401
|
Acetylcholine receptor antagonists in acute respiratory distress syndrome: much more than muscle relaxants. Crit Care 2018; 22:132. [PMID: 29788993 PMCID: PMC5964732 DOI: 10.1186/s13054-018-1979-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine receptor antagonists have been shown to improve outcome in patients with severe acute respiratory distress syndrome. However, it is incompletely understood how these agents improve outcome. In the current editorial, we discuss the mechanisms of action of acetylcholine receptor antagonists beyond neuromuscular blockade.
Collapse
|
402
|
Guiding ventilation with transpulmonary pressure. Intensive Care Med 2018; 45:535-538. [PMID: 30506355 DOI: 10.1007/s00134-018-5483-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
403
|
Liu YY, Li LF. Ventilator-induced diaphragm dysfunction in critical illness. Exp Biol Med (Maywood) 2018; 243:1329-1337. [PMID: 30453774 DOI: 10.1177/1535370218811950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated. Further research is necessary to unravel mechanistic framework for understanding the molecular mechanisms underlying VIDD, especially mitochondrial dysfunction and increased mitochondrial oxidative stress, and develop better MV strategies, rehabilitative programs, and pharmacologic agents to translate this knowledge into clinical benefits.
Collapse
Affiliation(s)
- Yung-Yang Liu
- 1 Chest Department, Taipei Veterans General Hospital, Taipei 112, Taiwan.,2 Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Fu Li
- 3 Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.,4 Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
404
|
Schreiber A, Bertoni M, Goligher EC. Avoiding Respiratory and Peripheral Muscle Injury During Mechanical Ventilation: Diaphragm-Protective Ventilation and Early Mobilization. Crit Care Clin 2018; 34:357-381. [PMID: 29907270 DOI: 10.1016/j.ccc.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Both limb muscle weakness and respiratory muscle weakness are exceedingly common in critically ill patients. Respiratory muscle weakness prolongs ventilator dependence, predisposing to nosocomial complications and death. Limb muscle weakness persists for months after discharge from intensive care and results in poor long-term functional status and quality of life. Major mechanisms of muscle injury include critical illness polymyoneuropathy, sepsis, pharmacologic exposures, metabolic derangements, and excessive muscle loading and unloading. The diaphragm may become weak because of excessive unloading (leading to atrophy) or because of excessive loading (either concentric or eccentric) owing to insufficient ventilator assistance.
Collapse
Affiliation(s)
- Annia Schreiber
- Respiratory Intensive Care Unit and Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, Scientific Institute of Pavia, Via Salvatore Maugeri 10, Pavia 27100, Italy
| | - Michele Bertoni
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Piazzale Spedali Civili 1, Brescia 25123, Italy
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, 585 University Avenue, Peter Munk Building, 11th Floor Room 192, Toronto, ON M5G 2N2, Canada.
| |
Collapse
|
405
|
Telias I, Brochard L, Goligher EC. Is my patient's respiratory drive (too) high? Intensive Care Med 2018; 44:1936-1939. [PMID: 29497778 DOI: 10.1007/s00134-018-5091-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Irene Telias
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Santorio Mater Dei, Buenos Aires, Argentina
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
| |
Collapse
|
406
|
Jaitovich A, Khan MMHS, Itty R, Chieng HC, Dumas CL, Nadendla P, Fantauzzi JP, Yucel RM, Feustel PJ, Judson MA. ICU Admission Muscle and Fat Mass, Survival, and Disability at Discharge: A Prospective Cohort Study. Chest 2018; 155:322-330. [PMID: 30392790 DOI: 10.1016/j.chest.2018.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Skeletal muscle dysfunction occurring as a result of ICU admission associates with higher mortality. Although preadmission higher BMI correlates with better outcomes, the impact of baseline muscle and fat mass has not been defined. We therefore investigated the association of skeletal muscle and fat mass at ICU admission with survival and disability at hospital discharge. METHODS This single-center, prospective, observational cohort study included medical ICU (MICU) patients from an academic institution in the Unites States. A total of 401 patients were evaluated with pectoralis muscle area (PMA) and subcutaneous adipose tissue (SAT) determinations conducted by CT scanning at the time of ICU admission, which were later correlated with clinical outcomes accounting for potential confounders. RESULTS Larger admission PMA was associated with better outcomes, including higher 6-month survival (OR, 1.03; 95% CI, 1.01-1.04; P < .001), lower hospital mortality (OR, 0.96; 95% CI, 0.93-0.98; P < .001), and more ICU-free days (slope, 0.044 ± 0.019; P = .021). SAT was not significantly associated with any of the measured outcomes. In multivariable analyses, PMA association persisted with 6 months and hospital survival and ICU-free days, whereas SAT remained unassociated with survival or other outcomes. PMA was not associated with regaining of independence at the time of hospital discharge (OR, 0.99; 95% CI, 0.98-1.01; P = .56). CONCLUSIONS In this study cohort, ICU admission PMA was associated with survival during and following critical illness; it was unable to predict regaining an independent lifestyle following discharge. ICU admission SAT mass was not associated with survival or other measured outcomes.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY; Department of Molecular and Cell Physiology, Albany Medical College, Albany, NY.
