401
|
Postnikova O, Poliakov E, Golestaneh N, Rogozin IB, Redmond TM. Stable Intronic Sequences and Exon Skipping Events in the Human RPE65 Gene: Analysis of Expression in Retinal Pigment Epithelium Cells and Cell Culture Models. Front Genet 2019; 10:634. [PMID: 31379919 PMCID: PMC6658614 DOI: 10.3389/fgene.2019.00634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/17/2019] [Indexed: 12/04/2022] Open
Abstract
Currently, there is much interest in intronic sequence-containing long non-coding RNAs and the role of intronic transcription in regulation of cellular metabolism and fate. Several stable intronic sequence RNAs (sisRNAs) were recently implicated in regulation of parental genes. To investigate transcription from introns of the RPE65 gene, we analyzed RNA-seq and Nanopore sequencing data from different cell models of human retinal pigment epithelium (RPE) and native bovine RPE. We discovered putative stable poly-adenylated transcripts with sequences corresponding to intronic regions of the RPE65 gene in the cytoplasm of RPE cells. These stable intronic sequences could be important for RPE65 transcription, splicing or translation. We also analyzed alternative splicing events in RPE65. Frequent exon skipping events involving exons 2, 3, and 7 were detected. The rate of these events was much higher in human RPE cell cultures compared with native RPE , consistent with lack of translation of RPE65 mRNA in cell cultures.
Collapse
Affiliation(s)
- Olga Postnikova
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Nady Golestaneh
- Departments of Ophthalmology, Neurology, Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, United States
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
402
|
Cui K, Jin S, Du Y, Yu J, Feng H, Fan Q, Ma W. Long noncoding RNA DIO3OS interacts with miR-122 to promote proliferation and invasion of pancreatic cancer cells through upregulating ALDOA. Cancer Cell Int 2019; 19:202. [PMID: 31384177 PMCID: PMC6668142 DOI: 10.1186/s12935-019-0922-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Background Long noncoding RNA (lncRNA) has been implicated in numerous tumors, including pancreatic cancer (PC). However, the precise cellular roles and molecular mechanisms of lncRNA DIO3OS on PC development remains to be fully clarified. Methods We performed the meta-analysis on PC samples and non-tumor samples retrieved from the TCGA database, and measured the levels of DIO3OS in PC cell lines and a normal pancreatic duct epithelial cell line HPDE6-C7. Cell proliferation was evaluated via CCK-8 assay. Cell invasion in vitro was investigated by transwell assay. The RNA immunoprecipitation assay and luciferase reporter assay was utilized to confirm the putative miR-122-binding site in DIO3OS. The effects of DIO3OS on PC progression were tested using in vivo subcutaneous xenografts. Results Our results showed that DIO3OS was highly expressed in human PC tissues and PC cell lines. DIO3OS exhibited oncogenic properties in stimulating PC cell proliferation and invasion in vitro and promoting cancer growth in vivo. Through online predictive tools and functional experiments, we found that DIO3OS could bind directly to microRNA-122 (miR-122) and inhibited its expression, which functioned as a tumor suppressor in PC cells. We also verified that ALDOA was the direct target of miR-122, and the tumor suppressive effects caused by DIO3OS knockdown or miR-122 overexpression could be rescued by re-expression of ALDOA in PC cells. Conclusions Overall, our study suggested that lncRNA DIO3OS promotes PC cell growth and invasion by competing for miR-122 to modulate the expression of ALDOA. These findings yield a better understanding of the potential mechanisms by which gain of DIO3OS expression accelerates PC progression.
Collapse
Affiliation(s)
- Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Junlin Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Han Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| |
Collapse
|
403
|
Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. Int J Mol Sci 2019; 20:ijms20153662. [PMID: 31357438 PMCID: PMC6696129 DOI: 10.3390/ijms20153662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-free nucleic acids (cfNAs) are defined as any nucleic acids that are present outside the cell. They represent valuable biomarkers in various diagnostic protocols such as prenatal diagnostics, the detection of cancer, and cardiovascular or autoimmune diseases. However, in the current literature, little is known about their implication in inflammatory bowel disease (IBD). IBD is a group of multifactorial, autoimmune, and debilitating diseases with increasing incidence worldwide. Despite extensive research, their etiology and exact pathogenesis is still unclear. Since cfNAs were observed in other autoimmune diseases and appear to be relevant in inflammatory processes, their role in the pathogenesis of IBD has also been suggested. This review provides a summary of knowledge from the available literature about cfDNA and cfRNA and the structures involving them such as exosomes and neutrophil extracellular traps and their association with IBD. Current studies showed the promise of cfNAs in the management of IBD not only as biomarkers distinguishing patients from healthy people and differentiating active from inactive disease state, but also as a potential therapeutic target. However, the detailed biological characteristics of cfNAs need to be fully elucidated in future experimental and clinical studies.
