401
|
Joseph Raj AN, Zhu H, Khan A, Zhuang Z, Yang Z, Mahesh VGV, Karthik G. ADID-UNET-a segmentation model for COVID-19 infection from lung CT scans. PeerJ Comput Sci 2021; 7:e349. [PMID: 33816999 PMCID: PMC7924694 DOI: 10.7717/peerj-cs.349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/23/2023]
Abstract
Currently, the new coronavirus disease (COVID-19) is one of the biggest health crises threatening the world. Automatic detection from computed tomography (CT) scans is a classic method to detect lung infection, but it faces problems such as high variations in intensity, indistinct edges near lung infected region and noise due to data acquisition process. Therefore, this article proposes a new COVID-19 pulmonary infection segmentation depth network referred as the Attention Gate-Dense Network- Improved Dilation Convolution-UNET (ADID-UNET). The dense network replaces convolution and maximum pooling function to enhance feature propagation and solves gradient disappearance problem. An improved dilation convolution is used to increase the receptive field of the encoder output to further obtain more edge features from the small infected regions. The integration of attention gate into the model suppresses the background and improves prediction accuracy. The experimental results show that the ADID-UNET model can accurately segment COVID-19 lung infected areas, with performance measures greater than 80% for metrics like Accuracy, Specificity and Dice Coefficient (DC). Further when compared to other state-of-the-art architectures, the proposed model showed excellent segmentation effects with a high DC and F1 score of 0.8031 and 0.82 respectively.
Collapse
Affiliation(s)
- Alex Noel Joseph Raj
- Department of Electronic Engineering, College of Engineering, Shantou University, Shantou, China
| | - Haipeng Zhu
- Department of Electronic Engineering, College of Engineering, Shantou University, Shantou, China
| | - Asiya Khan
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Zhemin Zhuang
- Department of Electronic Engineering, College of Engineering, Shantou University, Shantou, China
| | - Zengbiao Yang
- Department of Electronic Engineering, College of Engineering, Shantou University, Shantou, China
| | - Vijayalakshmi G. V. Mahesh
- Department of Electronics and Communication, BMS Institute of Technology and Management, Bangalore, India
| | - Ganesan Karthik
- COVID CARE - Institute of Orthopedics and Traumatology, Madras Medical College, Chennai, India
| |
Collapse
|
402
|
Kumar Singh V, Abdel-Nasser M, Pandey N, Puig D. LungINFseg: Segmenting COVID-19 Infected Regions in Lung CT Images Based on a Receptive-Field-Aware Deep Learning Framework. Diagnostics (Basel) 2021; 11:158. [PMID: 33498999 PMCID: PMC7910858 DOI: 10.3390/diagnostics11020158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a fast-growing disease all over the world, but facilities in the hospitals are restricted. Due to unavailability of an appropriate vaccine or medicine, early identification of patients suspected to have COVID-19 plays an important role in limiting the extent of disease. Lung computed tomography (CT) imaging is an alternative to the RT-PCR test for diagnosing COVID-19. Manual segmentation of lung CT images is time consuming and has several challenges, such as the high disparities in texture, size, and location of infections. Patchy ground-glass and consolidations, along with pathological changes, limit the accuracy of the existing deep learning-based CT slices segmentation methods. To cope with these issues, in this paper we propose a fully automated and efficient deep learning-based method, called LungINFseg, to segment the COVID-19 infections in lung CT images. Specifically, we propose the receptive-field-aware (RFA) module that can enlarge the receptive field of the segmentation models and increase the learning ability of the model without information loss. RFA includes convolution layers to extract COVID-19 features, dilated convolution consolidated with learnable parallel-group convolution to enlarge the receptive field, frequency domain features obtained by discrete wavelet transform, which also enlarges the receptive field, and an attention mechanism to promote COVID-19-related features. Large receptive fields could help deep learning models to learn contextual information and COVID-19 infection-related features that yield accurate segmentation results. In our experiments, we used a total of 1800+ annotated CT slices to build and test LungINFseg. We also compared LungINFseg with 13 state-of-the-art deep learning-based segmentation methods to demonstrate its effectiveness. LungINFseg achieved a dice score of 80.34% and an intersection-over-union (IoU) score of 68.77%-higher than the ones of the other 13 segmentation methods. Specifically, the dice and IoU scores of LungINFseg were 10% better than those of the popular biomedical segmentation method U-Net.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (V.K.S.); (D.P.)
| | - Mohamed Abdel-Nasser
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (V.K.S.); (D.P.)
- Department of Electrical Engineering, Aswan University, 81542 Aswan, Egypt
| | - Nidhi Pandey
- Department of Medicine and Health Sciences, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Domenec Puig
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (V.K.S.); (D.P.)
| |
Collapse
|
403
|
Zhou T, Fan DP, Cheng MM, Shen J, Shao L. RGB-D salient object detection: A survey. COMPUTATIONAL VISUAL MEDIA 2021; 7:37-69. [PMID: 33432275 PMCID: PMC7788385 DOI: 10.1007/s41095-020-0199-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Salient object detection, which simulates human visual perception in locating the most significant object(s) in a scene, has been widely applied to various computer vision tasks. Now, the advent of depth sensors means that depth maps can easily be captured; this additional spatial information can boost the performance of salient object detection. Although various RGB-D based salient object detection models with promising performance have been proposed over the past several years, an in-depth understanding of these models and the challenges in this field remains lacking. In this paper, we provide a comprehensive survey of RGB-D based salient object detection models from various perspectives, and review related benchmark datasets in detail. Further, as light fields can also provide depth maps, we review salient object detection models and popular benchmark datasets from this domain too. Moreover, to investigate the ability of existing models to detect salient objects, we have carried out a comprehensive attribute-based evaluation of several representative RGB-D based salient object detection models. Finally, we discuss several challenges and open directions of RGB-D based salient object detection for future research. All collected models, benchmark datasets, datasets constructed for attribute-based evaluation, and related code are publicly available at https://github.com/taozh2017/RGBD-SODsurvey.