| | - Malik M H S Khan
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY
| | - Ria Itty
- Department of Medicine, Albany Medical College, Albany, NY
| | - Hau C Chieng
- Department of Medicine, Albany Medical College, Albany, NY
| | | | | | | | - Recai M Yucel
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York at Albany, Rensselaer, NY
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY
| |
Collapse
|
407
|
Weaning from Mechanical Ventilation in ARDS: Aspects to Think about for Better Understanding, Evaluation, and Management. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5423639. [PMID: 30402484 PMCID: PMC6198583 DOI: 10.1155/2018/5423639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by severe inflammatory response and hypoxemia. The use of mechanical ventilation (MV) for correction of gas exchange can cause worsening of this inflammatory response, called “ventilator-induced lung injury” (VILI). The process of withdrawing mechanical ventilation, referred to as weaning from MV, may cause worsening of lung injury by spontaneous ventilation. Currently, there are few specific studies in patients with ARDS. Herein, we reviewed the main aspects of spontaneous ventilation and also discussed potential methods to predict the failure of weaning in this patient category. We also reviewed new treatments (modes of mechanical ventilation, neuromuscular blocker use, and extracorporeal membrane oxygenation) that could be considered in weaning ARDS patients from MV.
Collapse
|
408
|
de Vries H, Jonkman A, Shi ZH, Spoelstra-de Man A, Heunks L. Assessing breathing effort in mechanical ventilation: physiology and clinical implications. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:387. [PMID: 30460261 DOI: 10.21037/atm.2018.05.53] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have shown both beneficial and detrimental effects of patient breathing effort in mechanical ventilation. Quantification of breathing effort may allow the clinician to titrate ventilator support to physiological levels of respiratory muscle activity. In this review we will describe the physiological background and methodological issues of the most frequently used methods to quantify breathing effort, including esophageal pressure measurement, the work of breathing, the pressure-time-product, electromyography and ultrasound. We will also discuss the level of breathing effort that may be considered optimal during mechanical ventilation at different stages of critical illness.