Collapse
|
404
|
Mishra PK, Nemer G. Editorial: The Non-coding Genome and Cardiovascular Disease. Front Cardiovasc Med 2019; 6:98. [PMID: 31380396 PMCID: PMC6646411 DOI: 10.3389/fcvm.2019.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
405
|
Wang L, Luan T, Zhou S, Lin J, Yang Y, Liu W, Tong X, Jiang W. LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p. Cancer Med 2019; 8:4389-4403. [PMID: 31215169 PMCID: PMC6675706 DOI: 10.1002/cam4.2335] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/08/2019] [Accepted: 05/26/2019] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence has suggested that long noncoding RNAs (lncRNA) involved in the development and progression of cancer. Triple negative breast cancer (TNBC) was an aggressive type of breast cancer with high rates of cancer recurrence and metastasis. The pathogenesis of TNBC is largely unknown. Recent studies suggested that lncRNA HCP5 plays an important role in carcinogenesis. The purpose of this study was to examine the function and mechanism of HCP5 in TNBC. We observed that HCP5 was upregulated in TNBC cell lines and specimens. HCP5 knockdown induced TNBC cell apoptosis, and inhibited cell proliferation and orthotopic xenograft tumor growth. RNA sequencing and antibody array suggested that HCP5 achieves its functions through regulating apoptosis pathway. Bioinformatics, luciferase and RIP experiments proved that both HCP5 and BIRC3 could competitively bind to miR‐219a‐5p. Increased BIRC3 and decreased miR‐219a‐5p were observed in TNBC tissues and cell lines. We then performed gain‐ and loss‐of‐function studies as well as rescue experiments in TNBC cells. The decrease of proliferation and migration due to HCP5 knockdown could be rescued when miR‐219a‐5p inhibitor or BIRC3 was transfected and vice versa. Our study suggested that lncRNA HCP5 promotes TNBC progression as a ceRNA to regulate BIRC3 by sponging miR‐219a‐5p. In a word, we revealed a new signaling pathway to mediate TNBC, and provided HCP5 as a new target for improving treatment of TNBC.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, China
| | - Tian Luan
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Shunheng Zhou
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jing Lin
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Wei Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Tong
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, China
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
406
|
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules 2019; 9:E226. [PMID: 31212708 PMCID: PMC6627269 DOI: 10.3390/biom9060226] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is one of the leading causes of mortality from cardiovascular disease (CVD) and is a chronic inflammatory disease of the middle and large arteries caused by a disruption of lipid metabolism. Noncoding RNA (ncRNA), including microRNA (miRNA), small interfering RNA (siRNA) and long noncoding RNA (lncRNA), was investigated for the treatment of atherosclerosis. Regulation of the expression of noncoding RNA targets the constituent element of the pathogenesis of atherosclerosis. Currently, miRNA therapy commonly employs miRNA antagonists and mimic compounds. In this review, attention is focused on approaches to correcting molecular disorders based on the genetic regulation of the transcription of key genes responsible for the development of atherosclerosis. Promising technologies were considered for the treatment of atherosclerosis, and examples are given for technologies that have been shown to be effective in clinical trials.