Collapse
Affiliation(s)
- Tao Zhou
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| | - Deng-Ping Fan
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| | | | - Jianbing Shen
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| | - Ling Shao
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| |
Collapse
|
404
|
Nayak J, Naik B, Dinesh P, Vakula K, Rao BK, Ding W, Pelusi D. Intelligent system for COVID-19 prognosis: a state-of-the-art survey. APPL INTELL 2021; 51:2908-2938. [PMID: 34764577 PMCID: PMC7786871 DOI: 10.1007/s10489-020-02102-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 01/31/2023]
Abstract
This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus 2019 (COVID-19) has been treated as a Public Health crisis of global Concern by the World Health Organization (WHO). Various outbreak models for COVID-19 are being utilized by researchers throughout the world to get well-versed decisions and impose significant control measures. Amid the standard methods for COVID-19 worldwide epidemic prediction, easy statistical, as well as epidemiological methods have got more consideration by researchers and authorities. One main difficulty in controlling the spreading of COVID-19 is the inadequacy and lack of medical tests for detecting as well as identifying a solution. To solve this problem, a few statistical-based advances are being enhanced and turn into a partial resolution up-to some level. To deal with the challenges of the medical field, a broad range of intelligent based methods, frameworks, and equipment have been recommended by Machine Learning (ML) and Deep Learning. As ML and DL have the ability of identifying and predicting patterns in complex large datasets, they are recognized as a suitable procedure for producing effective solutions for the diagnosis of COVID-19. In this paper, a perspective research has been conducted in the applicability of intelligent systems such as ML, DL and others in solving COVID-19 related outbreak issues. The main intention behind this study is (i) to understand the importance of intelligent approaches such as ML and DL for COVID-19 pandemic, (ii) discussing the efficiency and impact of these methods in the prognosis of COVID-19, (iii) the growth in the development of type of ML and advanced ML methods for COVID-19 prognosis,(iv) analyzing the impact of data types and the nature of data along with challenges in processing the data for COVID-19,(v) to focus on some future challenges in COVID-19 prognosis to inspire the researchers for innovating and enhancing their knowledge and research on other impacted sectors due to COVID-19.
Collapse
Affiliation(s)
- Janmenjoy Nayak
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), K Kotturu, Tekkali, AP 532201 India
| | - Bighnaraj Naik
- Department of Computer Application, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| | - Paidi Dinesh
- Department of Computer Science and Engineering, Sri Sivani College of Engineering, Srikakulam, AP 532402 India
| | - Kanithi Vakula
- Department of Computer Science and Engineering, Sri Sivani College of Engineering, Srikakulam, AP 532402 India
| | - B. Kameswara Rao
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), K Kotturu, Tekkali, AP 532201 India
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, China
| | - Danilo Pelusi
- Faculty of Communication Sciences, University of Teramo, Coste Sant', Agostino Campus, Teramo, Italy
| |
Collapse
|
405
|
Abdel-Basset M, Chang V, Hawash H, Chakrabortty RK, Ryan M. FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection. Knowl Based Syst 2021; 212:106647. [PMID: 33519100 PMCID: PMC7836902 DOI: 10.1016/j.knosys.2020.106647] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
The newly discovered coronavirus (COVID-19) pneumonia is providing major challenges to research in terms of diagnosis and disease quantification. Deep-learning (DL) techniques allow extremely precise image segmentation; yet, they necessitate huge volumes of manually labeled data to be trained in a supervised manner. Few-Shot Learning (FSL) paradigms tackle this issue by learning a novel category from a small number of annotated instances. We present an innovative semi-supervised few-shot segmentation (FSS) approach for efficient segmentation of 2019-nCov infection (FSS-2019-nCov) from only a few amounts of annotated lung CT scans. The key challenge of this study is to provide accurate segmentation of COVID-19 infection from a limited number of annotated instances. For that purpose, we propose a novel dual-path deep-learning architecture for FSS. Every path contains encoder-decoder (E-D) architecture to extract high-level information while maintaining the channel information of COVID-19 CT slices. The E-D architecture primarily consists of three main modules: a feature encoder module, a context enrichment (CE) module, and a feature decoder module. We utilize the pre-trained ResNet34 as an encoder backbone for feature extraction. The CE module is designated by a newly introduced proposed Smoothed Atrous Convolution (SAC) block and Multi-scale Pyramid Pooling (MPP) block. The conditioner path takes the pairs of CT images and their labels as input and produces a relevant knowledge representation that is transferred to the segmentation path to be used to segment the new images. To enable effective collaboration between both paths, we propose an adaptive recombination and recalibration (RR) module that permits intensive knowledge exchange between paths with a trivial increase in computational complexity. The model is extended to multi-class labeling for various types of lung infections. This contribution overcomes the limitation of the lack of large numbers of COVID-19 CT scans. It also provides a general framework for lung disease diagnosis in limited data situations.
Collapse
Affiliation(s)
- Mohamed Abdel-Basset
- Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt
| | - Victor Chang
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Hossam Hawash
- Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt
| | - Ripon K Chakrabortty
- Capability Systems Centre, School of Engineering and IT, UNSW Canberra, Australia
| | - Michael Ryan
- Capability Systems Centre, School of Engineering and IT, UNSW Canberra, Australia
| |
Collapse
|
406
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
407
|
Abstract
In this paper, considering year 2020 and Covid-19, we analyze medical imaging tools and their performance scores in accordance with the dataset size and their complexity. For this, we mainly consider AI-driven tools that employ two different types of image data, namely chest Computed Tomography (CT) and X-ray. We elaborate on their strengths and weaknesses by taking the following important factors into account: i) dataset size; ii) model fitting criteria (over-fitting and under-fitting); iii) transfer learning in the deep learning era; and iv) data augmentation. Medical imaging tools do not explicitly analyze model fitting. Also, using transfer learning, with fewer data, one could possibly build Covid-19 deep learning model but they are limited to education and training. We observe that, in both image modalities, neither the dataset size nor does data augmentation work well for Covid-19 screening purposes because a large dataset does not guarantee all possible Covid-19 manifestations and data augmentation does not create new Covid-19 cases.