Collapse
Affiliation(s)
- Heder de Vries
- Department of Intensive Care Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Centre, Amsterdam, The Netherlands
| | - Annemijn Jonkman
- Department of Intensive Care Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Centre, Amsterdam, The Netherlands
| | - Zhong-Hua Shi
- Department of Intensive Care Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Angélique Spoelstra-de Man
- Department of Intensive Care Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Centre, Amsterdam, The Netherlands
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
409
|
Jansen D, Jonkman AH, Roesthuis L, Gadgil S, van der Hoeven JG, Scheffer GJJ, Girbes A, Doorduin J, Sinderby CS, Heunks LMA. Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:238. [PMID: 30261920 PMCID: PMC6161422 DOI: 10.1186/s13054-018-2172-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022]
Abstract
Background Diaphragm dysfunction develops frequently in ventilated intensive care unit (ICU) patients. Both disuse atrophy (ventilator over-assist) and high respiratory muscle effort (ventilator under-assist) seem to be involved. A strong rationale exists to monitor diaphragm effort and titrate support to maintain respiratory muscle activity within physiological limits. Diaphragm electromyography is used to quantify breathing effort and has been correlated with transdiaphragmatic pressure and esophageal pressure. The neuromuscular efficiency index (NME) can be used to estimate inspiratory effort, however its repeatability has not been investigated yet. Our goal is to evaluate NME repeatability during an end-expiratory occlusion (NMEoccl) and its use to estimate the pressure generated by the inspiratory muscles (Pmus). Methods This is a prospective cohort study, performed in a medical-surgical ICU. A total of 31 adult patients were included, all ventilated in neurally adjusted ventilator assist (NAVA) mode with an electrical activity of the diaphragm (EAdi) catheter in situ. At four time points within 72 h five repeated end-expiratory occlusion maneuvers were performed. NMEoccl was calculated by delta airway pressure (ΔPaw)/ΔEAdi and was used to estimate Pmus. The repeatability coefficient (RC) was calculated to investigate the NMEoccl variability. Results A total number of 459 maneuvers were obtained. At time T = 0 mean NMEoccl was 1.22 ± 0.86 cmH2O/μV with a RC of 82.6%. This implies that when NMEoccl is 1.22 cmH2O/μV, it is expected with a probability of 95% that the subsequent measured NMEoccl will be between 2.22 and 0.22 cmH2O/μV. Additional EAdi waveform analysis to correct for non-physiological appearing waveforms, did not improve NMEoccl variability. Selecting three out of five occlusions with the lowest variability reduced the RC to 29.8%. Conclusions Repeated measurements of NMEoccl exhibit high variability, limiting the ability of a single NMEoccl maneuver to estimate neuromuscular efficiency and therefore the pressure generated by the inspiratory muscles based on EAdi. Electronic supplementary material The online version of this article (10.1186/s13054-018-2172-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Jansen
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Postbox 7057, 1007, MB, Amsterdam, The Netherlands
| | - Lisanne Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suvarna Gadgil
- Department of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Gert-Jan J Scheffer
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Armand Girbes
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Postbox 7057, 1007, MB, Amsterdam, The Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christer S Sinderby
- Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Postbox 7057, 1007, MB, Amsterdam, The Netherlands.
| |
Collapse
|
410
|
Alviar CL, Miller PE, McAreavey D, Katz JN, Lee B, Moriyama B, Soble J, van Diepen S, Solomon MA, Morrow DA. Positive Pressure Ventilation in the Cardiac Intensive Care Unit. J Am Coll Cardiol 2018; 72:1532-1553. [PMID: 30236315 PMCID: PMC11032173 DOI: 10.1016/j.jacc.2018.06.074] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Contemporary cardiac intensive care units (CICUs) provide care for an aging and increasingly complex patient population. The medical complexity of this population is partly driven by an increased proportion of patients with respiratory failure needing noninvasive or invasive positive pressure ventilation (PPV). PPV often plays an important role in the management of patients with cardiogenic pulmonary edema, cardiogenic shock, or cardiac arrest, and those undergoing mechanical circulatory support. Noninvasive PPV, when appropriately applied to selected patients, may reduce the need for invasive mechanical PPV and improve survival. Invasive PPV can be lifesaving, but has both favorable and unfavorable interactions with left and right ventricular physiology and carries a risk of complications that influence CICU mortality. Effective implementation of PPV requires an understanding of the underlying cardiac and pulmonary pathophysiology. Cardiologists who practice in the CICU should be proficient with the indications, appropriate selection, potential cardiopulmonary interactions, and complications of PPV.
