401
|
Distinct human circulating NKp30 +FcεRIγ +CD8 + T cell population exhibiting high natural killer-like antitumor potential. Proc Natl Acad Sci U S A 2018; 115:E5980-E5989. [PMID: 29895693 DOI: 10.1073/pnas.1720564115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD8+ T cells are considered prototypical cells of adaptive immunity. Here, we uncovered a distinct CD8+ T cell population expressing the activating natural killer (NK) receptor NKp30 in the peripheral blood of healthy individuals. We revealed that IL-15 could de novo induce NKp30 expression in a population of CD8+ T cells and drive their differentiation toward a broad innate transcriptional landscape. The adaptor FcεRIγ was concomitantly induced and was shown to be crucial to enable NKp30 cell-surface expression and function in CD8+ T cells. FcεRIγ de novo expression required promoter demethylation and was accompanied by acquisition of the signaling molecule Syk and the "innate" transcription factor PLZF. IL-15-induced NKp30+CD8+ T cells exhibited high NK-like antitumor activity in vitro and were able to synergize with T cell receptor signaling. Importantly, this population potently controlled tumor growth in a preclinical xenograft mouse model. Our study, while blurring the borders between innate and adaptive immunity, reveals a unique NKp30+FcεRIγ+CD8+ T cell population with high antitumor therapeutic potential.
Collapse
|
402
|
Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018; 2:377-391. [PMID: 31011197 DOI: 10.1038/s41551-018-0235-9] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) that are specific for tumour antigens have led to high complete response rates in patients with haematologic malignancies. Despite this early success, major challenges to the broad application of CAR-T cells as cancer therapies remain, including treatment-associated toxicities and cancer relapse with antigen-negative tumours. Targeting solid tumours with CAR-T cells poses additional obstacles because of the paucity of tumour-specific antigens and the immunosuppressive effects of the tumour microenvironment. To overcome these challenges, T cells can be programmed with genetic modules that increase their therapeutic potency and specificity. In this Review Article, we survey major advances in the engineering of next-generation CAR-T therapies for haematologic cancers and solid cancers, with particular emphasis on strategies for the control of CAR specificity and activity and on approaches for improving CAR-T-cell persistence and overcoming immunosuppression. We also lay out a roadmap for the development of off-the-shelf CAR-T cells.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
403
|
Abstract
Cytokines are major regulators of innate and adaptive immunity that enable cells of the immune system to communicate over short distances. Cytokine therapy to activate the immune system of cancer patients has been an important treatment modality and continues to be a key contributor to current clinical cancer research. Interferon alpha (IFNα) is approved for adjuvant treatment of completely resected high-risk melanoma patients and several refractory malignancies. High-dose interleukin-2 (HDIL-2) is approved for treatment of metastatic renal cell cancer and melanoma, but both agents are currently less commonly used with the development of newer agents. Granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN gamma (IFNγ), IL-7, IL-12, and IL-21 were evaluated in clinical trials and remain part of certain investigational trials. The initial single-agent clinical trials with the long-awaited IL-15 have been completed and combination trials with antitumor antibodies or checkpoint inhibitors (CPIs) have been initiated. However, cytokines in monotherapy have not fulfilled the promise of efficacy seen in preclinical experiments. They are often associated with severe dose-limiting toxicities that are manageable with appropriate dosing and are now better understood to induce immune-suppressive humoral factors, suppressive cells, and cellular checkpoints, without consistently inducing a tumor-specific response. To circumvent these impediments, cytokines are being investigated clinically with new engineered cytokine mutants (superkines), chimeric antibody-cytokine fusion proteins (immunokines), anticancer vaccines, CPIs, and cancer-directed monoclonal antibodies to increase their antibody-dependent cellular cytotoxicity or sustain cellular responses and anticancer efficacy. In this review, we summarize current knowledge and clinical application of cytokines either as monotherapy or in combination with other biological agents. We emphasize a discussion of future directions for research on these cytokines, to bring them to fruition as major contributors for the treatment of metastatic malignancy.
Collapse
Affiliation(s)
- Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
404
|
Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, Vivek S, Peck L, DiPersio JF, Cashen AF, Kyllo R, Musiek A, Schaffer A, Anadkat MJ, Rosman I, Miller D, Egan JO, Jeng EK, Rock A, Wong HC, Fehniger TA, Miller JS. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 2018; 131:2515-2527. [PMID: 29463563 PMCID: PMC5992862 DOI: 10.1182/blood-2017-12-823757] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/13/2018] [Indexed: 01/15/2023] Open
Abstract
New therapies for patients with hematologic malignancies who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) are needed. Interleukin 15 (IL-15) is a cytokine that stimulates CD8+ T-cell and natural killer (NK) cell antitumor responses, and we hypothesized this cytokine may augment antileukemia/antilymphoma immunity in vivo. To test this, we performed a first-in-human multicenter phase 1 trial of the IL-15 superagonist complex ALT-803 in patients who relapsed >60 days after allo-HCT. ALT-803 was administered to 33 patients via the IV or subcutaneous (SQ) routes once weekly for 4 doses (dose levels of 1, 3, 6, and 10 μg/kg). ALT-803 was well tolerated, and no dose-limiting toxicities or treatment-emergent graft-versus-host disease requiring systemic therapy was observed in this clinical setting. Adverse events following IV administration included constitutional symptoms temporally related to increased serum IL-6 and interferon-γ. To mitigate these effects, the SQ route was tested. SQ delivery resulted in self-limited injection site rashes infiltrated with lymphocytes without acute constitutional symptoms. Pharmacokinetic analysis revealed prolonged (>96 hour) serum concentrations following SQ, but not IV, injection. ALT-803 stimulated the activation, proliferation, and expansion of NK cells and CD8+ T cells without increasing regulatory T cells. Responses were observed in 19% of evaluable patients, including 1 complete remission lasting 7 months. Thus, ALT-803 is a safe, well-tolerated agent that significantly increased NK and CD8+ T cell numbers and function. This immunostimulatory IL-15 superagonist warrants further investigation to augment antitumor immunity alone and combined with other immunotherapies. This trial was registered at www.clinicaltrials.gov as #NCT01885897.
Collapse
Affiliation(s)
- Rizwan Romee
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | - Sithara Vivek
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Lindsey Peck
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Rachel Kyllo
- Division of Dermatology, Department of Medicine, and
| | - Amy Musiek
- Division of Dermatology, Department of Medicine, and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | | | - Milan J Anadkat
- Division of Dermatology, Department of Medicine, and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ilana Rosman
- Division of Dermatology, Department of Medicine, and
| | - Daniel Miller
- Department of Dermatology, University of Minnesota, Minneapolis, MN; and
| | - Jack O Egan
- Altor BioScience, a Nantworks company, Miramar, FL
| | - Emily K Jeng
- Altor BioScience, a Nantworks company, Miramar, FL
| | - Amy Rock
- Altor BioScience, a Nantworks company, Miramar, FL
| | - Hing C Wong
- Altor BioScience, a Nantworks company, Miramar, FL
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
405
|
de Witte MA, Sarhan D, Davis Z, Felices M, Vallera DA, Hinderlie P, Curtsinger J, Cooley S, Wagner J, Kuball J, Miller JS. Early Reconstitution of NK and γδ T Cells and Its Implication for the Design of Post-Transplant Immunotherapy. Biol Blood Marrow Transplant 2018; 24:1152-1162. [PMID: 29505821 PMCID: PMC5993609 DOI: 10.1016/j.bbmt.2018.02.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Natural killer (NK) cells and γδ T cells reconstitute early after allo-HSCT, contribute to tumor immunosurveillance via major histocompatibility complex-independent mechanisms and do not induce graft-versus-host disease. Here we performed a quantitative and qualitative analysis of the NK and γδ T cell repertoire in healthy individuals, recipients of HLA-matched sibling or unrelated donor allo-HSCT (MSD/MUD-HSCT) and umbilical cord blood-HSCT (UCB-HSCT). NK cells are present at high frequencies in all allo-HSCT recipients. Immune reconstitution (IR) of vδ2+ cells depended on stem cell source. In MSD/MUD-HSCT recipients, vδ2+ comprise up to 8% of the total lymphocyte pool, whereas vδ2+ T cells are barely detectable in UCB-HSCT recipients. Vδ1+ IR was driven by CMV reactivation and was comparable between MSD/MUD-HSCT and UCB-HSCT. Strategies to augment NK cell mediated tumor responses, similar to IL-15 and antibodies, also induced vδ2+ T cell responses against a variety of different tumor targets. Vδ1+ γδ T cells were induced less by these same stimuli. We also identified elevated expression of the checkpoint inhibitory molecule TIGIT (T cell Ig and ITIM domain), which is also observed on tumor-infiltrating lymphocytes and epidermal γδ T cells. Collectively, these data show multiple strategies that can result in a synergized NK and γδ T cell antitumor response. In the light of recent developments of low-toxicity allo-HSCT platforms, these interventions may contribute to the prevention of early relapse.