Collapse
Affiliation(s)
- Daria Skuratovskaia
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Maria Vulf
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Aleksandra Komar
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Elena Kirienkova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Larisa Litvinova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|
407
|
Guo J, Li Y, Duan H, Yuan L. LncRNA TUBA4B functions as a competitive endogenous RNA to inhibit gastric cancer progression by elevating PTEN via sponging miR-214 and miR-216a/b. Cancer Cell Int 2019; 19:156. [PMID: 31198405 PMCID: PMC6556040 DOI: 10.1186/s12935-019-0879-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that long non-coding RNA (lncRNA) is an important regulator in tumorigenesis and development. Tubulin Alpha 4B (TUBA4B), a novel lncRNA, was recently proposed as a tumor suppressor in several human cancers. However, its role in gastric cancer (GC) remains unclear. In this study, we aimed to investigate the expression level, clinical implication, biological function and potential regulatory mechanism of TUBA4B in GC. METHODS qRT-PCR was employed to detect the expression of TUBA4B in GC tissues, cell lines and plasma. In vitro and in vivo experiments were carried out using colony formation/CCK-8/transwell invasion/cell apoptosis assay and xenograft tumor model, respectively. mRNA sequencing was used to identify the TUBA4B-related downstream genes. RESULTS TUBA4B was significantly decreased in GC tissues, cells and plasma. Low TUBA4B was positively correlated with larger tumor size, lymph node metastasis and advanced TNM stage. Moreover, TUBA4B was identified as an effective biomarker for the diagnosis and prognosis of patients with GC. Functionally, ectopic expression of TUBA4B inhibited GC cell proliferation, invasion and induced apoptosis in vitro as well as dampened tumor growth and metastasis in vivo. Furthermore, TUBA4B was found to be a competitive endogenous RNA (ceRNA) that could physically bind to and sequester miR-214 and miR-216a/b to increase the expression of their common downstream target PTEN, resulting in inactivation of PI3K/AKT signaling pathway, thereby retarding GC progression. CONCLUSION Our data highlight the compelling regulatory role of TUBA4B in GC, and reactivation of TUBA4B may be a promising therapeutic avenue for GC patients.
Collapse
Affiliation(s)
- Jianbo Guo
- grid.412644.1Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, 110032 Liaoning People’s Republic of China
| | - Yan Li
- grid.412644.1Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, 110032 Liaoning People’s Republic of China
| | - He Duan
- grid.412644.1Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, 110032 Liaoning People’s Republic of China
| | - Lu Yuan
- grid.412644.1Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, 110032 Liaoning People’s Republic of China
| |
Collapse
|
408
|
Benzaquen J, Heeke S, Janho Dit Hreich S, Douguet L, Marquette CH, Hofman P, Vouret-Craviari V. Alternative splicing of P2RX7 pre-messenger RNA in health and diseases: Myth or reality? Biomed J 2019; 42:141-154. [PMID: 31466708 PMCID: PMC6717933 DOI: 10.1016/j.bj.2019.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) tremendously increases the use of genetic information by generating protein isoforms that differ in protein-protein interactions, catalytic activity and/or subcellular localization. This review is not dedicated to AS in general, but rather we focus our attention on AS of P2RX7 pre-mRNA. Whereas P2RX7 mRNA is expressed by virtually all eukaryotic mammalian cells, the expression of this channel receptor is restrained to certain cells. When expressed at the cell membrane, P2RX7 controls downstream events including release of inflammatory molecules, phagocytosis, cell proliferation and death and metabolic events. Therefore, P2RX7 is an important actor of health and diseases. In this review, we summarize the general mechanisms leading to AS. Further, we recapitulate our current knowledge concerning the functional regions in P2RX7, identified at the genetic or exonic levels, and how AS may affect the expression of these regions. Finally, the potential of P2RX7 splice variants to control the fate of cancer cells is discussed.
Collapse
Affiliation(s)
- Jonathan Benzaquen
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France
| | - Simon Heeke
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | | | | - Charles Hugo Marquette
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France; University of Cote d'Azur, CHU de Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Paul Hofman
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | |
Collapse
|
409
|
Kim SS, Lee SJV. Non-Coding RNAs in Caenorhabditis elegans Aging. Mol Cells 2019; 42:379-385. [PMID: 31094164 PMCID: PMC6537654 DOI: 10.14348/molcells.2019.0077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs) comprise various RNA species, including small ncRNAs and long ncRNAs (lncRNAs). ncRNAs regulate various cellular processes, including transcription and translation of target messenger RNAs. Recent studies also indicate that ncRNAs affect organismal aging and conversely aging influences ncRNA levels. In this review, we discuss our current understanding of the roles of ncRNAs in aging and longevity, focusing on recent advances using the roundworm Caenorhabditis elegans. Expression of various ncRNAs, including microRNA (miRNA), tRNA-derived small RNA (tsRNA), ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and lncRNA, is altered during aging in C. elegans. Genetic modulation of specific ncRNAs affects longevity and aging rates by modulating established aging-regulating protein factors. Because many aging-regulating mechanisms in C. elegans are evolutionarily conserved, these studies will provide key information regarding how ncRNAs modulate aging and lifespan in complex organisms, including mammals.