Collapse
Affiliation(s)
- Carlos L Alviar
- Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - P Elliott Miller
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut; Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Dorothea McAreavey
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Jason N Katz
- Divisions of Cardiology and Pulmonary and Critical Care Medicine, University of North Carolina, Center for Heart and Vascular Care Chapel Hill, Chapel Hill, North Carolina
| | - Burton Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brad Moriyama
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Jeffrey Soble
- Division of Cardiovascular Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sean van Diepen
- Department of Critical Care and Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A Solomon
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland; Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - David A Morrow
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
411
|
|
412
|
Telias I, Damiani F, Brochard L. The airway occlusion pressure (P 0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Med 2018; 44:1532-1535. [PMID: 29350241 DOI: 10.1007/s00134-018-5045-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Irene Telias
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street (Room 408), Toronto, ON, M5B 1T8, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Felipe Damiani
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street (Room 408), Toronto, ON, M5B 1T8, Canada
- Departamento de Medicina Intensiva, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street (Room 408), Toronto, ON, M5B 1T8, Canada.
| |
Collapse
|
413
|
Diaphragm Weakness in the Critically Ill: Basic Mechanisms Reveal Therapeutic Opportunities. Chest 2018; 154:1395-1403. [PMID: 30144420 DOI: 10.1016/j.chest.2018.08.1028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.
Collapse
|
414
|
Greising SM, Ottenheijm CAC, O'Halloran KD, Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J Appl Physiol (1985) 2018; 125:243-253. [PMID: 29672230 PMCID: PMC6139508 DOI: 10.1152/japplphysiol.01059.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
The diaphragm is the main inspiratory muscle and is required to be highly active throughout the life span. The diaphragm muscle must be able to produce and sustain various behaviors that range from ventilatory to nonventilatory such as those required for airway maintenance and clearance. Throughout the life span various circumstances and conditions may affect the ability of the diaphragm muscle to generate requisite forces, and in turn the diaphragm muscle may undergo significant weakness and dysfunction. For example, hypoxic stress, critical illness, cancer cachexia, chronic obstructive pulmonary disorder, and age-related sarcopenia all represent conditions in which significant diaphragm muscle dysfunction exits. This perspective review article presents several interesting topics involving diaphragm plasticity in aging and disease that were presented at the International Union of Physiological Sciences Conference in 2017. This review seeks to maximize the broad and collective research impact on diaphragm muscle dysfunction in the search for transformative treatment approaches to improve the diaphragm muscle health during aging and disease.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center , Amsterdam , The Netherlands
- Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Ken D O'Halloran
- Department of Physiology, University College Cork , Cork , Ireland
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Barcelona , Spain
| |
Collapse
|
415
|
Ellouze O, Lamirel J, Perrot J, Missaoui A, Daily T, Aho S, Petrosyan A, Guinot PG, Bouchot O, Bouhemad B. Extubation of patients undergoing extracorporeal life support. A retrospective study. Perfusion 2018; 34:50-57. [DOI: 10.1177/0267659118791072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The use of extracorporeal life support (ECLS) is increasing worldwide, in particular for the management of refractory cardiac arrest, cardiogenic shock and post cardiopulmonary bypass ventricular failure. Extubation of patients under extracorporeal membrane oxygenation (ECMO) for respiratory failure is a growing practice for adult and pediatric patients, especially for lung transplantation candidates. Because of potential complications and, specifically, accidental arterial decannulation, extubation of patients under ECLS is not standard practice. Our goal was to evaluate the interest in patient extubation under ECLS. Materials and methods: We performed a monocentric, retrospective study of all ECLS cases between January 2014 and January 2016. We excluded patients who died within the first 48 hours of ECLS. Results: We analyzed 57 of the initial 109 patients included in the study. The initial SOFA score was higher in the non-extubated group under ECLS, without significant difference (8.6 ± 2.8 vs 7.2 ± 2.1, p=0.065). Patients who were not extubated had a higher rate of acquired ventilator pneumonia (61.9% vs 26.7%, p=0.03). Moreover, patients who were extubated under ECLS had better 30-day survival rates (73.3% vs 40.5%, p=0.04). In multivariate analyses, the independent factors associated with mortality were age, duration of ECLS and the lack of extubation under ECLS. Conclusion: Extubation of patients under ECLS is safe and feasible. Furthermore, in extubated patients, we observed fewer cases of ventilator-associated pneumonia and better 30-day survival rates.