Collapse
Affiliation(s)
- Moniek A de Witte
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Dhifaf Sarhan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Zachary Davis
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie Curtsinger
- Translational Therapy Laboratory, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Sarah Cooley
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - John Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jurgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
406
|
Frutoso M, Morisseau S, Tamzalit F, Quéméner A, Meghnem D, Leray I, Jacques Y, Mortier E. Emergence of NK Cell Hyporesponsiveness after Two IL-15 Stimulation Cycles. THE JOURNAL OF IMMUNOLOGY 2018; 201:493-506. [PMID: 29848756 DOI: 10.4049/jimmunol.1800086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
IL-15 is a cytokine playing a crucial role in the function of immune cells, including NK and CD8 T cells. In this study, we demonstrated that in vivo, in mice, IL-15-prestimulated NK cells were no longer able to respond to a second cycle of IL-15 stimulation. This was illustrated by defects in cell maturation, proliferation, and activation, seemingly linked to the environment surrounding NK cells but not related to the presence of CD4 regulatory T cells, TGF-β, or IL-10. Moreover, NK cells from immunodeficient mice could respond to two cycles of IL-15 stimulation, whereas an adoptive transfer of CD44+CD8+ cells impaired their responsiveness to the second cycle. Conversely, in immunocompetent mice, NK cell responsiveness to a second IL-15 stimulation was restored by the depletion of CD8+ cells. These biological findings refine our understanding of the complex mode of action of NK cells in vivo, and they should be taken into consideration for IL-15-based therapy.
Collapse
Affiliation(s)
- Marie Frutoso
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Sébastien Morisseau
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and.,Centre Hospitalier Universitaire, 44000 Nantes, France
| | - Fella Tamzalit
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Agnès Quéméner
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Dihia Meghnem
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Isabelle Leray
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Yannick Jacques
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Erwan Mortier
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| |
Collapse
|
407
|
Prevention and treatment of relapse after stem cell transplantation by cellular therapies. Bone Marrow Transplant 2018; 54:26-34. [PMID: 29795426 DOI: 10.1038/s41409-018-0227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022]
Abstract
Despite recent advances in reducing therapy-related mortality after allogeneic stem cell transplantation (alloSCT) relapse remains the major cause of treatment failure and little progress has been achieved in the last decades. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg/Germany in November 2016 international experts presented and discussed recent developments in the field. Here, the potential of cellular therapies including unspecific and specific T cells, genetically modified T cells, CAR-T cells, NK-cells, and second allografting in prevention and treatment of relapse after alloSCT are summarized.
Collapse
|
408
|
Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018; 41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
409
|
Shum T, Kruse RL, Rooney CM. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin Biol Ther 2018; 18:653-664. [PMID: 29727246 DOI: 10.1080/14712598.2018.1473368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. AREAS COVERED We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. EXPERT OPINION CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.
Collapse
Affiliation(s)
- Thomas Shum
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,b Medical Scientist Training Program , Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA
| | - Robert L Kruse
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,b Medical Scientist Training Program , Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA
| | - Cliona M Rooney
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA.,d Department of Pediatrics , Baylor College of Medicine , Houston , Texas , USA.,e Texas Children's Cancer and Hematology Centers , Baylor College of Medicine , Houston , Texas , USA.,f Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas , USA.,g Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , Texas , USA
| |
Collapse
|
410
|
Modak S, Le Luduec JB, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E, Basu E, Kushner BH, Kramer K, Roberts SS, O'Reilly RJ, Cheung NKV, Hsu KC. Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study. Oncoimmunology 2018; 7:e1461305. [PMID: 30221057 DOI: 10.1080/2162402x.2018.1461305] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/30/2023] Open
Abstract
Natural killer (NK) cell-mediated antibody-dependent toxicity is a potent mechanism of action of the anti-GD2 murine monoclonal antibody 3F8 (m3F8). Killer immunoglobulin-like receptor (KIR) and HLA genotypes modulate NK activity and are key prognostic markers in m3F8-treated patients with neuroblastoma. Endogenous NK-cells are suppressed in the setting of high tumor burden and chemotherapy. Allogeneic NK-cells however, demonstrate potent anti-neuroblastoma activity. We report on the results of a phase I clinical trial of haploidentical NK-cells plus m3F8 administered to patients with high-risk neuroblastoma after conditioning chemotherapy. The primary objective was to determine the maximum tolerated NK-cell dose (MTD). Secondary objectives included assessing anti-neuroblastoma activity and its relationship to donor-recipient KIR/HLA genotypes, NK function, and donor NK chimerism. Patients received a lymphodepleting regimen prior to infusion of haploidentical CD3-CD56+ NK-cells, followed by m3F8. Overall and progression free survival (PFS) were assessed from the time of first NK-cell dose. Univariate Cox regression assessed relationship between dose and outcomes. Thirty-five patients received NK-cells at one of five dose levels ranging from <1×106 to 50×106 CD3-CD56+cells/kg. One patient experienced grade 3 hypertension and grade 4 pneumonitis. MTD was not reached. Ten patients (29%) had complete or partial response; 17 (47%) had no response; and eight (23%) had progressive disease. No relationship was found between response and KIR/HLA genotype or between response and FcγRIII receptor polymorphisms. Patients receiving >10×106 CD56+cells/kg had improved PFS (HR: 0.36, 95%CI: 0.15-0.87, p = 0.022). Patient NK-cells displayed high NKG2A expression, leading to inhibition by HLA-E-expressing neuroblastoma cells. Adoptive NK-cell therapy in combination with m3F8 is safe and has anti-neuroblastoma activity at higher cell doses.
Collapse
Affiliation(s)
- Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Irene Y Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Debra A Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ellen Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.,Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katharine C Hsu
- Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY.,Weill Cornell Medical College, New York, NY.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
411
|
Easom NJW, Stegmann KA, Swadling L, Pallett LJ, Burton AR, Odera D, Schmidt N, Huang WC, Fusai G, Davidson B, Maini MK. IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction. Front Immunol 2018; 9:1009. [PMID: 29867983 PMCID: PMC5954038 DOI: 10.3389/fimmu.2018.01009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
NK cells have potent antitumor capacity. They are enriched in the human liver, with a large subset specialized for tissue-residence. The potential for liver-resident versus liver-infiltrating NK cells to populate, and exert antitumor functions in, human liver tumors has not been studied. We examined liver-resident and liver-infiltrating NK cells directly ex vivo from human hepatocellular carcinomas (HCCs) and liver colorectal (CRC) metastases, compared with matched uninvolved liver tissue. We found that NK cells were highly prevalent in both HCC and liver CRC metastases, although at lower frequencies than unaffected liver. Up to 79% of intratumoral NK cells had the CXCR6+CD69+ liver-resident phenotype. Direct ex vivo staining showed that liver-resident NK cells had increased NKG2D expression compared to their non-resident counterparts, but both subsets had NKG2D downregulation within liver tumors compared to uninvolved liver. Proliferation of intratumoral NK cells (identified by Ki67) was selectively impaired in those with the most marked NKG2D downregulation. Human liver tumor NK cells were functionally impaired, with reduced capacity for cytotoxicity and production of cytokines, even when compared to the hypo-functional tissue-resident NK cells in unaffected liver. Coculture of human liver NK cells with the human hepatoma cell line PLC/PRF/5, or with autologous HCC, recapitulated the defects observed in NK cells extracted from tumors, with downmodulation of NKG2D, cytokine production, and target cell cytotoxicity. Transwells and conditioned media confirmed a requirement for cell contact with PLC/PRF/5 to impose NK cell inhibition. IL-15 was able to recover antitumor functionality in NK cells inhibited by in vitro exposure to HCC cell lines or extracted directly from HCC. In summary, our data suggest that the impaired antitumor function of local NK cells reflects a combination of the tolerogenic features inherent to liver-resident NK cells together with additional contact-dependent inhibition imposed by HCC itself. The demonstration that IL-15 can recover hepatic NK cell function following tumor exposure supports its inclusion in immunotherapy strategies.