Collapse
|
408
|
Wu YH, Gao SH, Mei J, Xu J, Fan DP, Zhang RG, Cheng MM. JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:3113-3126. [PMID: 33600316 DOI: 10.1109/tip.2021.3058783] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS.
Collapse
|
409
|
Mondal MRH, Bharati S, Podder P. Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review. Curr Med Imaging 2021; 17:1403-1418. [PMID: 34259149 DOI: 10.2174/1573405617666210713113439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND This paper provides a systematic review of the application of Artificial Intelligence (AI) in the form of Machine Learning (ML) and Deep Learning (DL) techniques in fighting against the effects of novel coronavirus disease (COVID-19). OBJECTIVE & METHODS The objective is to perform a scoping review on AI for COVID-19 using preferred reporting items of systematic reviews and meta-analysis (PRISMA) guidelines. A literature search was performed for relevant studies published from 1 January 2020 till 27 March 2021. Out of 4050 research papers available in reputed publishers, a full-text review of 440 articles was done based on the keywords of AI, COVID-19, ML, forecasting, DL, X-ray, and Computed Tomography (CT). Finally, 52 articles were included in the result synthesis of this paper. As part of the review, different ML regression methods were reviewed first in predicting the number of confirmed and death cases. Secondly, a comprehensive survey was carried out on the use of ML in classifying COVID-19 patients. Thirdly, different datasets on medical imaging were compared in terms of the number of images, number of positive samples and number of classes in the datasets. The different stages of the diagnosis, including preprocessing, segmentation and feature extraction were also reviewed. Fourthly, the performance results of different research papers were compared to evaluate the effectiveness of DL methods on different datasets. RESULTS Results show that residual neural network (ResNet-18) and densely connected convolutional network (DenseNet 169) exhibit excellent classification accuracy for X-ray images, while DenseNet-201 has the maximum accuracy in classifying CT scan images. This indicates that ML and DL are useful tools in assisting researchers and medical professionals in predicting, screening and detecting COVID-19. CONCLUSION Finally, this review highlights the existing challenges, including regulations, noisy data, data privacy, and the lack of reliable large datasets, then provides future research directions in applying AI in managing COVID-19.
Collapse
Affiliation(s)
| | - Subrato Bharati
- Institute of ICT, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| | - Prajoy Podder
- Institute of ICT, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| |
Collapse
|
410
|
Tan W, Zhou L, Li X, Yang X, Chen Y, Yang J. Automated vessel segmentation in lung CT and CTA images via deep neural networks. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:1123-1137. [PMID: 34421004 DOI: 10.3233/xst-210955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research. PURPOSE Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances. METHODS First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation rate and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks. RESULTS By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80. CONCLUSIONS Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.
Collapse
Affiliation(s)
- Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Luyu Zhou
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Xiaoshuo Li
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Xiaoyu Yang
- College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Yufei Chen
- College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Jinzhu Yang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
411
|
Gotkowski K, Gonzalez C, Bucher A, Mukhopadhyay A. M3d-CAM. BILDVERARBEITUNG FÜR DIE MEDIZIN 2021 2021. [DOI: 10.1007/978-3-658-33198-6_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
412
|
Tan W, Huang P, Li X, Ren G, Chen Y, Yang J. Analysis of segmentation of lung parenchyma based on deep learning methods. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:945-959. [PMID: 34487013 DOI: 10.3233/xst-210956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise segmentation of lung parenchyma is essential for effective analysis of the lung. Due to the obvious contrast and large regional area compared to other tissues in the chest, lung tissue is less difficult to segment. Special attention to details of lung segmentation is also needed. To improve the quality and speed of segmentation of lung parenchyma based on computed tomography (CT) or computed tomography angiography (CTA) images, the 4th International Symposium on Image Computing and Digital Medicine (ISICDM 2020) provides interesting and valuable research ideas and approaches. For the work of lung parenchyma segmentation, 9 of the 12 participating teams used the U-Net network or its modified forms, and others used the methods to improve the segmentation accuracy include attention mechanism, multi-scale feature information fusion. Among them, U-Net achieves the best results including that the final dice coefficient of CT segmentation is 0.991 and the final dice coefficient of CTA segmentation is 0.984. In addition, attention U-Net and nnU-Net network also performs well. In this paper, the methods chosen by 12 teams from different research groups are evaluated and their segmentation results are analyzed for the study and references to those involved.
Collapse
Affiliation(s)
- Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Peifang Huang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Xiaoshuo Li
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Genqiang Ren
- College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Yufei Chen
- College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Jinzhu Yang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
413
|
Zhu X, Song B, Shi F, Chen Y, Hu R, Gan J, Zhang W, Li M, Wang L, Gao Y, Shan F, Shen D. Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan. Med Image Anal 2021; 67:101824. [PMID: 33091741 PMCID: PMC7547024 DOI: 10.1016/j.media.2020.101824] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the conversion time that patients possibly convert to the severe stage, for designing effective treatment plans and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time formulated as a classification task, and if yes, the conversion time will be predicted formulated as a classification task. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of the high-dimensional data and learn the shared information across two tasks, i.e., the classification and the regression. To our knowledge, this study is the first work to jointly predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 408 chest computed tomography (CT) scans. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the conversion time.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China.
