nature and their etiological and clinical heterogeneity will prove more resistant to refined treatment paradigms. The emergence of population-based resources in electronic health records, coupled with the rapid expansion of mobile devices and digital health may help to refine the measurement of phenotypic outcomes to match the exquisite detail emerging at the molecular level.
Collapse
Affiliation(s)
- Lon R Cardon
- Target Sciences, GlaxoSmithKline, King of Prussia, PA, USA
| | - Tim Harris
- Venture Partner SV Life Sciences, Boston, MA, USA
| |
Collapse
|
417
|
Corbier C, Sellier C. C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates autophagy. Small GTPases 2016; 8:181-186. [PMID: 27494456 DOI: 10.1080/21541248.2016.1212688] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS-FTD) are devastating neurodegenerative disease affecting motoneurons from the spinal chord and neurons from the frontal and temporal cortex, respectively. The most common genetic cause for ALS-FTD is an expansion of GGGGCC repeats within the first intron of the C9ORF72 gene. However, little is known on the function of C9ORF72. Recently, other and we found that C9ORF72 forms a stable complex with the SMCR8 and WDR41 proteins. This complex acts as a GDP/GTP exchange factor for the small RAB GTPases Rab8a and Rab39b. Since Rab8 and Rab39 are involved in macroautophagy, we tested the role of C9ORF72 in this mechanism. Decrease expression of C9ORF72 in neuronal cultures leads to autophagy dysfunction characterized by accumulation of aggregates of p62/SQSTM1. However, loss of C9ORF72 expression does not cause major neuronal cell death, suggesting that a second stress may be required to promote cell toxicity. Intermediate size of polyglutamine repeats within Ataxin-2 (ATXN2) is an important genetic modifier of ALS-FTD. We found that decrease expression of C9ORF72 synergizes the toxicity and aggregation of ATXN2 with intermediate size of polyglutamine (30Q). Overall, our data suggest that reduce expression of C9ORF72 causes suboptimal autophagy that sensitizes neurons to a second stress. These data suggest that reduce expression of C9ORF72 may partly contribute to ALS-FTD pathogenesis.
Collapse
Affiliation(s)
- Camille Corbier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University , Illkirch , France
| | - Chantal Sellier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University , Illkirch , France
| |
Collapse
|
418
|
Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 2016; 4:70. [PMID: 27400686 PMCID: PMC4940869 DOI: 10.1186/s40478-016-0340-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| | - Paul N Valdmanis
- Departments of Pediatrics and Genetics, Stanford University, 269 Campus Drive, CCSR 2110, Stanford, CA, 94305-5164, USA
| | - Peter V Gould
- Division of Anatomic Pathology and Neuropathology, Department of Medical Biology, CHU de Québec, Hôpital de l'Enfant-Jésus, 1401, 18th street, Québec, QC, Canada, G1J 1Z4
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Nicolas Dupré
- Axe Neurosciences & The Department of Medicine, Faculty of Medicine, CHU de Québec, Laval University, 1401, 18th street, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
419
|
Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB, Hu F. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 2016; 4:51. [PMID: 27193190 PMCID: PMC4870812 DOI: 10.1186/s40478-016-0324-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
Hexanucleotide repeat expansion in the C9orf72 gene is a leading cause of frontotemporal lobar degeneration (FTLD) with amyotrophic lateral sclerosis (ALS). Reduced expression of C9orf72 has been proposed as a possible disease mechanism. However, the cellular function of C9orf72 remains to be characterized. Here we report the identification of two binding partners of C9orf72: SMCR8 and WDR41. We show that WDR41 interacts with the C9orf72/SMCR8 heterodimer and WDR41 is tightly associated with the Golgi complex. We further demonstrate that C9orf72/SMCR8/WDR41 associates with the FIP200/Ulk1 complex, which is essential for autophagy initiation. C9orf72 deficient mice, generated using the CRISPR/Cas9 system, show severe inflammation in multiple organs, including lymph node, spleen and liver. Lymph node enlargement and severe splenomegaly are accompanied with macrophage infiltration. Increased levels of autophagy and lysosomal proteins and autophagy defects were detected in both the spleen and liver of C9orf72 deficient mice, supporting an in vivo role of C9orf72 in regulating the autophagy/lysosome pathway. In summary, our study elucidates potential physiological functions of C9orf72 and disease mechanisms of ALS/FTLD.
Collapse
|
420
|
|
421
|
Abstract
For five years, since the landmark discovery of the C9ORF72 hexanucleotide repeat expansion in ALS/FTD, a transgenic mouse model has remained elusive. Now, two laboratories (Liu et al., 2016; Jiang et al., 2016) report the development of BAC transgenic mice that recapitulate features of the human disease.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Brain Science Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|