Collapse
Affiliation(s)
- Nicholas J W Easom
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Kerstin A Stegmann
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura J Pallett
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Dennis Odera
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Nathalie Schmidt
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Wei-Chen Huang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Giuseppe Fusai
- Centre for Digestive Diseases, Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - Brian Davidson
- Centre for Digestive Diseases, Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
412
|
Bergamaschi C, Watson DC, Valentin A, Bear J, Peer CJ, Figg WD, Felber BK, Pavlakis GN. Optimized administration of hetIL-15 expands lymphocytes and minimizes toxicity in rhesus macaques. Cytokine 2018; 108:213-224. [PMID: 29402721 PMCID: PMC6657354 DOI: 10.1016/j.cyto.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
The common γ-chain cytokine interleukin-15 (IL-15) plays a significant role in regulating innate and adaptive lymphocyte homeostasis and can stimulate anti-tumor activity of leukocytes. We have previously shown that the circulating IL-15 in the plasma is the heterodimeric form (hetIL-15), produced upon co-expression of IL-15 and IL-15 Receptor alpha (IL-15Rα) polypeptides in the same cell, heterodimerization of the two chains and secretion. We investigated the pharmacokinetic and pharmacodynamic profile and toxicity of purified human hetIL-15 cytokine upon injection in rhesus macaques. We compared the effects of repeated hetIL-15 administration during a two-week dosing cycle, using different subcutaneous dosing schemata, i.e. fixed doses of 0.5, 5 and 50 μg/kg or a doubling step-dose scheme ranging from 2 to 64 μg/kg. Following a fixed-dose regimen, dose-dependent peak plasma IL-15 levels decreased significantly between the first and last injection. The trough plasma IL-15 levels measured at 48 h after injections were significantly higher after the first dose, compared to subsequent doses. In contrast, following the step-dose regimen, the systemic exposure increased by more than 1 log between the first injection given at 2 μg/kg and the last injection given at 64 μg/kg, and the trough levels were comparable after each injection. Blood lymphocyte cell count, proliferation, and plasma IL-18 levels peaked at day 8 when hetIL-15 was provided at fixed doses, and at the end of the cycle following a step-dose regimen, suggesting that sustained expansion of target cells requires increasing doses of cytokine. Macaques treated with a 50 μg/kg dose showed moderate and transient toxicity, including fever, signs of capillary leak syndrome and renal dysfunction. In contrast, these effects were mild or absent using the step-dose regimen. The results provide a new method of optimal administration of this homeostatic cytokine and may have applications for the delivery of other cytokines.
Collapse
Affiliation(s)
- Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Dionysios C Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Cody J Peer
- Clinical Pharmacology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| |
Collapse
|
413
|
Damani-Yokota P, Telfer JC, Baldwin CL. Variegated Transcription of the WC1 Hybrid PRR/Co-Receptor Genes by Individual γδ T Cells and Correlation With Pathogen Responsiveness. Front Immunol 2018; 9:717. [PMID: 29867919 PMCID: PMC5949365 DOI: 10.3389/fimmu.2018.00717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 01/29/2023] Open
Abstract
γδ T cells have broad reactivity and actively participate in protective immunity against tumors and infectious disease-causing organisms. In γδ-high species such as ruminants and other artiodactyls many γδ T cells bear the lineage-specific markers known as WC1. WC1 molecules are scavenger receptors coded for by a multigenic array and are closely related to SCART found on murine γδ T cells and CD163 found on a variety of cells. We have previously shown that WC1 molecules are hybrid pattern recognition receptors thereby binding pathogens as well as signaling co-receptors for the γδ T cell receptor. WC1+ γδ T cells can be divided into two major subpopulations differentiated by the WC1 genes they express and the pathogens to which they respond. Therefore, we hypothesize that optimal γδ T cell responses are contingent on pathogen binding to WC1 molecules, especially since we have shown that silencing WC1 results in an inability of γδ T cells from primed animals to respond to the pathogen Leptospira, a model system we have employed extensively. Despite this knowledge about the crucial role WC1 plays in γδ T cell biology, the pattern of WC1 gene expression by individual γδ T cells was not known but is critical to devise methods to engage γδ T cells for responses to specific pathogens. To address this gap, we generated 78 γδ T cell clones. qRT-PCR evaluation showed that approximately 75% of the clones had one to three WC1 genes transcribed but up to six per cell occurred. The co-transcription of WC1 genes by clones showed many combinations and some WC1 genes were transcribed by both subpopulations although there were differences in the overall pattern of WC1 genes transcription. Despite this overlap, Leptospira-responsive WC1+ memory γδ T cell clones were shown to have a significantly higher propensity to express WC1 molecules that are known to bind to the pathogen.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States
| | - Janice C Telfer
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Cynthia L Baldwin
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
414
|
Al Malki MM, Jones R, Ma Q, Lee D, Reisner Y, Miller JS, Lang P, Hongeng S, Hari P, Strober S, Yu J, Maziarz R, Mavilio D, Roy DC, Bonini C, Champlin RE, Fuchs EJ, Ciurea SO. Proceedings From the Fourth Haploidentical Stem Cell Transplantation Symposium (HAPLO2016), San Diego, California, December 1, 2016. Biol Blood Marrow Transplant 2018; 24:895-908. [PMID: 29339270 PMCID: PMC7187910 DOI: 10.1016/j.bbmt.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/04/2023]
Abstract
The resurgence of haploidentical stem cell transplantation (HaploSCT) over the last decade is one of the most important advances in the field of hematopoietic stem cell transplantation (HSCT). The modified platforms of T cell depletion either ex vivo (CD34+ cell selection, "megadoses" of purified CD34+ cells, or selective depletion of T cells) or newer platforms of in vivo depletion of T cells, with either post-transplantation high-dose cyclophosphamide or intensified immune suppression, have contributed to better outcomes, with survival similar to that in HLA-matched donor transplantation. Further efforts are underway to control viral reactivation using modified T cells, improve immunologic reconstitution, and decrease the relapse rate post-transplantation using donor-derived cellular therapy products, such as genetically modified donor lymphocytes and natural killer cells. Improvements in treatment-related mortality have allowed the extension of haploidentical donor transplants to patients with hemoglobinopathies, such as thalassemia and sickle cell disease, and the possible development of platforms for immunotherapy in solid tumors. Moreover, combining HSCT from a related donor with solid organ transplantation could allow early tapering of immunosuppression in recipients of solid organ transplants and hopefully prevent organ rejection in this setting. This symposium summarizes some of the most important recent advances in HaploSCT and provides a glimpse in the future of fast growing field.
Collapse
Affiliation(s)
- Monzr M Al Malki
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, California
| | - Richard Jones
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland
| | - Qing Ma
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Dean Lee
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yair Reisner
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Peter Lang
- Department of General Paediatrics, Oncology/Haematology, Tübingen University Hospital for Children and Adolescents, Tübingen, Germany
| | - Suradej Hongeng
- Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford Medical School, Palo Alto, California
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Richard Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Denis-Claude Roy
- Blood and Marrow Transplantation Program, Hôpital Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Hospital, Milan, Italy
| | | | - Ephraim J Fuchs
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland
| | - Stefan O Ciurea
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
415
|
Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc Natl Acad Sci U S A 2018; 115:4927-4932. [PMID: 29686060 DOI: 10.1073/pnas.1715295115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the present work, we investigated the role of natural killer (NK) cells in combination therapy with oncolytic virus (OV) and bortezomib, a proteasome inhibitor. NK cells display rapid and potent immunity to metastatic and hematological cancers, and they overcome immunosuppressive effects of tumor microenvironment. We developed a mathematical model to address the question of how the density of NK cells affects the growth of the tumor. We found that the antitumor efficacy increases when the endogenous NKs are depleted and also when exogenous NK cells are injected into the tumor. These predictions were validated by our in vivo and in vitro experiments.
Collapse
|
416
|
Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018; 283:176-193. [DOI: 10.1111/imr.12644] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miro E. Raeber
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | - Yves Zurbuchen
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | | | - Onur Boyman
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
- Faculty of Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
417
|
Besson L, Charrier E, Karlin L, Allatif O, Marçais A, Rouzaire P, Belmont L, Attal M, Lombard C, Salles G, Walzer T, Viel S. One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy. Front Immunol 2018; 9:704. [PMID: 29706958 PMCID: PMC5908898 DOI: 10.3389/fimmu.2018.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
Multiple myeloma (MM) is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK) cells can recognize and kill MM cells in vitro and can limit MM growth in vivo. Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs) such as lenalidomide (LEN) could enhance it. However, the effects of IMIDs on NK cells have been tested mostly in vitro or in preclinical models and supporting evidence of their effect in vivo in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX) consisting either of association of bortezomib–lenalidomide–dexamethasone (Velcade Revlimid Dexamethasone) or autologous stem-cell transplantation (SCT). We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells ex vivo. Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-β following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.