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yanbo Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Rongyao Hu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Jiangzhang Gan
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Wenhai Zhang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Liye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yaozong Gao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
414
|
Rahmani AM, Mirmahaleh SYH. Coronavirus disease (COVID-19) prevention and treatment methods and effective parameters: A systematic literature review. SUSTAINABLE CITIES AND SOCIETY 2021; 64:102568. [PMID: 33110743 PMCID: PMC7578778 DOI: 10.1016/j.scs.2020.102568] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The coronavirus disease 2019 (COVID-19) outbreak was first identified in Wuhan in December 2019, which was declared a pandemic virus by the world health organization on March 11 in 2020. COVID-19 is an infectious disease and almost leads to acute respiratory distress syndrome. Therefore, the virus epidemic is a big problem for humanity healthy and can lead die in special people with background diseases such as chronic obstructive pulmonary diseases, chronic heart failure, diabetes mellitus, and kidney failure. Different medical, social, and engineering methods have been proposed to face the disease include treatment, detection, prevention, and prediction approaches. METHODS We propose a taxonomy tree to investigate the disease confronting methods and their negative and positive effects. Our work consists of a case study and systematic literature review (SLR) to evaluate the proposed methods against the virus outbreak and disease epidemic. RESULTS Our experimental results and observations demonstrate the impact of the proposed medical, prevention, detection, prediction, and social methods for facing the spread of COVID-19 from December 2019 to July 2020. CONCLUSION Our case study can help people have more information about the disease and its impact on humanity healthy and illustrate effective self-caring methods and therapies.
Collapse
Affiliation(s)
- Amir Masoud Rahmani
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Information Technology, Duy Tan University, Da Nang, 550000, Viet Nam
- Department of Computer Science, Khazar University, Baku, Azerbaijan
| | | |
Collapse
|
415
|
Ghomi Z, Mirshahi R, Khameneh Bagheri A, Fattahpour A, Mohammadiun S, Alavi Gharahbagh A, Djavadifar A, Arabalibeik H, Sadiq R, Hewage K. Segmentation of COVID-19 pneumonia lesions: A deep learning approach. Med J Islam Repub Iran 2020; 34:174. [PMID: 33816373 PMCID: PMC8004581 DOI: 10.47176/mjiri.34.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Lung CT scan has a pivotal role in diagnosis and monitoring of COVID-19 patients, and with growing number of affected individuals, the need for artificial intelligence (AI)-based systems for interpretation of CT images is emerging. In current investigation we introduce a new deep learning-based automatic segmentation model for localization of COVID-19 pulmonary lesions. Methods: A total of 2469 CT scan slices, containing 1402 manually segmented abnormal and 1067 normal slices form 55 COVID-19 patients and 41 healthy individuals, were used to train a deep convolutional neural network (CNN) model based on Detectron2, an open-source modular object detection library. A dataset, including 1224 CT slices of 18 COVID-19 patients and 9 healthy individuals, was used to test the model. Results: The accuracy, sensitivity, and specificity of the trained model in marking a single image slice with COVID-19 lesion were 0.954, 0.928, and 0.961, respectively. Considering a threshold of 0.4% for percentage of lung involvement, the model was capable of diagnosing the patients with COVID-19 pneumonia, with a sensitivity of 0.982% and a specificity of 88.5%. Furthermore, the mean Intersection over Union (IoU) index for the test dataset was 0.865. Conclusion: The deep learning-based automatic segmentation method provides an acceptable accuracy in delineation and localization of COVID-19 lesions, assisting the clinicians and researchers for quantification of abnormal findings in chest CT scans. Moreover, instance segmentation is capable of monitoring longitudinal changes of the lesions, which could be beneficial to patients' follow-up.
Collapse
Affiliation(s)
- Zahra Ghomi
- Department of Radiology, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Khameneh Bagheri
- Department of Radiology, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Fattahpour
- Department of Radiology, Arak University of Medical Sciences, Arak, Iran
| | | | | | | | - Hossein Arabalibeik
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Canada
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Canada
| |
Collapse
|
416
|
Ma J, Nie Z, Wang C, Dong G, Zhu Q, He J, Gui L, Yang X. Active contour regularized semi-supervised learning for COVID-19 CT infection segmentation with limited annotations. Phys Med Biol 2020; 65:225034. [PMID: 33045699 DOI: 10.1088/1361-6560/abc04e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infection segmentation on chest CT plays an important role in the quantitative analysis of COVID-19. Developing automatic segmentation tools in a short period with limited labelled images has become an urgent need. Pseudo label-based semi-supervised method is a promising way to leverage unlabelled data to improve segmentation performance. Existing methods usually obtain pseudo labels by first training a network with limited labelled images and then inferring unlabelled images. However, these methods may generate obviously inaccurate labels and degrade the subsequent training process. To address these challenges, in this paper, an active contour regularized semi-supervised learning framework was proposed to automatically segment infections with few labelled images. The active contour regularization was realized by the region-scalable fitting (RSF) model which is embedded to the loss function of the network to regularize and refine the pseudo labels of the unlabelled images. We further designed a splitting method to separately optimize the RSF regularization term and the segmentation loss term with iterative convolution-thresholding method and stochastic gradient descent, respectively, which enable fast optimization of each term. Furthermore, we built a statistical atlas to show the infection spatial distribution. Extensive experiments on a small public dataset and a large scale dataset showed that the proposed method outperforms state-of-the-art methods with up to 5% in dice similarity coefficient and normalized surface dice, 10% in relative absolute volume difference and 8 mm in 95% Hausdorff distance. Moreover, we observed that the infections tend to occur at the dorsal subpleural lung and posterior basal segments that are not mentioned in current radiology reports and are meaningful to advance our understanding of COVID-19.
Collapse
Affiliation(s)
- Jun Ma
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Ziwei Nie
- Department of Mathematics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Congcong Wang
- Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, 2815, Norway
| | - Guoqiang Dong
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210094, People's Republic of China
| | - Qiongjie Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210094, People's Republic of China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210094, People's Republic of China
| | - Luying Gui
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xiaoping Yang
- Department of Mathematics, Nanjing University, Nanjing, 210093, People's Republic of China
- Author to whom any correspondence should be addressed
| |
Collapse
|
417
|
Zhou Y, Wang B, He X, Cui S, Shao L. DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images. IEEE J Biomed Health Inform 2020; 26:56-66. [PMID: 33332280 DOI: 10.1109/jbhi.2020.3045475] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic (1280 × 1280) controllable fundus images and contribute to the DR grading task.