Collapse
Affiliation(s)
- Sieun S. Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
| |
Collapse
|
410
|
Babarinde IA, Li Y, Hutchins AP. Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Comput Struct Biotechnol J 2019; 17:628-637. [PMID: 31193391 PMCID: PMC6526290 DOI: 10.1016/j.csbj.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.
Collapse
Affiliation(s)
| | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, Shenzhen, China
| |
Collapse
|
411
|
Falcone R, Conte F, Fiscon G, Pecce V, Sponziello M, Durante C, Farina L, Filetti S, Paci P, Verrienti A. BRAF V600E-mutant cancers display a variety of networks by SWIM analysis: prediction of vemurafenib clinical response. Endocrine 2019; 64:406-413. [PMID: 30850937 DOI: 10.1007/s12020-019-01890-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Several studies have shown that different tumour types sharing a driver gene mutation do not respond uniformly to the same targeted agent. Our aim was to use an unbiased network-based approach to investigate this fundamental issue using BRAFV600E mutant tumours and the BRAF inhibitor vemurafenib. METHODS We applied SWIM, a software able to identify putative regulatory (switch) genes involved in drastic changes to the cell phenotype, to gene expression profiles of different BRAFV600E mutant cancers and their normal counterparts in order to identify the switch genes that could potentially explain the heterogeneity of these tumours' responses to vemurafenib. RESULTS We identified lung adenocarcinoma as the tumour with the highest number of switch genes (298) compared to its normal counterpart. By looking for switch genes encoding for kinases with homology sequences similar to known vemurafenib targets, we found that thyroid cancer and lung adenocarcinoma have a similar number of putative targetable switch gene kinases (5 and 6, respectively) whereas colorectal cancer has just one. CONCLUSIONS We are persuaded that our network analysis may aid in the comprehension of molecular mechanisms underlying the different responses to vemurafenib in BRAFV600E mutant tumours.
Collapse
Affiliation(s)
- Rosa Falcone
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- ACT Operations Research, Research & Development, Roma, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- ACT Operations Research, Research & Development, Roma, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Sebastiano Filetti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
412
|
Costa RA, Ferreira IR, Cintra HA, Gomes LHF, Guida LDC. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Front Endocrinol (Lausanne) 2019; 10:864. [PMID: 31920975 PMCID: PMC6923197 DOI: 10.3389/fendo.2019.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex imprinting disorder related to genomic errors that inactivate paternally-inherited genes on chromosome 15q11-q13 with severe implications on endocrine, cognitive and neurologic systems, metabolism, and behavior. The absence of expression of one or more genes at the PWS critical region contributes to different phenotypes. There are three molecular mechanisms of occurrence: paternal deletion of the 15q11-q13 region; maternal uniparental disomy 15; or imprinting defects. Although there is a clinical diagnostic consensus criteria, DNA methylation status must be confirmed through genetic testing. The endocrine system can be the most affected in PWS, and growth hormone replacement therapy provides improvement in growth, body composition, and behavioral and physical attributes. A key feature of the syndrome is the hypothalamic dysfunction that may be the basis of several endocrine symptoms. Clinical and molecular complexity in PWS enhances the importance of genetic diagnosis in therapeutic definition and genetic counseling. So far, no single gene mutation has been described to contribute to this genetic disorder or related to any exclusive symptoms. Here we proposed to review individually disrupted genes within the PWS critical region and their reported clinical phenotypes related to the syndrome. While genes such as MKRN3, MAGEL2, NDN, or SNORD115 do not address the full spectrum of PWS symptoms and are less likely to have causal implications in PWS major clinical signs, SNORD116 has emerged as a critical, and possibly, a determinant candidate in PWS, in the recent years. Besides that, the understanding of the biology of the PWS SNORD genes is fairly low at the present. These non-coding RNAs exhibit all the hallmarks of RNA methylation guides and can be incorporated into ribonucleoprotein complexes with possible hypothalamic and endocrine functions. Also, DNA conservation between SNORD sequences across placental mammals strongly suggests that they have a functional role as RNA entities on an evolutionary basis. The broad clinical spectrum observed in PWS and the absence of a clear genotype-phenotype specific correlation imply that the numerous genes involved in the syndrome have an additive deleterious effect on different phenotypes when deficiently expressed.
Collapse
|