Collapse
Affiliation(s)
- Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Emily Charrier
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Lionel Karlin
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hematologie, Pierre-Benite, Universite Claude Bernard Lyon 1, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Paul Rouzaire
- Service d'Immunologie, CHU de Clermont-Ferrand, équipe ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - Lucie Belmont
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Michel Attal
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Christine Lombard
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Gilles Salles
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hematologie, Pierre-Benite, Universite Claude Bernard Lyon 1, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| |
Collapse
|
418
|
Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-Cultured Dendritic Cells Enhance Anti-Tumor Gamma Delta T Cell Functions through IL-15 Secretion. Front Immunol 2018; 9:658. [PMID: 29692776 PMCID: PMC5902500 DOI: 10.3389/fimmu.2018.00658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccination can be an effective post-remission therapy for acute myeloid leukemia (AML). Yet, current DC vaccines do not encompass the ideal stimulatory triggers for innate gamma delta (γδ) T cell anti-tumor activity. Promoting type 1 cytotoxic γδ T cells in patients with AML is, however, most interesting, considering these unconventional T cells are primed for rapid function and exert meaningful control over AML. In this work, we demonstrate that interleukin (IL)-15 DCs have the capacity to enhance the anti-tumoral functions of γδ T cells. IL-15 DCs of healthy donors and of AML patients in remission induce the upregulation of cytotoxicity-associated and co-stimulatory molecules on the γδ T cell surface, but not of co-inhibitory molecules, incite γδ T cell proliferation and stimulate their interferon-γ production in the presence of blood cancer cells and phosphoantigens. Moreover, the innate cytotoxic capacity of γδ T cells is significantly enhanced upon interaction with IL-15 DCs, both towards leukemic cell lines and allogeneic primary AML blasts. Finally, we address soluble IL-15 secreted by IL-15 DCs as the main mechanism behind the IL-15 DC-mediated γδ T cell activation. These results indicate that the application of IL-15-secreting DC subsets could render DC-based anti-cancer vaccines more effective through, among others, the involvement of γδ T cells in the anti-leukemic immune response.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Sébastien Anguille
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
419
|
New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity. Oncotarget 2018; 8:44366-44378. [PMID: 28574833 PMCID: PMC5546486 DOI: 10.18632/oncotarget.17875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/28/2017] [Indexed: 01/14/2023] Open
Abstract
Interleukin-15 (IL-15) is a potent cytokine that increases CD8+ T and NK cell numbers and function in experimental models. However, obstacles remain in using IL-15 therapeutically, specifically its low potency and short in vivo half-life. To help overcome this, a new IL-15 superagonist complex comprised of an IL-15N72D mutation and IL-15RαSu/Fc fusion (IL-15SA, also known as ALT-803) was developed. IL-15SA exhibits a significantly longer serum half-life and increased in vivo activity against various tumors. Herein, we evaluated the effects of IL-15SA in recipients of allogeneic hematopoietic stem cell transplantation. Weekly administration of IL-15SA to transplant recipients significantly increased the number of CD8+ T cells (specifically CD44+ memory/activated phenotype) and NK cells. Intracellular IFN-γ and TNF-α secretion by CD8+ T cells increased in the IL-15SA-treated group. IL-15SA also upregulated NKG2D expression on CD8+ T cells. Moreover, IL-15SA enhanced proliferation and cytokine secretion of adoptively transferred CFSE-labeled T cells in syngeneic and allogeneic models by specifically stimulating the slowly proliferative and nonproliferative cells into actively proliferating cells. We then evaluated IL-15SA's effects on anti-tumor activity against murine mastocytoma (P815) and murine B cell lymphoma (A20). IL-15SA enhanced graft-versus-tumor (GVT) activity in these tumors following T cell infusion. Interestingly, IL-15 SA administration provided GVT activity against A20 lymphoma cells in the murine donor leukocyte infusion (DLI) model without increasing graft versus host disease. In conclusion, IL-15SA could be a highly potent T- cell lymphoid growth factor and novel immunotherapeutic agent to complement stem cell transplantation and adoptive immunotherapy.
Collapse
|
420
|
Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, Taffaro-Neskey M, Sherman C, Suriano S, Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD, Wong HC, Rubinstein MP. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 2018; 19:694-704. [PMID: 29628312 DOI: 10.1016/s1470-2045(18)30148-7] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunotherapy with PD-1 or PD-L1 blockade fails to induce a response in about 80% of patients with unselected non-small cell lung cancer (NSCLC), and many of those who do initially respond then develop resistance to treatment. Agonists that target the shared interleukin-2 (IL-2) and IL-15Rβγ pathway have induced complete and durable responses in some cancers, but no studies have been done to assess the safety or efficacy of these agonists in combination with anti-PD-1 immunotherapy. We aimed to define the safety, tolerability, and activity of this drug combination in patients with NSCLC. METHODS In this non-randomised, open-label, phase 1b trial, we enrolled patients (aged ≥18 years) with previously treated histologically or cytologically confirmed stage IIIB or IV NSCLC from three academic hospitals in the USA. Key eligibility criteria included measurable disease, eligibility to receive anti-PD-1 immunotherapy, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received the anti-PD-1 monoclonal antibody nivolumab intravenously at 3 mg/kg (then 240 mg when US Food and Drug Administration [FDA]-approved dosing changed) every 14 days (either as new treatment or continued treatment at the time of disease progression) and the IL-15 superagonist ALT-803 subcutaneously once per week on weeks 1-5 of four 6-week cycles for 6 months. ALT-803 was administered at one of four escalating dose concentrations: 6, 10, 15, or 20 μg/kg. The primary endpoint was to define safety and tolerability and to establish a recommended phase 2 dose of ALT-803 in combination with nivolumab. Analyses were per-protocol and included any patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, number NCT02523469; phase 2 enrolment of patients is ongoing. FINDINGS Between Jan 18, 2016, and June 28, 2017, 23 patients were enrolled and 21 were treated at four dose levels of ALT-803 in combination with nivolumab. Two patients did not receive treatment because of the development of inter-current illness during enrolment, one patient due to leucopenia and one patient due to pulmonary dysfunction. No dose-limiting toxicities were recorded and the maximum tolerated dose was not reached. The most common adverse events were injection-site reactions (in 19 [90%] of 21 patients) and flu-like symptoms (15 [71%]). The most common grade 3 adverse events, occurring in two patients each, were lymphocytopenia and fatigue. A grade 3 myocardial infarction occurred in one patient. No grade 4 or 5 adverse events were recorded. The recommended phase 2 dose of ALT-803 is 20 μg/kg given once per week subcutaneously in combination with 240 mg intravenous nivolumab every 2 weeks. INTERPRETATION ALT-803 in combination with nivolumab can be safely administered in an outpatient setting. The promising clinical activity observed with the addition of ALT-803 to the regimen of patients with PD-1 monoclonal antibody relapsed and refractory disease shows evidence of anti-tumour activity for a new class of agents in NSCLC. FUNDING Altor BioScience (a NantWorks company), National Institutes of Health, and Medical University of South Carolina Hollings Cancer Center.
Collapse
Affiliation(s)
- John M Wrangle
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | | | - Manish R Patel
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth Garrett-Mayer
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth G Hill
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - James G Ravenel
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | | | - Kate Anderton
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Kathryn Lindsey
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Michele Taffaro-Neskey
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Carol Sherman
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Samantha Suriano
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Marzena Swiderska-Syn
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Amy Sion
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Joni Harris
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | - Andie R Edwards
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Carsten Krieg
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | - Mark P Rubinstein
- Department of Medicine, Division of Hematology and Oncology, and Department of Surgery Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
421
|
Natural Killer Cells from Malignant Pleural Effusion Are Endowed with a Decidual-Like Proangiogenic Polarization. J Immunol Res 2018; 2018:2438598. [PMID: 29713652 PMCID: PMC5896269 DOI: 10.1155/2018/2438598] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are crucial in tumor recognition and eradication, but their activity is impaired in cancer patients, becoming poorly cytotoxic. A particular type of NK cells, from the decidua, has low cytotoxicity and shows proangiogenic functions. We investigated whether NK cells from peripheral blood (PB) and pleural effusions of patients develop decidual-like NK phenotype and whether exposure to IL-2 can restore their killing ability in the presence of pleural fluids. NK cells from pleural effusion of patients with inflammatory conditions (iPE, n = 18), primary tumor (ptPE, n = 18), and metastatic tumor (tmPE, n = 27) acquired the CD56brightCD16− phenotype. NK cells from both ptPE and tmPE showed increased expression for the CD49a and CD69 decidual-like (dNK) markers and decreased levels of the CD57 maturation marker. NK from all the PE analyzed showed impaired degranulation capability and reduced perforin release. PE-NK cells efficiently responded to IL-2 stimulation in vitro. Addition of TGFβ or cell-free pleural fluid to IL-2 in the culture medium abrogated NK cell CD107a and IFNγ expression even in healthy donors (n = 14) NK. We found that tmPE-NK cells produce VEGF and support the formation of capillary-like structures in endothelial cells. Our results suggest that the PE tumor microenvironment can shape NK cell polarization towards a low cytotoxic, decidual-like, highly proangiogenic phenotype and that IL-2 treatment is not sufficient to limit this process.