Collapse
|
418
|
Chen Y, Jiang G, Li Y, Tang Y, Xu Y, Ding S, Xin Y, Lu Y. A Survey on Artificial Intelligence in Chest Imaging of COVID-19. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract The coronavirus disease 2019 (COVID-19) has infected more than 9.3 million people and has caused over 0.47 million deaths worldwide as of June 24, 2020. Chest imaging techniques including computed tomography and X-ray scans are indispensable tools in COVID-19 diagnosis
and its management. The strong infectiousness of this disease brings a huge burden for radiologists. In order to overcome the difficulty and improve accuracy of the diagnosis, artificial intelligence (AI)-based imaging analysis methods are explored. This survey focuses on the development of
chest imaging analysis methods based on AI for COVID-19 in the past few months. Specially, we first recall imaging analysis methods of two typical viral pneumonias, which can provide a reference for studying the disease on chest images. We further describe the development of AI-assisted diagnosis
and assessment for the disease, and find that AI techniques have great advantage in this application.
Collapse
Affiliation(s)
- Yun Chen
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan, China
| | - Gongfa Jiang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yue Li
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yutao Tang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yanfang Xu
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Siqi Ding
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Xin
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yao Lu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
419
|
Wu D, Gong K, Arru CD, Homayounieh F, Bizzo B, Buch V, Ren H, Kim K, Neumark N, Xu P, Liu Z, Fang W, Xie N, Tak WY, Park SY, Lee YR, Kang MK, Park JG, Carriero A, Saba L, Masjedi M, Talari H, Babaei R, Mobin HK, Ebrahimian S, Dayan I, Kalra MK, Li Q. Severity and Consolidation Quantification of COVID-19 From CT Images Using Deep Learning Based on Hybrid Weak Labels. IEEE J Biomed Health Inform 2020; 24:3529-3538. [PMID: 33044938 PMCID: PMC8545170 DOI: 10.1109/jbhi.2020.3030224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 09/26/2020] [Indexed: 11/09/2022]
Abstract
Early and accurate diagnosis of Coronavirus disease (COVID-19) is essential for patient isolation and contact tracing so that the spread of infection can be limited. Computed tomography (CT) can provide important information in COVID-19, especially for patients with moderate to severe disease as well as those with worsening cardiopulmonary status. As an automatic tool, deep learning methods can be utilized to perform semantic segmentation of affected lung regions, which is important to establish disease severity and prognosis prediction. Both the extent and type of pulmonary opacities help assess disease severity. However, manually pixel-level multi-class labelling is time-consuming, subjective, and non-quantitative. In this article, we proposed a hybrid weak label-based deep learning method that utilize both the manually annotated pulmonary opacities from COVID-19 pneumonia and the patient-level disease-type information available from the clinical report. A UNet was firstly trained with semantic labels to segment the total infected region. It was used to initialize another UNet, which was trained to segment the consolidations with patient-level information using the Expectation-Maximization (EM) algorithm. To demonstrate the performance of the proposed method, multi-institutional CT datasets from Iran, Italy, South Korea, and the United States were utilized. Results show that our proposed method can predict the infected regions as well as the consolidation regions with good correlation to human annotation.
Collapse
Affiliation(s)
- Dufan Wu
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Kuang Gong
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | | | | | - Bernardo Bizzo
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | - Varun Buch
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | - Hui Ren
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Kyungsang Kim
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Nir Neumark
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | - Pengcheng Xu
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Zhiyuan Liu
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Wei Fang
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Nuobei Xie
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Won Young Tak
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Soo Young Park
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaegu41944South Korea
| | - Min Kyu Kang
- Department of Internal MedicineYeungnam University College of MedicineDaegu41944South Korea
| | - Jung Gil Park
- Department of Internal MedicineYeungnam University College of MedicineDaegu41944South Korea
| | - Alessandro Carriero
- RadiologiaAzienda Ospedaliera Universitaria Maggiore della Carità28100NovaraItaly
| | - Luca Saba
- RadiologiaAzienda Ospedaliera Universitaria Policlinico di Cagliari09124CagliariItaly
| | - Mahsa Masjedi
- Department of RadiologyShahid Beheshti HospitalKashan00000Iran
| | | | - Rosa Babaei
- Department of Radiology, Firoozgar HospitalIran University of Medical SciencesTehran48711-15937Iran
| | - Hadi Karimi Mobin
- Department of Radiology, Firoozgar HospitalIran University of Medical SciencesTehran48711-15937Iran
| | - Shadi Ebrahimian
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Ittai Dayan
- MGH & BWH Center for Clinical Data ScienceBostonMA02114USA
| | | | - Quanzheng Li
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
420
|
Desai SB, Pareek A, Lungren MP. Deep learning and its role in COVID-19 medical imaging. INTELLIGENCE-BASED MEDICINE 2020; 3:100013. [PMID: 33169117 PMCID: PMC7641591 DOI: 10.1016/j.ibmed.2020.100013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 is one of the greatest global public health challenges in history. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is estimated to have an cumulative global case-fatality rate as high as 7.2% (Onder et al., 2020) [1]. As the SARS-CoV-2 spread across the globe it catalyzed new urgency in building systems to allow rapid sharing and dissemination of data between international healthcare infrastructures and governments in a worldwide effort focused on case tracking/tracing, identifying effective therapeutic protocols, securing healthcare resources, and in drug and vaccine research. In addition to the worldwide efforts to share clinical and routine population health data, there are many large-scale efforts to collect and disseminate medical imaging data, owing to the critical role that imaging has played in diagnosis and management around the world. Given reported false negative rates of the reverse transcriptase polymerase chain reaction (RT-PCR) of up to 61% (Centers for Disease Control and Prevention, Division of Viral Diseases, 2020; Kucirka et al., 2020) [2,3], imaging can be used as an important adjunct or alternative. Furthermore, there has been a shortage of test-kits worldwide and laboratories in many testing sites have struggled to process the available tests within a reasonable time frame. Given these issues surrounding COVID-19, many groups began to explore the benefits of 'big data' processing and algorithms to assist with the diagnosis and therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Sudhen B Desai
