401
|
Tsai YT, Sung LC, Haw WR, Chen CC, Huang SF, Liu JC, Cheng TH, Chen PY, Loh SH, Tsai CS. Cafestol, a coffee diterpene, inhibits urotensin II-induced interleukin-8 expression in human umbilical vein endothelial cells. Eur J Pharmacol 2018; 820:106-112. [PMID: 29246853 DOI: 10.1016/j.ejphar.2017.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Cafestol, a diterpene molecule found in the berries of Coffea arabica L. (Rubiaceae), has been shown to exercise anti-angiogenic and anti-tumorigenic effects. However, cafestol's cellular mechanism has yet to be fully investigated. We previously demonstrated that urotensin II enhanced interleukin-8 secretion by endothelial cells, thereby increasing endothelial cell proliferation. Urotensin II may also participate in angiogenesis and tumor infiltration by macrophages. However, the effects of cafestol on urotensin II-induced interleukin-8 expression and cellular proliferation have not been determined. Here, we showed that pretreatment with cafestol inhibited urotensin II-stimulated endothelial cell proliferation. Further experiments demonstrated that cafestol increased translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and expression of enhanced heme oxygenase-1. Moreover, cafestol inhibited expression of urotensin II-induced interleukin-8. Cafestol's inhibitory effects on interleukin-8 expression and cellular proliferation induced by urotensin II were significantly abrogated by heme oxygenase-1 silencing, suggesting it may be involved in mediating the effects of cafestol. This study reports that cafestol inhibits urotensin II-induced interleukin-8 expression and cell proliferation via Nrf2/heme oxygenase-1-dependent mechanism in endothelial cells. These findings provide novel insight into the signaling pathways that may be important in mediating the effects of cafestol.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Wen-Ray Haw
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Shu-Fu Huang
- Department of Clinical Pharmacology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC; Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Po-Yuan Chen
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC.
| | - Shih-Hurng Loh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Chien-Sung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
403
|
Cui J, Liu Y, Wang X. The Roles of Glycodelin in Cancer Development and Progression. Front Immunol 2017; 8:1685. [PMID: 29238349 PMCID: PMC5712544 DOI: 10.3389/fimmu.2017.01685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Glycodelin is a kind of glycoprotein expressed in secretory endometrium, pregnancy deciduas, and amniotic fluid originally, which is vital for the maintenance of normal human reproductive activities. Recent researches have reported that glycodelin is specifically expressed in various malignancies, including female-specific cancers such as endometrial cancer, ovarian cancer and breast cancer, and non-gender specific cancers including lung cancer, and colon cancer, and glycodelin expression correlates with the diagnosis and prognosis of cancer patients. This review focuses on the expression of glycodelin in different cancers and its role in cancer development and progression. Glycodelin possesses the abilities to regulate cancer cell proliferation, differentiation, and invasion, promote cancer angiogenesis, and modulate the differentiation and function of immune cells including T cells, dendritic cells, monocyte-macrophages, natural killer cells and B cells participating in cancer development. The expression of glycodelin can be regulated by stromal cells, lysophosphatidic acid, histone deacetylase inhibitors, and relaxin. In summary, glycodelin is a promising biomarker for the diagnosis and prognosis of cancer patients, and depending on its distinct immunoregulatory effects, glycodelin can be a prospective target for cancer immunotherapy.
Collapse
Affiliation(s)
- Juan Cui
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanguo Liu
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuwen Wang
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
404
|
Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater 2017; 61:217-232. [PMID: 28807800 DOI: 10.1016/j.actbio.2017.08.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Bioactive ions released from bioceramics play important roles in bone regeneration; however, it is unclear how each ionic composition in complex bioceramics exerts its specific effect on bone regeneration. The aim of this study is to elucidate the functional effects of Sr and Si ions in bioceramics on the regeneration of osteoporotic bone. A model bioceramic with Sr- and Si-containing components (SMS) was successfully fabricated and the effects of ionic products from SMS bioceramics on the osteogenic, osteoclastic and angiogenic differentiation of rBMSCs-OVX and RANKL-induced osteoclasts were investigated. The results showed that SMS bioceramics could enhance ALP activity and expression of Col 1, OCN, Runx2, and angiogenic factors including VEGF and Ang-1. SMS bioceramics not only rebalanced the OPG/RANKL ratio of rBMSCs-OVX at early stage, but also repressed RANKL-induced osteoclast formation and expression of TRAP, DC-STAMP, V-ATPase a3, and NFATc1. The synergistic effects of Sr and Si ions were further investigated as compared with those of similar concentrations of Sr and Si ions alone. Sr and Si ions possessed synergistic effects on osteogenesis, osteoclastogenesis, and angiogenesis, attributed to the dominant effects of Sr ions on enhancing angiogenesis and repressing osteoclastogenesis, and the dominant effects of Si ions on stimulating osteogenesis. The in vivo study using critical-size mandibular defects of OVX rat models showed that SMS bioceramics could significantly enhance bone formation and mineralization compared with β-TCP bioceramics. Our results are the first to elucidate the specific effect of each ion from bioceramics on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, paving the way for the design of functional biomaterials with complex compositions for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Bioactive ions released from bioceramics play important roles for bone regeneration; however, it is unclear how each of ionic compositions in complex bioceramics exerts its specific effect on bone regeneration. The aim of present study is to elucidate the functional effects of Sr and Si ions in complex bioceramics on the regeneration of osteoporotic bone. A model bioceramic with Sr and Si-containing components (SMS) was successfully fabricated and the effects of ionic products from SMS bioceramics on the osteogenic, osteoclastic and angiogenic differentiation of rBMSCs-OVX and RANKL-induced osteoclasts were investigated. The results showed that SMS bioceramics could enhance ALP activity and expression of Col 1, OCN, Runx2 and angiogenic factors including VEGF and Ang-1. SMS bioceramics not only rebalanced the ratio of OPG/RANKL of OVX-BMSCs at early stage, but also repressed RANKL-induced osteoclast formation and expression of TRAP, DC-STAMP, V-ATPase a3, and NFATc1. The synergistic effects of Sr and Si ions were further investigated as compared with the similar concentration of Sr and Si ions alone. It was found that Sr and Si ions possessed synergistic effects on osteogenesis, osteoclastogenesis and angiogenesis, attributed to the dominant effects of Sr ions on enhancing angiogenesis and repressing osteoclastogenesis, and the dominant effects of Si ions on stimulating osteogenesis. The in vivo study using critical-size mandibular defects of OVX rat models showed that SMS bioceramics could significantly enhance bone formation and mineralization as compared with β-TCP bioceramics. It is suggested that SMS bioceramics may be a promising biomaterial for osteoporotic bone regeneration. To our knowledge, this is the first time to elucidate the specific effect of each ion from bioceramics on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, paving the way to design functional biomaterials with complex compositions for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lixia Mao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|