Collapse
|
422
|
Huang H, Luo Y, Baradei H, Liu S, Haenssen KK, Sanglikar S, Kumar S, Cini J. A novel strategy to produce high level and high purity of bioactive IL15 fusion proteins from mammalian cells. Protein Expr Purif 2018; 148:30-39. [PMID: 29596991 DOI: 10.1016/j.pep.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/28/2023]
Abstract
IL15, a member of the common γ chain receptor (γc) cytokine family, is gaining attention in recent years as one of the most promising anti-tumor agents. IL15 regulates T cell activation and proliferation, promotes the survival of CD8+ CD44hi memory T cells and is also essential for NK cell expansion and development. Despite the attraction of developing IL15 as an anti-cancer agent, production of recombinant IL15 has proven to be difficult due to the stringent control of IL15 expression at the transcriptional, translational and the post-translational levels. Furthermore, the bioactivity of IL15 fused to an extra functional domain that is isolated from mammalian cells is generally inferior to recombinant IL15 produced by E. coli. In this study, we report that Lysine 86 in IL15 is responsible for the instability in mammalian cells when its C-terminus is fused to the albumin binding scFv (IL15-A10m3). We demonstrate that K86A or K86R mutants increased the expression of the fusion protein from HEK293 cells. When the wild type IL15 is used for the fusion, no recombinant IL15 fusion was detected in the culture media. Additionally, we determined that the residue 112 in IL15 is critical for the bioactivity of IL15-A10m3. Examination of single and double mutants provides a better understanding of how IL15 engages with its receptor complex to achieve full signaling capacity. The results of our experiments were successfully applied to scale up production to levels up to 50 mg/L and >10 mg/L of >95% pure monomeric recombinant fusion proteins after a 2-step purification from culture media. More importantly, the recombinant fusion protein produced is fully active in stimulating T cell proliferation, when compared to the recombinant wild type IL15.
Collapse
Affiliation(s)
- Haomin Huang
- Sonnet Biotherapeutics, 1 Duncan Drive, Cranbury, NJ 08512, USA.
| | - Yuying Luo
- Sonnet Biotherapeutics, 1 Duncan Drive, Cranbury, NJ 08512, USA
| | - Hanna Baradei
- Sonnet Biotherapeutics, 1 Duncan Drive, Cranbury, NJ 08512, USA
| | - Shan Liu
- Sonnet Biotherapeutics, 1 Duncan Drive, Cranbury, NJ 08512, USA
| | | | | | - Senthil Kumar
- Sonnet Biotherapeutics, 1 Duncan Drive, Cranbury, NJ 08512, USA
| | - John Cini
- Sonnet Biotherapeutics, 1 Duncan Drive, Cranbury, NJ 08512, USA
| |
Collapse
|
423
|
Abstract
Squamous cell and adenocarcinomas of the lung develop different mechanisms during carcinogenesis to evade attacks of the immune system. Besides the well-known check-point control programmed death 1 and its ligand, many more mechanisms, acting either tumoricidal or in favor of tumor progression, exist. Analysis of the immune cell profiles in resected tissues and bronchoalveolar lavage samples and correlation between them and with overall survival data was performed. In all tumor samples in this study, cells of the immune system expressed a tumor-cooperating phenotype. High numbers of regulatory T cells, or alternatively expression of Vista on lymphocytes was present. Tumoricidal dendritic cells were absent in tumor tissue, and barely present in bronchoalveolar lavage, whereas tumor-friendly monocytoid and plasmocytoid dendritic cells were seen in both. Alveolar macrophages were predominantly differentiated into tumor-cooperating M2 types, whereas tumoricidal M1 macrophages were absent or rare. The expression of PDL1 on tumor cells did not correlate with any other immune cells. Expression of PD1 on lymphocytes was frequently encountered. None of analyzed immune cells showed correlation with overall survival. Immune cells in bronchoalveolar lavage and tissue did not correlate. For the first time, a tissue-based analysis of different immune cells in squamous cell and adenocarcinomas of the lung is provided, trying to explain their potential role in tumor development and progression. Discordant numbers of cells with bronchoalveolar lavage are most probably due to the fact that bronchoalveolar lavage reflects the situation in the whole lung, where chronic obstructive lung disease and other conditions are present.
Collapse
|
424
|
Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood 2018; 131:1053-1062. [PMID: 29358179 PMCID: PMC5863700 DOI: 10.1182/blood-2017-08-752170] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of innate immunity that respond to virus infected and tumor cells. After allogeneic transplantation, NK cells are the first reconstituting lymphocytes, but are dysfunctional. Manipulating this first wave of lymphocytes could be instrumental in reducing the 40% relapse rate following transplantation with reduced-intensity conditioning. NK cells express numerous activating and inhibitory receptors. Some recognize classical or nonclassical HLA class I ligands, others recognize class I-like ligands or unrelated ligands. Dominant in the NK-cell transplant literature are killer cell immunoglobulin-like receptors (KIRs), encoded on chromosome 19q. Inhibitory KIR recognition of the cognate HLA class I ligand is responsible for NK-cell education, which makes them tolerant of healthy cells, but responsive to unhealthy cells having reduced expression of HLA class I. KIR A and KIR B are functionally distinctive KIR haplotype groups that differ in KIR gene content. Allogeneic transplant donors having a KIR B haplotype and lacking a recipient HLA-C epitope provide protection against relapse from acute myeloid leukemia. Cytomegalovirus infection stimulates and expands a distinctive NK-cell population that expresses the NKG2C receptor and exhibits enhanced effector functions. These adaptive NK cells display immune memory and methylation signatures like CD8 T cells. As potential therapy, NK cells, including adaptive NK cells, can be adoptively transferred with, or without, agents such as interleukin-15 that promote NK-cell survival. Strategies combining NK-cell infusions with CD16-binding antibodies or immune engagers could make NK cells antigen specific. Together with checkpoint inhibitors, these approaches have considerable potential as anticancer therapies.
Collapse
MESH Headings
- Adoptive Transfer
- Allografts
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/immunology
- Cytomegalovirus Infections/genetics
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/pathology
- Cytomegalovirus Infections/therapy
- HLA Antigens/genetics
- HLA Antigens/immunology
- Haplotypes/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/transplantation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- NK Cell Lectin-Like Receptor Subfamily C/genetics
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Recurrence
- Tissue Donors
Collapse
Affiliation(s)
- Sarah Cooley
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, and
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
| | - Peter Parham
- Department of Structural Biology and
- Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, and
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
425
|
Wege AK, Weber F, Kroemer A, Ortmann O, Nimmerjahn F, Brockhoff G. IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget 2018; 8:2731-2744. [PMID: 27835865 PMCID: PMC5356837 DOI: 10.18632/oncotarget.13159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer immunotherapy has been shown to enhance established treatment regimens. We evaluated the potential reinforcing effect of IL-15 in trastuzumab treated humanized tumor mice (HTM) which were generated by concurrent transplantation of neonatal NOD-scid IL2Rγnull mice with human hematopoietic stem cells (HSC) and HER2 positive breast cancer cells (metastasizing SK-BR-3, solid tumor forming BT474). We found that trastuzumab treatment efficacy mainly depends on the immediate anti-tumorigenic cellular effect which is significantly enhanced by tumor interacting immune cells upon cotransplantion of HSC. However, trastuzumab treatment caused elevated CD44 expression on tumor cells that metastasized into the lung and liver but did not hinder tumor cell dissemination into the bone marrow. Moreover, in a number of SK-BR-3-transplanted animals disseminated CD44high/CD24low tumor cells lost trastuzumab sensitivity. Concerning the FcγRIIIa polymorphism, trastuzumab treatment efficiency in HTM was higher in mice with NK-cells harboring the high affinity FcγRIIIa compared to those with low affinity FcγRIIIa. In contrast, IL-15 caused the strongest NK-cell activation in heterozygous low affinity FcγRIIIa animals. Although IL-15 enhanced the trastuzumab mediated tumor defense, an unspecific immune stimulation resulted in preterm animal death due to systemic inflammation. Overall, treatment studies based on “patient-like” HTM revealed critical and adverse immune-related mechanisms which must be managed prior to clinical testing.
Collapse
Affiliation(s)
- Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC, USA
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
426
|
Schmohl JU, Felices M, Todhunter D, Taras E, Miller JS, Vallera DA. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget 2018; 7:73830-73844. [PMID: 27650544 PMCID: PMC5342017 DOI: 10.18632/oncotarget.12073] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The design of a highly effective anti-cancer immune-engager would include targeting of highly drug refractory cancer stem cells (CSC). The design would promote effective antibody-dependent cell-mediated cytotoxicity (ADCC) and simultaneously promote costimulation to expand and self-sustain the effector NK cell population. Based on our bispecific NK cell engager platform we constructed a tetraspecific killer engager (TetraKE) comprising single-chain variable fragments (scFvs) binding FcγRIII (CD16) on NK cells, EpCAM on carcinoma cells and CD133 on cancer stem cells in order to promote ADCC. Furthermore, an Interleukin (IL)-15-crosslinker enhanced NK cell related proliferation resulting in a highly active drug termed 1615EpCAM133. RESULTS Proliferation assays showed TetraKE promoted proliferation and enhanced NK cell survival. Drug-target binding, NK cell related degranulation, and IFN-γ production was specific for both tumor related antigens in EpCAM and CD133 bearing cancer cell lines. The TetraKE showed higher killing activity and superior dose dependent degranulation. Cytokine profiling showed a moderately enhanced IFN-γ production, enhanced GM-CSF production, but no evidence of induction of excessive cytokine release. METHODS Assembly and synthesis of hybrid genes encoding the TetraKE were performed using DNA shuffling and ligation. The TetraKE was tested for efficacy, specificity, proliferation, survival, and cytokine production using carcinoma cell lines and functional assays measuring NK cell activity. CONCLUSION 1615EpCAM133 combines improved induction of ADCC with enhanced proliferation, limited cytokine response, and prolonged survival and proliferation of NK cells. By linking scFv-related targeting of carcinoma and CSCs with a sustaining IL-15 signal, our new construct shows great promise to target cancer and CSCs.
