1
|
Obst J, Fries FN, Amini M, Náray A, Munteanu C, Stachon T, Suiwal S, Lagali N, Seitz B, Käsmann-Kellner B, Szentmáry N. Systemic Diseases in Patients with Congenital Aniridia: A Report from the Homburg Registry for Congenital Aniridia. Ophthalmol Ther 2025; 14:433-445. [PMID: 39755898 PMCID: PMC11754556 DOI: 10.1007/s40123-024-01084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry. METHODS Our retrospective, monocentric study included patients who underwent a comprehensive ophthalmic examination at Saarland University Medical Center beginning in June 2003. Age, gender, genetic test results, and information on systemic anomalies were recorded. In addition, parents and affected patients were interviewed about developmental and other disease-related conditions. RESULTS Data from 337 patients (mean age 22 ± 20 [0.3-90] years; 181 women [53.7%]) were analyzed. Genetic testing was performed in 187 (55.5%) patients. A PAX6 mutation was detected in 174 of 187 (93%) cases, of which 20 (10.7%) had WAGR(O) syndrome. Systemic diseases were detected in 155 of 337 (46%) patients, with the most common being obesity (29 [8.6%]), thyroid disease (28 [8.3%]), hypertension (26 [7.7%]), intellectual disability (22 [6.5%]), diabetes mellitus (19 [5.6%]), auditory perception disorder/speech development delay (16 [4.7%]), and epilepsy (12 [3.6%]). CONCLUSIONS A comprehensive analysis of patients with aniridia and systemic effects reveals the complexity of this rare disorder, which goes beyond ocular symptoms and can have profound effects on metabolic balance, cardiovascular health, and the central nervous system. Therefore, early genetic diagnosis, early systemic checkup, and adequate treatment, as well as cooperation with pediatrists, neurologists, and audiologists, is suggested in congenital aniridia, which should be considered a syndrome and not an isolated ocular disease.
Collapse
Affiliation(s)
- Jessica Obst
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany.
| | - Fabian N Fries
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Annamária Náray
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Cristian Munteanu
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
| | - Barbara Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
2
|
Harford EE, Smith ED, Holt LL, Abel TJ. Listening with one hemisphere: A review of auditory processing among individuals after hemispheric surgery. Neuropsychologia 2024; 205:109019. [PMID: 39447738 DOI: 10.1016/j.neuropsychologia.2024.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
The human auditory system consists of both peripheral and central components, both of which play a role but contribute distinctly to overall auditory functioning and can be differentially impacted by pathophysiologic states. Hemispheric surgery (HS), a procedure used for the treatment of drug-resistant epilepsy, involves complete disconnection of the auditory cortex in the operative hemisphere, leaving hearing acuity (peripheral function) intact but having heavy implications for auditory processing (central function). The literature describing pre- and post-operative auditory processing abilities of individuals who have undergone HS is sparse, but the research available provides evidence that several central auditory processes including auditory spatial analysis and temporal processing may be impacted. Deficits noted in standardized testing within the clinical or research environment have concrete functional impacts that may be currently under-appreciated and could lead to under-utilization of appropriate therapeutic strategies and accommodations. This review describes the profile of central auditory processing abilities in patients who have undergone HS by synthesizing available literature and incorporating research in other clinical populations to help fill critical gaps in our understanding of how cerebral disconnection impacts the central auditory system.