- Section of Interventional Radiology, Texas Children's Hospital, United States
| | - Anuj Pareek
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, United States
| | - Matthew P Lungren
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, United States
| |
Collapse
|
421
|
Qian X, Fu H, Shi W, Chen T, Fu Y, Shan F, Xue X. M 3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening From CT Imaging. IEEE J Biomed Health Inform 2020; 24:3539-3550. [PMID: 33048773 PMCID: PMC8545176 DOI: 10.1109/jbhi.2020.3030853] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022]
Abstract
To counter the outbreak of COVID-19, the accurate diagnosis of suspected cases plays a crucial role in timely quarantine, medical treatment, and preventing the spread of the pandemic. Considering the limited training cases and resources (e.g, time and budget), we propose a Multi-task Multi-slice Deep Learning System (M 3Lung-Sys) for multi-class lung pneumonia screening from CT imaging, which only consists of two 2D CNN networks, i.e., slice- and patient-level classification networks. The former aims to seek the feature representations from abundant CT slices instead of limited CT volumes, and for the overall pneumonia screening, the latter one could recover the temporal information by feature refinement and aggregation between different slices. In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3Lung-Sys also be able to locate the areas of relevant lesions, without any pixel-level annotation. To further demonstrate the effectiveness of our model, we conduct extensive experiments on a chest CT imaging dataset with a total of 734 patients (251 healthy people, 245 COVID-19 patients, 105 H1N1 patients, and 133 CAP patients). The quantitative results with plenty of metrics indicate the superiority of our proposed model on both slice- and patient-level classification tasks. More importantly, the generated lesion location maps make our system interpretable and more valuable to clinicians.
Collapse
Affiliation(s)
- Xuelin Qian
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| | - Huazhu Fu
- Inception Institute of Artificial IntelligenceAbu DhabiUAE
| | - Weiya Shi
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Tao Chen
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Yanwei Fu
- School of Data Science, MOE Frontiers Center for Brain Science, Shanghai Key Lab of Intelligent Information ProcessingFudan UniversityShanghai200433China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Xiangyang Xue
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| |
Collapse
|
422
|
Al-Antari MA, Hua CH, Bang J, Lee S. "Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images". APPL INTELL 2020; 51:2890-2907. [PMID: 34764573 PMCID: PMC7695589 DOI: 10.1007/s10489-020-02076-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a novel harmful respiratory disease that has rapidly spread worldwide. At the end of 2019, COVID-19 emerged as a previously unknown respiratory disease in Wuhan, Hubei Province, China. The world health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 based on the full resolution of digital X-ray images is the key to efficiently assisting patients by enabling physicians to reach a fast and accurate diagnosis decision. In this paper, a simultaneous deep learning computer-aided diagnosis (CAD) system based on the YOLO predictor is proposed that can detect and diagnose COVID-19, differentiating it from eight other respiratory diseases: atelectasis, infiltration, pneumothorax, masses, effusion, pneumonia, cardiomegaly, and nodules. The proposed CAD system was assessed via five-fold tests for the multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system was trained with an annotated training set of 50,490 chest X-ray images. The regions on the entire X-ray images with lesions suspected of being due to COVID-19 were simultaneously detected and classified end-to-end via the proposed CAD predictor, achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. Most test images from patients with confirmed COVID-19 and other respiratory diseases were correctly predicted, achieving average intersection over union (IoU) greater than 90%. Applying deep learning regularizers of data balancing and augmentation improved the COVID-19 diagnostic performance by 6.64% and 12.17% in terms of the overall accuracy and the F1-score, respectively. It is feasible to achieve a diagnosis based on individual chest X-ray images with the proposed CAD system within 0.0093 s. Thus, the CAD system presented in this paper can make a prediction at the rate of 108 frames/s (FPS), which is close to real-time. The proposed deep learning CAD system can reliably differentiate COVID-19 from other respiratory diseases. The proposed deep learning model seems to be a reliable tool that can be used to practically assist health care systems, patients, and physicians.
Collapse
Affiliation(s)
- Mugahed A Al-Antari
- Department of Computer Science and Engineering, College of Software, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea.,Department of Biomedical Engineering, Sana'a Community College, Sana'a, Republic of Yemen
| | - Cam-Hao Hua
- Department of Computer Science and Engineering, College of Software, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Jaehun Bang
- Department of Computer Science and Engineering, College of Software, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Sungyoung Lee
- Department of Computer Science and Engineering, College of Software, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
423
|
Hussain L, Nguyen T, Li H, Abbasi AA, Lone KJ, Zhao Z, Zaib M, Chen A, Duong TQ. Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection. Biomed Eng Online 2020; 19:88. [PMID: 33239006 PMCID: PMC7686836 DOI: 10.1186/s12938-020-00831-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The large volume and suboptimal image quality of portable chest X-rays (CXRs) as a result of the COVID-19 pandemic could post significant challenges for radiologists and frontline physicians. Deep-learning artificial intelligent (AI) methods have the potential to help improve diagnostic efficiency and accuracy for reading portable CXRs. PURPOSE The study aimed at developing an AI imaging analysis tool to classify COVID-19 lung infection based on portable CXRs. MATERIALS AND METHODS Public datasets of COVID-19 (N = 130), bacterial pneumonia (N = 145), non-COVID-19 viral pneumonia (N = 145), and normal (N = 138) CXRs were analyzed. Texture and morphological features were extracted. Five supervised machine-learning AI algorithms were used to classify COVID-19 from other conditions. Two-class and multi-class classification were performed. Statistical analysis was done using unpaired two-tailed t tests with unequal variance between groups. Performance of classification models used the receiver-operating characteristic (ROC) curve analysis. RESULTS For the two-class classification, the accuracy, sensitivity and specificity were, respectively, 100%, 100%, and 100% for COVID-19 vs normal; 96.34%, 95.35% and 97.44% for COVID-19 vs bacterial pneumonia; and 97.56%, 97.44% and 97.67% for COVID-19 vs non-COVID-19 viral pneumonia. For the multi-class classification, the combined accuracy and AUC were 79.52% and 0.87, respectively. CONCLUSION AI classification of texture and morphological features of portable CXRs accurately distinguishes COVID-19 lung infection in patients in multi-class datasets. Deep-learning methods have the potential to improve diagnostic efficiency and accuracy for portable CXRs.