Collapse
Affiliation(s)
- Joerg U Schmohl
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA.,University of Tuebingen, Department for Hematology and Oncology, Medicine Department 2, University Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Felices
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Deborah Todhunter
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth Taras
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Daniel A Vallera
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
427
|
Wagstaffe HR, Nielsen CM, Riley EM, Goodier MR. IL-15 Promotes Polyfunctional NK Cell Responses to Influenza by Boosting IL-12 Production. THE JOURNAL OF IMMUNOLOGY 2018; 200:2738-2747. [PMID: 29491009 PMCID: PMC5890538 DOI: 10.4049/jimmunol.1701614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022]
Abstract
IL-15 is a key regulator of NK cell maintenance and proliferation and synergizes with other myeloid cell–derived cytokines to enhance NK cell effector function. At low concentrations, trans-presentation of IL-15 by dendritic cells can activate NK cells, whereas at higher concentrations it can act directly on NK cells, independently of accessory cells. In this study, we investigate the potential for IL-15 to boost responses to influenza virus by promoting accessory cell function. We find that coculture of human PBMCs with inactivated whole influenza virus (A/Victoria/361/2011) in the presence of very low concentrations of IL-15 results in increased production of myeloid cell–derived cytokines, including IL-12, IFN-α2, GM-CSF, and IL-1β, and an increased frequency of polyfunctional NK cells (defined by the expression of two or more of CD107a, IFN-γ, and CD25). Neutralization experiments demonstrate that IL-15–mediated enhancement of NK cell responses is primarily dependent on IL-12 and partially dependent on IFN-αβR1 signaling. Critically, IL-15 boosted the production of IL-12 in influenza-stimulated blood myeloid dendritic cells. IL-15 costimulation also restored the ability of less-differentiated NK cells from human CMV-seropositive individuals to respond to influenza virus. These data suggest that very low concentrations of IL-15 play an important role in boosting accessory cell function to support NK cell effector functions.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Carolyn M Nielsen
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom; and
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom;
| |
Collapse
|
428
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
429
|
Di Scala M, Gil-Fariña I, Olagüe C, Vales A, Sobrevals L, Fortes P, Corbacho D, González-Aseguinolaza G. Identification of IFN-γ-producing T cells as the main mediators of the side effects associated to mouse interleukin-15 sustained exposure. Oncotarget 2018; 7:49008-49026. [PMID: 27356750 PMCID: PMC5226487 DOI: 10.18632/oncotarget.10264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Interleukin-15 (IL-15) is a cell growth-factor that regulates lymphocyte function and homeostasis. Its strong immunostimulatory activity coupled with an apparent lack of toxicity makes IL-15 an exciting candidate for cancer therapy, somehow limited by its short half-life in circulation. To increase IL-15 bioavailability we constructed a recombinant adeno-associated vector expressing murine IL-15 (AAV-mIL15) in the liver. Mice injected with AAV-mIL15 showed sustained and vector dose-dependent levels of IL-15/IL-15Rα complexes in serum, production of IFN-γ and activation of CD8+ T-cells and macrophages. The antitumoral efficacy of AAV-mIL15 was tested in a mouse model of metastatic colorectal cancer established by injection of MC38 cells. AAV-mIL15 treatment slightly inhibits MC38 tumor-growth and significantly increases the survival of mice. However, mIL-15 sustained expression was associated with development of side effects like hepatosplenomegaly, liver damage and the development of haematological stress, which results in the expansion of hematopoietic precursors in the bone marrow. To elucidate the mechanism, we treated IFN-γ receptor-, RAG1-, CD1d- and µMT-deficient mice and performed adoptive transfer of bone marrow cells from WT mice to RAG1-defcient mice. We demonstrated that the side effects of murine IL-15 administration were mainly mediated by IFN-γ-producing T-cells. CONCLUSIONS IL-15 induces the activation and survival of effector immune cells that are necessary for its antitumoral activity; but, long-term exposure to IL-15 is associated with the development of important side effects mainly mediated by IFN-γ-producing T-cells. Strategies to modulate T-cell activation should be combined with IL-15 administration to reduce secondary adverse events while maintaining its antitumoral effect.
Collapse
Affiliation(s)
- Marianna Di Scala
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Irene Gil-Fariña
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cristina Olagüe
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Africa Vales
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Luciano Sobrevals
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Puri Fortes
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - David Corbacho
- Imaging Unit and Cancer Imaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| |
Collapse
|
430
|
Felices M, Lenvik AJ, McElmurry R, Chu S, Hinderlie P, Bendzick L, Geller MA, Tolar J, Blazar BR, Miller JS. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 2018; 3:96219. [PMID: 29415897 PMCID: PMC5821201 DOI: 10.1172/jci.insight.96219] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
NK cell-based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15-dosing strategies in NK cell cancer immunotherapeutic settings.
Collapse
Affiliation(s)
- Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Alexander J. Lenvik
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | | | - Sami Chu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Peter Hinderlie
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Laura Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Jeffrey S. Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| |
Collapse
|
431
|
Fujii R, Jochems C, Tritsch SR, Wong HC, Schlom J, Hodge JW. An IL-15 superagonist/IL-15Rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression. Cancer Immunol Immunother 2018; 67:675-689. [PMID: 29392336 DOI: 10.1007/s00262-018-2121-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that play a fundamental role in the immunosurveillance of cancers. NK cells of cancer patients exhibit impaired function mediated by immunosuppressive factors released from the tumor microenvironment (TME), such as transforming growth factor (TGF)-β1. An interleukin (IL)-15 superagonist/IL-15 receptor α fusion complex (IL-15SA/IL-15RA; ALT-803) activates the IL-15 receptor on CD8 T cells and NK cells, and has shown significant anti-tumor activity in several in vivo studies. This in vitro study investigated the efficacy of IL-15SA/IL-15RA on TGF-β1-induced suppression of NK cell-cytotoxic function. IL-15SA/IL-15RA inhibited TGF-β1 from decreasing NK cell lysis of four of four tumor cell lines (H460, LNCap, MCF7, MDA-MB-231). IL-15SA/IL-15RA rescued healthy donor and cancer patient NK cell-cytotoxicity, which had previously been suppressed by culture with TGF-β1. TGF-β1 downregulated expression of NK cell-activating markers and cytotoxic granules, such as CD226, NKG2D, NKp30, granzyme B, and perforin. Smad2/3 signaling was responsible for this TGF-β1-induced downregulation of NK cell-activating markers and cytotoxic granules. IL-15SA/IL-15RA blocked Smad2/3-induced transcription, resulting in the rescue of NK cell-cytotoxic function from TGF-β1-induced suppression. These findings suggest that in addition to increasing NK cell function via promoting the IL-15 signaling pathway, IL-15SA/IL-15RA can function as an inhibitor of TGF-β1 signaling, providing a potential remedy for NK cell dysfunction in the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Rika Fujii
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD, 20892, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD, 20892, USA
| | - Sarah R Tritsch
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD, 20892, USA
| | - Hing C Wong
- Altor BioScience Corporation, 2810 North Commerce Parkway, Miramar, FL, 33025, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD, 20892, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B13, Bethesda, MD, 20892, USA.
| |
Collapse
|
432
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
433
|
Watson DC, Moysi E, Valentin A, Bergamaschi C, Devasundaram S, Fortis SP, Bear J, Chertova E, Bess J, Sowder R, Venzon DJ, Deleage C, Estes JD, Lifson JD, Petrovas C, Felber BK, Pavlakis GN. Treatment with native heterodimeric IL-15 increases cytotoxic lymphocytes and reduces SHIV RNA in lymph nodes. PLoS Pathog 2018; 14:e1006902. [PMID: 29474450 PMCID: PMC5825155 DOI: 10.1371/journal.ppat.1006902] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
B cell follicles in secondary lymphoid tissues represent an immune privileged sanctuary for AIDS viruses, in part because cytotoxic CD8+ T cells are mostly excluded from entering the follicles that harbor infected T follicular helper (TFH) cells. We studied the effects of native heterodimeric IL-15 (hetIL-15) treatment on uninfected rhesus macaques and on macaques that had spontaneously controlled SHIV infection to low levels of chronic viremia. hetIL-15 increased effector CD8+ T lymphocytes with high granzyme B content in blood, mucosal sites and lymph nodes, including virus-specific MHC-peptide tetramer+ CD8+ cells in LN. Following hetIL-15 treatment, multiplexed quantitative image analysis (histo-cytometry) of LN revealed increased numbers of granzyme B+ T cells in B cell follicles and SHIV RNA was decreased in plasma and in LN. Based on these properties, hetIL-15 shows promise as a potential component in combination immunotherapy regimens to target AIDS virus sanctuaries and reduce long-term viral reservoirs in HIV-1 infected individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT02452268.