Collapse
Affiliation(s)
- Omar Ellouze
- Service d’Anesthésie Réanimation, CHU de Dijon, Dijon, France
| | - Julie Lamirel
- Service d’Anesthésie Réanimation, CHU de Dijon, Dijon, France
| | - Justine Perrot
- Service d’Anesthésie Réanimation, CHU de Dijon, Dijon, France
| | - Anis Missaoui
- Service d’Anesthésie Réanimation, CHU de Dijon, Dijon, France
| | - Theresa Daily
- Service d’Anesthésie Réanimation, CHU de Dijon, Dijon, France
| | - Serge Aho
- Service d’Epidémiologie et d’Hygiène Hospitalières, CHU de Dijon, Dijon, France
| | - Andranik Petrosyan
- Service de Chirurgie Cardiaque, Vasculaire et Thoracique, CHU de Dijon, Dijon, France
| | | | - Oliver Bouchot
- Service de Chirurgie Cardiaque, Vasculaire et Thoracique, CHU de Dijon, Dijon, France
| | - Belaid Bouhemad
- Service d’Anesthésie Réanimation, CHU de Dijon, Dijon, France
| |
Collapse
|
416
|
Keim-Malpass J, Enfield KB, Calland JF, Lake DE, Clark MT. Dynamic data monitoring improves predictive analytics for failed extubation in the ICU. Physiol Meas 2018; 39:075005. [PMID: 29932430 DOI: 10.1088/1361-6579/aace95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Predictive analytics monitoring that informs clinicians of the risk for failed extubation would help minimize both the duration of mechanical ventilation and the risk of emergency re-intubation in ICU patients. We hypothesized that dynamic monitoring of cardiorespiratory data, vital signs, and lab test results would add information to standard clinical risk factors. METHODS We report model development in a retrospective observational cohort admitted to either the medical or surgical/trauma ICU that were intubated during their ICU stay and had available physiologic monitoring data (n = 1202). The primary outcome was removal of endotracheal intubation (i.e. extubation) followed within 48 h by reintubation or death (i.e. failed extubation). We developed a standard risk marker model based on demographic and clinical data. We also developed a novel risk marker model using dynamic data elements-continuous cardiorespiratory monitoring, vital signs, and lab values. RESULTS Risk estimates from multivariate predictive models in the 24 h preceding extubation were significantly higher for patients that failed. Combined standard and novel risk markers demonstrated good predictive performance in leave-one-out validation: AUC of 0.64 (95% CI: 0.57-0.69) and 1.6 alerts per week to identify 32% of extubations that will fail. Novel risk factors added significantly to the standard model. CONCLUSION Predictive analytics monitoring models can detect changes in vital signs, continuous cardiorespiratory monitoring, and laboratory measurements in both the hours preceding and following extubation for those patients destined for extubation failure.
Collapse
Affiliation(s)
- Jessica Keim-Malpass
- School of Nursing, University of Virginia, Charlottesville, VA, United States of America. School of Medicine, University of Virginia, Charlottesville, VA, United States of America
| | | | | | | | | |
Collapse
|
417
|
|
418
|
Abstract
OBJECTIVES Diaphragm atrophy is associated with delayed weaning from mechanical ventilation and increased mortality in critically ill adults. We sought to test for the presence of diaphragm atrophy in children with acute respiratory failure. DESIGN Prospective, observational study. SETTING Single-center tertiary noncardiac PICU in a children's hospital. PATIENTS Invasively ventilated children with acute respiratory failure. MEASUREMENTS AND MAIN RESULTS Diaphragm thickness at end-expiration and end-inspiration were serially measured by ultrasound in 56 patients (median age, 17 mo; interquartile range, 5.5-52), first within 36 hours of intubation and last preceding extubation. The median duration of mechanical ventilation was 140 hours (interquartile range, 83-201). At initial measurement, thickness at end-expiration was 2.0 mm (interquartile range, 1.8-2.5) and thickness at end-inspiration was 2.5 mm (interquartile range, 2-2.8). The change in thickness at end-expiration during mechanical ventilation between first and last measurement was -13.8% (interquartile range, -27.4% to 0%), with a -3.4% daily atrophy rate (interquartile range, -5.6 to 0%). Thickening fraction = ([thickness at end-inspiration - thickness at end-expiration]/thickness at end-inspiration) throughout the course of mechanical ventilation was linearly correlated with spontaneous breathing fraction (beta coefficient, 9.4; 95% CI, 4.2-14.7; p = 0.001). For children with a period of spontaneous