Collapse
Affiliation(s)
- Lal Hussain
- Department of Computer Science and IT, King Abdullah Campus, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Azad Kashmir, Pakistan.
- Department of Computer Science and IT, Neelum Campus, University of Azad Jammu and Kashmir, Athmuqam, 13230, Azad Kashmir, Pakistan.
| | - Tony Nguyen
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Haifang Li
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Adeel A Abbasi
- Department of Computer Science and IT, King Abdullah Campus, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Azad Kashmir, Pakistan
| | - Kashif J Lone
- Department of Computer Science and IT, King Abdullah Campus, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Azad Kashmir, Pakistan
| | - Zirun Zhao
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Mahnoor Zaib
- Department of Computer Science and IT, Neelum Campus, University of Azad Jammu and Kashmir, Athmuqam, 13230, Azad Kashmir, Pakistan
| | - Anne Chen
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Tim Q Duong
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| |
Collapse
|
424
|
Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput Biol Med 2020; 126:104037. [PMID: 33065387 PMCID: PMC7543793 DOI: 10.1016/j.compbiomed.2020.104037] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.
Collapse
Affiliation(s)
- Amine Amyar
- General Electric Healthcare, Buc, France; LITIS - EA4108 - Quantif, University of Rouen, Rouen, France.
| | - Romain Modzelewski
- LITIS - EA4108 - Quantif, University of Rouen, Rouen, France; Nuclear Medicine Department, Henri Becquerel Center, Rouen, France.
| | - Hua Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Su Ruan
- LITIS - EA4108 - Quantif, University of Rouen, Rouen, France.
| |
Collapse
|
425
|
Joshi A, Khan MS, Soomro S, Niaz A, Han BS, Choi KN. SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:190487-190503. [PMID: 34976559 PMCID: PMC8545283 DOI: 10.1109/access.2020.3032288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/14/2023]
Abstract
Noise or artifacts in an image, such as shadow artifacts, deteriorate the performance of state-of-the-art models for the segmentation of an image. In this study, a novel saliency-based region detection and image segmentation (SRIS) model is proposed to overcome the problem of image segmentation in the existence of noise and intensity inhomogeneity. Herein, a novel adaptive level-set evolution protocol based on the internal and external functions is designed to eliminate the initialization sensitivity, thereby making the proposed SRIS model robust to contour initialization. In the level-set energy function, an adaptive weight function is formulated to adaptively alter the intensities of the internal and external energy functions based on image information. In addition, the sign of energy function is modulated depending on the internal and external regions to eliminate the effects of noise in an image. Finally, the performance of the proposed SRIS model is illustrated on complex real and synthetic images and compared with that of the previously reported state-of-the-art models. Moreover, statistical analysis has been performed on coronavirus disease (COVID-19) computed tomography images and THUS10000 real image datasets to confirm the superior performance of the SRIS model from the viewpoint of both segmentation accuracy and time efficiency. Results suggest that SRIS is a promising approach for early screening of COVID-19.
Collapse
Affiliation(s)
- Aditi Joshi
- Department of Computer Science and EngineeringChung-Ang UniversitySeoul06974South Korea
| | - Mohammed Saquib Khan
- Department of Electrical and Electronics EngineeringChung-Ang UniversitySeoul06974South Korea
| | - Shafiullah Soomro
- Quaid-e-Awam University of Engineering, Science and TechnologyNawabshah77150Pakistan
| | - Asim Niaz
- STARS TeamINRIA06902Sophia AntipolisFrance
| | - Beom Seok Han
- School of Food and Pharmaceutical EngineeringHoseo UniversityAsan31449South Korea
| | - Kwang Nam Choi
- Department of Computer Science and EngineeringChung-Ang UniversitySeoul06974South Korea
| |
Collapse
|
426
|
Wang Z, Liu Q, Dou Q. Contrastive Cross-Site Learning With Redesigned Net for COVID-19 CT Classification. IEEE J Biomed Health Inform 2020; 24:2806-2813. [PMID: 32915751 PMCID: PMC8545175 DOI: 10.1109/jbhi.2020.3023246] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries. With the continuous growth of new infections, developing automated tools for COVID-19 identification with CT image is highly desired to assist the clinical diagnosis and reduce the tedious workload of image interpretation. To enlarge the datasets for developing machine learning methods, it is essentially helpful to aggregate the cases from different medical systems for learning robust and generalizable models. This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets with distribution discrepancy. We build a powerful backbone by redesigning the recently proposed COVID-Net in aspects of network architecture and learning strategy to improve the prediction accuracy and learning efficiency. On top of our improved backbone, we further explicitly tackle the cross-site domain shift by conducting separate feature normalization in latent space. Moreover, we propose to use a contrastive training objective to enhance the domain invariance of semantic embeddings for boosting the classification performance on each dataset. We develop and evaluate our method with two public large-scale COVID-19 diagnosis datasets made up of CT images. Extensive experiments show that our approach consistently improves the performanceson both datasets, outperforming the original COVID-Net trained on each dataset by 12.16% and 14.23% in AUC respectively, also exceeding existing state-of-the-art multi-site learning methods.