Collapse
Affiliation(s)
- Dionysios C. Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eirini Moysi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Sotirios P. Fortis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ray Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
434
|
Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab 2018; 27:10-21. [PMID: 29056514 DOI: 10.1016/j.cmet.2017.09.015] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
The benefits of exercise training for cancer patients are becoming increasingly evident. Physical exercise has been shown to reduce cancer incidence and inhibit tumor growth. Here we provide the status of the current molecular understanding of the effect of exercise on cancer. We propose that exercise has a role in controlling cancer progression through a direct effect on tumor-intrinsic factors, interplay with whole-body exercise effects, alleviation of cancer-related adverse events, and improvement of anti-cancer treatment efficacy. These findings have wide-ranging societal implications, as this understanding may lead to changes in cancer treatment strategies.
Collapse
|
435
|
Benson DM, Caligiuri MA. Natural Killer Cell Immunity. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
436
|
Dotti G, Brenner MK. T-Cell Therapy of Hematologic Diseases. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
437
|
|
438
|
|
439
|
Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, Schlom J, Hodge JW. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 2017; 7:16130-45. [PMID: 26910920 PMCID: PMC4941302 DOI: 10.18632/oncotarget.7470] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-15-N72D superagonist-complexed with IL-15RαSushi-Fc fusion protein (IL-15SA/IL-15RαSu-Fc; ALT-803) has been reported to exhibit significant anti-tumor activity in murine myeloma, rat bladder cancer, and murine glioblastoma models. In this study, we examined the immunomodulatory and anti-tumor effects of IL-15SA/IL-15RαSu-Fc in tumor-free and highly metastatic tumor-bearing mice. Here, IL-15SA/IL-15RαSu-Fc significantly expanded natural killer (NK) and CD8+ T cells. In examining NK cell subsets, the greatest significant increase was in highly cytotoxic and migrating (CD11b+, CD27hi; high effector) NK cells, leading to enhanced function on a per-cell basis. CD8+ T cell subset analysis determined that IL-15SA/IL-15RαSu-Fc significantly increased IL-15 responding memory (CD122+, CD44+) CD8+ T cells, in particular those having the innate (NKG2D+, PD1−) phenotype. In 4T1 breast tumor–bearing mice, IL-15SA/IL-15RαSu-Fc induced significant anti-tumor activity against spontaneous pulmonary metastases, depending on CD8+ T and NK cells, and resulting in prolonged survival. Similar anti-tumor activity was seen in the experimental pulmonary metastasis model of CT26 colon carcinoma cells, particularly when IL-15SA/IL-15RαSu-Fc was combined with a cocktail of checkpoint inhibitors, anti-CTLA-4 and anti-PD-L1. Altogether, these studies showed for the first time that IL-15SA/IL-15RαSu-Fc (1) promoted the development of high effector NK cells and CD8+ T cell responders of the innate phenotype, (2) enhanced function of NK cells, and (3) played a vital role in reducing tumor metastasis and ultimately survival, especially in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Peter S Kim
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Xu
- Altor BioScience Corporation, Miramar, FL, USA
| | - Sarah Alter
- Altor BioScience Corporation, Miramar, FL, USA
| | | | - Hing C Wong
- Altor BioScience Corporation, Miramar, FL, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
440
|
Lin S, Huang G, Xiao Y, Sun W, Jiang Y, Deng Q, Peng M, Wei X, Ye W, Li B, Lin S, Wang S, Wu Q, Liang Q, Li Y, Zhang X, Wu Y, Liu P, Pei D, Yu F, Wen Z, Yao Y, Wu D, Li P. CD215+ Myeloid Cells Respond to Interleukin 15 Stimulation and Promote Tumor Progression. Front Immunol 2017; 8:1713. [PMID: 29255466 PMCID: PMC5722806 DOI: 10.3389/fimmu.2017.01713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Interleukin 15 (IL-15) regulates the development, survival, and functions of multiple innate and adaptive immune cells and plays a dual role in promoting both tumor cell growth and antitumor immunity. Here, we demonstrated that the in vivo injection of recombinant human IL-15 (200 µg/kg) or murine IL-15 (3 µg/kg) to tumor-bearing NOD-SCID-IL2Rg-/- (NSI) mice resulted in increased tumor progression and CD45+ CD11b+ Gr-1+ CD215+ cell expansion in the tumors and spleen. In B16F10-bearing C57BL/6 mice model, we found that murine IL-15 has antitumoral effect since the activation and expansion of CD8+ T cells with murine IL-15 treatment. But no enhanced or reduced tumor growth was observed in mice when human IL-15 was used. However, both murine and human IL-15 promote CD45+ CD11b+ Gr-1+ CD215+ cells expansion. In xenograft tumor models, CD215+ myeloid cells, but not CD215- cells, responded to human IL-15 stimulation and promoted tumor growth. Furthermore, we found that human IL-15 mediated insulin-like growth factor-1 production in CD215+ myeloid cells and blocking IGF-1 reduced the tumor-promoting effect of IL-15. Finally, we observed that higher IGF-1 expression is an indicator of poor prognosis among lung adenocarcinoma patients. These findings provide evidence that IL-15 may promote tumor cell progression via CD215+ myeloid cells, and IGF-1 may be an important candidate that IL-15 facilitates tumor growth.
Collapse
Affiliation(s)
- Shouheng Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Huang
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Sun
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Jiang
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuhua Deng
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Muyun Peng
- Department of Thoracic Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinru Wei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baiheng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiubin Liang
- Guangdong Zhaotai InVivo Biomedicine Co. Ltd., Guangzhou, China
| | - Yangqiu Li
- Medical College, Institute of Hematology, Jinan University, Guangzhou, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fenglei Yu
- Department of Thoracic Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhesheng Wen
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yao Yao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
441
|
Miller JS, Morishima C, McNeel DG, Patel MR, Kohrt HEK, Thompson JA, Sondel PM, Wakelee HA, Disis ML, Kaiser JC, Cheever MA, Streicher H, Creekmore SP, Waldmann TA, Conlon KC. A First-in-Human Phase I Study of Subcutaneous Outpatient Recombinant Human IL15 (rhIL15) in Adults with Advanced Solid Tumors. Clin Cancer Res 2017; 24:1525-1535. [PMID: 29203590 DOI: 10.1158/1078-0432.ccr-17-2451] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022]
Abstract
Purpose: Preclinical data established IL15 as a homeostatic factor and powerful stimulator of NK and CD8+ T-cell function, the basis for clinical testing.Experimental Design: A first-in-human outpatient phase I dose escalation trial of subcutaneous (SC) rhIL15 was conducted in refractory solid tumor cancer patients. Therapy consisted of daily (Monday-Friday) subcutaneous injections of rhIL15 for two consecutive weeks (10 total doses/cycle). Clinical response was assessed by RECIST. Pharmacokinetics of rhIL15 and immune biomarkers were evaluated.Results: Nineteen patients were treated with rhIL15 at dose levels of 0.25, 0.5, 1, 2, and 3 mcg/kg/day. Fourteen patients completed ≥ 2 cycles of therapy that was well tolerated. One serious adverse event (SAE), grade 2 pancreatitis, required overnight hospitalization. Enrollment was halted after a patient receiving 3 mcg/kg/day developed a dose-limiting SAE of grade 3 cardiac chest pain associated with hypotension and increased troponin. No objective responses were observed; however, several patients had disease stabilization including a renal cell carcinoma patient who continued protocol treatment for 2 years. The treatment induced profound expansion of circulating NK cells, especially among the CD56bright subset. A proportional but less dramatic increase was found among circulating CD8+ T cells with maximal 3-fold expansion for the 2 and 3 mcg/kg patients.Conclusions: SC rhIL15 treatment was well tolerated, producing substantial increases in circulating NK and CD8+ T cells. This protocol establishes a safe outpatient SC rhIL15 regimen of 2 mcg/kg/day dosing amenable to self-injection and with potential as a combination immunotherapeutic agent. Clin Cancer Res; 24(7); 1525-35. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - John A Thompson
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,National Cancer Institute/NIH, Bethesda, Maryland
| | | | | | | | | | | | - Howard Streicher
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,National Cancer Institute/NIH, Bethesda, Maryland
| | - Steven P Creekmore
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,National Cancer Institute/NIH, Bethesda, Maryland
| | - Thomas A Waldmann
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,National Cancer Institute/NIH, Bethesda, Maryland
| | - Kevin C Conlon
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,National Cancer Institute/NIH, Bethesda, Maryland
| |
Collapse
|
442
|
Ochoa MC, Minute L, López A, Pérez-Ruiz E, Gomar C, Vasquez M, Inoges S, Etxeberria I, Rodriguez I, Garasa S, Mayer JPA, Wirtz P, Melero I, Berraondo P. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15. Oncoimmunology 2017; 7:e1393597. [PMID: 29308327 DOI: 10.1080/2162402x.2017.1393597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8+ T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8+ T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo. The EGFR+ human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2-/-γc-/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1-/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.