breathing fraction less than 0.5 during mechanical ventilation, those with exposure to a continuous neuromuscular blockade infusion (n = 15) had a significantly larger decrease in thickness at end-expiration compared with children with low spontaneous breathing fraction who were not exposed to a neuromuscular blockade infusion (n = 18) (-16.4%, [interquartile range, -28.4% to -7.0%] vs -7.3%; [interquartile range, -10.9% to -0%]; p = 0.036). CONCLUSIONS Diaphragm atrophy is present in children on mechanical ventilation for acute respiratory failure. Diaphragm contractility, measured as thickening fraction, is strongly correlated with spontaneous breathing fraction. The combination of exposure to neuromuscular blockade infusion with low overall spontaneous breathing fraction is associated with a greater degree of atrophy.
Collapse
|
419
|
Yoshida T, Amato MBP, Kavanagh BP. Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med 2018; 44:2235-2238. [PMID: 29574574 DOI: 10.1007/s00134-018-5145-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Takeshi Yoshida
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Brian P Kavanagh
- Translational Medicine, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
420
|
Dres M, Demoule A. Diaphragm dysfunction during weaning from mechanical ventilation: an underestimated phenomenon with clinical implications. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:73. [PMID: 29558983 PMCID: PMC5861656 DOI: 10.1186/s13054-018-1992-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2018. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2018. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Martin Dres
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France. .,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département ″R3S″), Paris, France.
| | - Alexandre Demoule
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département ″R3S″), Paris, France
| |
Collapse
|
421
|
Ambrosino N, Vitacca M. The patient needing prolonged mechanical ventilation: a narrative review. Multidiscip Respir Med 2018; 13:6. [PMID: 29507719 PMCID: PMC5831532 DOI: 10.1186/s40248-018-0118-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Progress in management has improved hospital mortality of patients admitted to the intensive care units, but also the prevalence of those patients needing weaning from prolonged mechanical ventilation, and of ventilator assisted individuals. The result is a number of difficult clinical and organizational problems for patients, caregivers and health services, as well as high human and financial resources consumption, despite poor long-term outcomes. An effort should be made to improve the management of these patients. This narrative review summarizes the main concepts in this field. MAIN BODY There is great variability in terminology and definitions of prolonged mechanical ventilation.There have been several recent developments in the field of prolonged weaning: ventilatory strategies, use of protocols, early mobilisation and physiotherapy, specialised weaning units.There are few published data on discharge home rates, need of home mechanical ventilation, or long-term survival of these patients.Whether artificial nutritional support improves the outcome for these chronic critically ill patients, is unclear and controversial how these data are reported on the optimal time of initiation of parenteral vs enteral nutrition.There is no consensus on time of tracheostomy or decannulation. Despite several individualized, non-comparative and non-validated decannulation protocols exist, universally accepted protocols are lacking as well as randomised controlled trials on this critical issue. End of life decisions should result from appropriate communication among professionals, patients and surrogates and national legislations should give clear indications. CONCLUSION Present medical training of clinicians and locations like traditional intensive care units do not appear enough to face the dramatic problems posed by these patients. The solutions cannot be reserved to professionals but must involve also families and all other stakeholders. Large multicentric, multinational studies on several aspects of management are needed.
Collapse
Affiliation(s)
- Nicolino Ambrosino
- Istituti Clinici Scientifici Maugeri, IRCCS, Istituto Scientifico di Montescano, 27040 Montescano, PV Italy
| | - Michele Vitacca
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Unit, Istituto Scientifico di Lumezzane, Lumezzane, BS Italy
| |
Collapse
|