Collapse
Affiliation(s)
- Emily E Harford
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Erin D Smith
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Lori L Holt
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Srivastava K, Mishra R. Pax6 affects Ras-Raf-ERK1/2 in mouse aging brain. Biogerontology 2023; 24:901-912. [PMID: 37436500 DOI: 10.1007/s10522-023-10044-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023]
Abstract
Pax6, a transcription factor and multifunctional protein, changes during aging. It also interacts with regulator proteins involved in cell metabolism and survival signalling pathways including Ras-GAP. Many forms of Ras, Raf and ERK1/2 are known but information on their region-specific expression patterns are unavailable from brain during aging. Therefore, it has been intended to evaluate expressions of Pax6 and forms of Ras, Raf, ERK1/2 in hippocampus, caudate nucleus, amygdale, cerebral cortex, cerebellum and olfactory lobe. Association of Pax6 with Ras, Raf and ERK1/2 was evaluated in co-culture (PC-12, C6-glia, U-87 MG) of neuroglia cell lines. Impacts of Pax6 were evaluated by siRNA mediated knockdown and expression patterns Ras-Raf-Erk1/2. Analysis of activities of Pax6 and impacts of 5'AMP, wild-type and mutant ERK were done by RT-PCR and luciferase reporter assay. Results indicate age-dependent changes of Pax6, Ras, Raf, ERK1/2 in different regions of brain of young and old mice. Erk1/2 shows synergistic activities to Pax6.
Collapse
Affiliation(s)
- Khushboo Srivastava
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Stadulni ARP, Sleifer P, Berticelli AZ, Riesgo R, Rocha-Muniz CN, Schochat E. Stroke in children and adolescents: Analysis of electrophysiological and behavioral assessment findings of auditory processing. Clinics (Sao Paulo) 2023; 78:100286. [PMID: 37812955 PMCID: PMC10569949 DOI: 10.1016/j.clinsp.2023.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE This study aimed to analyze the auditory processing behavior of children and adolescents diagnosed with stroke and compare it with that of typically developing individuals. METHODS This was an analytical cross-sectional study involving 48 participants aged between 7 and 17 years with adequate schooling for age and grade, allocated equally to two groups: Stroke (SG) and Control Groups (CG). For the SG, cases identified between 2003 and 2018 were considered. In the CG, school-aged participants with typical development were randomized. After screening for differential audiological assessment and confirmation of auditory pathway integrity at the brainstem level, binaural analyses of the auditory processing behavior were conducted using the Dichotic Digit Test (DDT), Frequency Pattern Test (FPT), and electrophysiological assessment (P300). The Shapiro-Wilk test for normality was conducted, followed by the T and Mann-Whitney tests, with a 95 % confidence level and significance offset at p < 0.05, using the SPSS software (IBM®, v. 22.) RESULTS: The CG performed better in terms of auditory processing. These differences were significant (p < 0.0001) for the binaural integration of DDT, FPT humming and Labeling, and P300 latency. The P300 results were similar; however, with a greater amplitude in the SG. CONCLUSION This study showed that children and adolescents with stroke performed worse in electrophysiological and behavioral tests of auditory processing assessed using the auditory evoked potentials. These data reinforce the hypothesis that stroke-related lesions compromise the neural mechanisms underlying auditory processing.
Collapse
Affiliation(s)
- Andréia Rodrigues Parnoff Stadulni
- Department of Physiotherapy, Speech Therapy and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Pricila Sleifer
- Department of Health and Human Communication, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Amanda Zanatta Berticelli
- Graduate Program in Child and Adolescent Health, Faculdade de Medicina da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rudimar Riesgo
- Graduate Program in Child and Adolescent Health, Faculdade de Medicina da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Hospital de Clínicas (HCPA), Porto Alegre, RS, Brazil
| | - Carolina Nunes Rocha-Muniz
- Department of Physiotherapy, Speech Therapy and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Eliane Schochat
- Department of Physiotherapy, Speech Therapy and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Sigurdardottir S, von der Lippe C, Media L, Ullmann Miller J, Landsend ECS. Self-reported symptoms of everyday executive dysfunction, daytime sleepiness, and fatigue and health status among adults with congenital aniridia: a descriptive study. Health Psychol Behav Med 2023; 11:2263534. [PMID: 37811316 PMCID: PMC10552592 DOI: 10.1080/21642850.2023.2263534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Background Congenital aniridia is a rare genetic disorder of the eye characterized by visual impairment and progressive vision loss. While prior research has focused on ocular manifestations in individuals with aniridia, there is a dearth of research on impacts on cognition and mental health. The aims of this study were to describe subjective symptoms of everyday executive functioning, fatigue and sleepiness in adults with aniridia and to compare self-reported health status with that of a normative reference group. Methods Twenty-nine adults (aged 18-79 years) with congenital aniridia were included in this online survey, of whom 52% were females. Participants completed self-report measures of executive functioning (The Behavior Rating Inventory of Executive Function-Adult Version), sleepiness, fatigue, and health status (EQ-5D-5L). Results Participants reported relatively few problems in everyday executive functioning, with only 14% experiencing impaired executive functioning. Scores on the five EQ-5D-5L domains (mobility, self-care, usual activities, pain, and anxiety/depression) did not differ from those of the normative reference group. The frequencies of excessive daytime sleepiness and severe fatigue were 17% and 38%, respectively. Ocular pain was experienced by 62% of participants. Conclusions The findings show that cognitive problems are related to and reflect self-reported health status and extent of fatigue. Moreover, those who suffered from ocular pain reported more difficulties with executive functioning, sleepiness and fatigue. These findings are important for understanding this disorder and supporting patients.