Collapse
Affiliation(s)
- Maria Carmen Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Luna Minute
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ascensión López
- Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Hematología y Área de Terapia Celular, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elisabeth Pérez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Susana Inoges
- Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Hematología y Área de Terapia Celular, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
443
|
Muntasell A, Cabo M, Servitja S, Tusquets I, Martínez-García M, Rovira A, Rojo F, Albanell J, López-Botet M. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy. Front Immunol 2017; 8:1544. [PMID: 29181007 PMCID: PMC5694168 DOI: 10.3389/fimmu.2017.01544] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Sonia Servitja
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ignasi Tusquets
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - María Martínez-García
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | | | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
444
|
Simpson RJ, Bigley AB, Agha N, Hanley PJ, Bollard CM. Mobilizing Immune Cells With Exercise for Cancer Immunotherapy. Exerc Sport Sci Rev 2017; 45:163-172. [PMID: 28418996 DOI: 10.1249/jes.0000000000000114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation and adoptive transfer immunotherapy are effective in treating blood cancers and posttransplant infections, but low-circulating cell numbers in patients and donors are oftentimes a limiting factor. We postulate that a single exercise bout will increase the yield of patient- and donor-derived HSCs and cytotoxic lymphocytes to improve this form of treatment for cancer patients.
Collapse
Affiliation(s)
- Richard J Simpson
- 1Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston; 2Department of Behavioral Sciences, University of Texas MD Anderson Cancer Center, Houston, TX; and 3Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC
| | | | | | | | | |
Collapse
|
445
|
de Witte MA, Kuball J, Miller JS. NK Cells and γδT Cells for Relapse Protection After Allogeneic Hematopoietic Cell Transplantation (HCT). CURRENT STEM CELL REPORTS 2017; 3:301-311. [PMID: 29399441 DOI: 10.1007/s40778-017-0106-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of review The outcome of allogeneic stem cell transplantation (allo-HCT) is still compromised by relapse and complications. NK cells and γδT cells, effectors which both function through MHC-unrestricted mechanisms, can target transformed and infected cells without inducing Graft-versus-Host Disease (GVHD). Allo-HCT platforms based on CD34+ selection or αβ-TCR depletion result in low grades of GVHD, early immune reconstitution (IR) of NK and γδT cells and minimal usage of GVHD prophylaxis. In this review we will discuss strategies to retain and expand the quantity, diversity and functionality of these reconstituting innate cell types. Recent findings Bisphosphonates, IL-15 cytokine administration, specific antibodies, checkpoint inhibitors and (CMV based) vaccination are currently being evaluated to enhance IR. All these approaches have shown to potentially enhance both NK and γδT cell immuno-repertoires. Summary Rapidly accumulating data linking innate biology to proposed clinical immune interventions, will give unique opportunities to unravel shared pathways which determine the Graft-versus-Tumor effects of NK and γδT cells.
Collapse
Affiliation(s)
- Moniek A de Witte
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN.,Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology, Cancer Center, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey S Miller
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| |
Collapse
|
446
|
Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, Abdel-Latif S, Ireland AR, Jaishankar D, King JA, Vij R, Clement D, Goodridge J, Malmberg KJ, Wong HC, Fehniger TA. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest 2017; 127:4042-4058. [PMID: 28972539 DOI: 10.1172/jci90387] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15-based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1-, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.
Collapse
Affiliation(s)
- Julia A Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maximillian Rosario
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rizwan Romee
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie E Schneider
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey W Leong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan P Sullivan
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brea A Jewell
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michelle Becker-Hapak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sara Abdel-Latif
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaron R Ireland
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Devika Jaishankar
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin A King
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ravi Vij
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis Clement
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.,The KG Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jodie Goodridge
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.,The KG Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
447
|
Viel S, Besson L, Marotel M, Walzer T, Marçais A. Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells. Cancers (Basel) 2017; 9:cancers9100132. [PMID: 28956813 PMCID: PMC5664071 DOI: 10.3390/cancers9100132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/22/2022] Open
Abstract
The control of cellular metabolism is now recognized as key to regulate functional properties of immune effectors such as T or Natural Killer (NK) cells. During persistent infections or in the tumor microenvironment, multiple metabolic changes have been highlighted in T cells that contribute to their dysfunctional state or exhaustion. NK cells may also undergo major phenotypic and functional modifications when infiltrating tumors that could be linked to metabolic alterations. The mammalian target of rapamycin (mTOR) kinase is a central regulator of cellular metabolism. mTOR integrates various extrinsic growth or immune signals and modulates metabolic pathways to fulfill cellular bioenergetics needs. mTOR also regulates transcription and translation thereby adapting cellular pathways to the growth or activation signals that are received. Here, we review the role and regulation of mTOR in NK cells, with a special focus on cytokines that target mTOR such as IL-15 and TGF-β. We also discuss how NK cell metabolic activity could be enhanced or modulated to improve their effector anti-tumor functions in clinical settings.
Collapse
Affiliation(s)
- Sébastien Viel
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, 69007 Lyon, France.
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 69310 Pierre-Bénite, France.
| | - Laurie Besson
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, 69007 Lyon, France.
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 69310 Pierre-Bénite, France.
| | - Marie Marotel
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, 69007 Lyon, France.
| | - Thierry Walzer
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, 69007 Lyon, France.
| | - Antoine Marçais
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, 69007 Lyon, France.
| |
Collapse
|
448
|
Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol 2017; 8:1124. [PMID: 28955340 PMCID: PMC5601256 DOI: 10.3389/fimmu.2017.01124] [Citation(s) in RCA: 533] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that show strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. NK cells show a broad array of tissue distribution and phenotypic variability. NK cells express several activating and inhibitory receptors that recognize the altered expression of proteins on target cells and control the cytolytic function. NK cells have been used in several clinical trials to control tumor growth. However, the results are encouraging only in hematological malignancies but not very promising in solid tumors. Increasing evidence suggests that tumor microenvironment regulate the phenotype and function of NK cells. In this review, we discussed the NK cell phenotypes and its effector function and impact of the tumor microenvironment on effector and cytolytic function of NK cells. We also summarized various NK cell-based immunotherapeutic strategies used in the past and the possibilities to improve the function of NK cell for the better clinical outcome.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, India
| | | |
Collapse
|
449
|
Guo Y, Luan L, Patil NK, Sherwood ER. Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev 2017; 38:10-21. [PMID: 28888485 DOI: 10.1016/j.cytogfr.2017.08.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-15 is essential for natural killer (NK), NKT and memory (m) CD8+ T cell development and function, and is currently under investigation as an immunotherapeutic agent for the treatment of cancer. Recently, the creation of IL-15 superagonist by complexing IL-15 and its high affinity receptor alpha (IL-15 Rα) in solution, inspired by the natural trans-presentation of IL-15, advances the potential of IL-15-based tumor immunotherapy. IL-15 superagonist shows promising advantages over monomeric IL-15 such as sustaining high circulating concentrations due to prolonged half-life and more potently stimulating NK and CD8+ T effector lymphocytes. So far, there are three different forms of recombinant IL-15 superagonist fusion protein based on configurational modifications. Gene therapy using engineered cells co-expressing IL-15/IL-15 Rα complex for cancer treatment is also emerging. All forms have demonstrated efficacy in causing tumor regression in animal studies, which provides strong rationale for advancing IL-15 superagonist through clinical trials. To date, there are fourteen phase I/II IL-15 superagonist trials in cancer patients and one phase I trial in HIV patients. Information generated by ongoing trials regarding the toxicity and efficacy of IL-15 superagonist is awaited. Finally, we elaborate on immunotoxicity caused by IL-15 superagonist in preclinical studies and discuss important safety considerations.
Collapse
Affiliation(s)
- Yin Guo
- Departments of Pathology, Microbiology and Immunology. Vanderbilt University, Nashville, TN, USA; Department of Anesthesiology. Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Liming Luan
- Department of Anesthesiology. Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naeem K Patil
- Department of Anesthesiology. Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward R Sherwood
- Departments of Pathology, Microbiology and Immunology. Vanderbilt University, Nashville, TN, USA; Department of Anesthesiology. Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
450
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|