Collapse
Affiliation(s)
- Zhao Wang
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina
| | - Quande Liu
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qi Dou
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
427
|
Abraham B, Nair MS. Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier. Biocybern Biomed Eng 2020; 40:1436-1445. [PMID: 32895587 PMCID: PMC7467028 DOI: 10.1016/j.bbe.2020.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Corona virus disease-2019 (COVID-19) is a pandemic caused by novel coronavirus. COVID-19 is spreading rapidly throughout the world. The gold standard for diagnosing COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR) test. However, the facility for RT-PCR test is limited, which causes early diagnosis of the disease difficult. Easily available modalities like X-ray can be used to detect specific symptoms associated with COVID-19. Pre-trained convolutional neural networks are widely used for computer-aided detection of diseases from smaller datasets. This paper investigates the effectiveness of multi-CNN, a combination of several pre-trained CNNs, for the automated detection of COVID-19 from X-ray images. The method uses a combination of features extracted from multi-CNN with correlation based feature selection (CFS) technique and Bayesnet classifier for the prediction of COVID-19. The method was tested using two public datasets and achieved promising results on both the datasets. In the first dataset consisting of 453 COVID-19 images and 497 non-COVID images, the method achieved an AUC of 0.963 and an accuracy of 91.16%. In the second dataset consisting of 71 COVID-19 images and 7 non-COVID images, the method achieved an AUC of 0.911 and an accuracy of 97.44%. The experiments performed in this study proved the effectiveness of pre-trained multi-CNN over single CNN in the detection of COVID-19.
Collapse
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam 691601, Kerala, India
| | - Madhu S Nair
- Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
428
|
Zheng B, Liu Y, Zhu Y, Yu F, Jiang T, Yang D, Xu T. MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:185786-185795. [PMID: 34812359 PMCID: PMC8545278 DOI: 10.1109/access.2020.3027738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 05/03/2023]
Abstract
Since the first patient reported in December 2019, 2019 novel coronavirus disease (COVID-19) has become global pandemic with more than 10 million total confirmed cases and 500 thousand related deaths. Using deep learning methods to quickly identify COVID-19 and accurately segment the infected area can help control the outbreak and assist in treatment. Computed tomography (CT) as a fast and easy clinical method, it is suitable for assisting in diagnosis and treatment of COVID-19. According to clinical manifestations, COVID-19 lung infection areas can be divided into three categories: ground-glass opacities, interstitial infiltrates and consolidation. We proposed a multi-scale discriminative network (MSD-Net) for multi-class segmentation of COVID-19 lung infection on CT. In the MSD-Net, we proposed pyramid convolution block (PCB), channel attention block (CAB) and residual refinement block (RRB). The PCB can increase the receptive field by using different numbers and different sizes of kernels, which strengthened the ability to segment the infected areas of different sizes. The CAB was used to fusion the input of the two stages and focus features on the area to be segmented. The role of RRB was to refine the feature maps. Experimental results showed that the dice similarity coefficient (DSC) of the three infection categories were 0.7422,0.7384,0.8769 respectively. For sensitivity and specificity, the results of three infection categories were (0.8593, 0.9742), (0.8268,0.9869) and (0.8645,0.9889) respectively. The experimental results demonstrated that the network proposed in this paper can effectively segment the COVID-19 infection on CT images. It can be adopted for assisting in diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Bingbing Zheng
- School of Information Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yaoqi Liu
- The Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Yu Zhu
- School of Information Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Fuli Yu
- School of Information Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tianjiao Jiang
- The Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Dawei Yang
- Department of Pulmonary MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Tao Xu
- The Affiliated Hospital of Qingdao UniversityQingdao266000China
| |
Collapse
|
429
|
Mohammed A, Wang C, Zhao M, Ullah M, Naseem R, Wang H, Pedersen M, Cheikh FA. Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:155987-156000. [PMID: 34812352 PMCID: PMC8545309 DOI: 10.1109/access.2020.3018498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 05/02/2023]
Abstract
Deep Learning-based chest Computed Tomography (CT) analysis has been proven to be effective and efficient for COVID-19 diagnosis. Existing deep learning approaches heavily rely on large labeled data sets, which are difficult to acquire in this pandemic situation. Therefore, weakly-supervised approaches are in demand. In this paper, we propose an end-to-end weakly-supervised COVID-19 detection approach, ResNext+, that only requires volume level data labels and can provide slice level prediction. The proposed approach incorporates a lung segmentation mask as well as spatial and channel attention to extract spatial features. Besides, Long Short Term Memory (LSTM) is utilized to acquire the axial dependency of the slices. Moreover, a slice attention module is applied before the final fully connected layer to generate the slice level prediction without additional supervision. An ablation study is conducted to show the efficiency of the attention blocks and the segmentation mask block. Experimental results, obtained from publicly available datasets, show a precision of 81.9% and F1 score of 81.4%. The closest state-of-the-art gives 76.7% precision and 78.8% F1 score. The 5% improvement in precision and 3% in the F1 score demonstrate the effectiveness of the proposed method. It is worth noticing that, applying image enhancement approaches do not improve the performance of the proposed method, sometimes even harm the scores, although the enhanced images have better perceptual quality.
Collapse
Affiliation(s)
- Ahmed Mohammed
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Congcong Wang
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Meng Zhao
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Mohib Ullah
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Rabia Naseem
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Hao Wang
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Marius Pedersen
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| | - Faouzi Alaya Cheikh
- Department of Computer ScienceNorwegian University of Science and Technology (NTNU) 2815 Gjøvik Norway
| |
Collapse
|
430
|
Munawar F, Azmat S, Iqbal T, Gronlund C, Ali H. Segmentation of Lungs in Chest X-Ray Image Using Generative Adversarial Networks. IEEE ACCESS 2020; 8:153535-153545. [DOI: 10.1109/access.2020.3017915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|