Collapse
Affiliation(s)
- Solrun Sigurdardottir
- Women and Children’s Division, Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | | | - Line Media
- Women and Children’s Division, Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Jeanette Ullmann Miller
- Women and Children’s Division, Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
6
|
Gour A, Tibrewal S, Garg A, Vohra M, Ratna R, Sangwan VS. New horizons in aniridia management: Clinical insights and therapeutic advances. Taiwan J Ophthalmol 2023; 13:467-478. [PMID: 38249501 PMCID: PMC10798387 DOI: 10.4103/tjo.tjo-d-23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024] Open
Abstract
Congenital aniridia is a rare genetic eye disorder characterized by the complete or partial absence of the iris from birth. Various theories and animal models have been proposed to understand and explain the pathogenesis of aniridia. In the majority of cases, aniridia is caused by a mutation in the PAX6 gene, which affects multiple structures within the eye. Treating these ocular complications is challenging and carries a high risk of side effects. However, emerging approaches for the treatment of aniridia-associated keratopathy, iris abnormalities, cataract abnormalities, and foveal hypoplasia show promise for improved outcomes. Genetic counseling plays a very important role to make informed choices. We also provide an overview of the newer diagnostic and therapeutic approaches such as next generation sequencing, gene therapy, in vivo silencing, and miRNA modulation.
Collapse
Affiliation(s)
- Abha Gour
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Shailaja Tibrewal
- Department of Pediatric Ophthalmology and Strabismus, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aastha Garg
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Virender Singh Sangwan
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
7
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
8
|
Tibrewal S, Ratna R, Gour A, Agarkar S, Dubey S, Ganesh S, Kekunnaya R, Sangwan V, Liu Y, Vanita V. Clinical and molecular aspects of congenital aniridia - A review of current concepts. Indian J Ophthalmol 2022; 70:2280-2292. [PMID: 35791108 PMCID: PMC9426064 DOI: 10.4103/ijo.ijo_2255_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Congenital aniridia is a pan ocular disorder characterized by partial or total loss of iris tissue as the defining feature. Classic aniridia, however, has a spectrum of ocular findings, including foveal hypoplasia, optic nerve hypoplasia, nystagmus, late-onset cataract, glaucoma, and keratopathy. The latter three are reasons for further visual compromise in such patients. This entity is often due to mutations in the PAX6 (Paired box protein Pax-6) gene. Recently, aniridia-like phenotypes have been reported due to non-PAX6 mutations as in PITX2, FOXC1, FOXD3, TRIM44, and CYP1B1 as well wherein there is an overlap of aniridia, such as iris defects with congenital glaucoma or anterior segment dysgenesis. In this review, we describe the various clinical features of classic aniridia, the comorbidities and their management, the mutation spectrum of the genes involved, genotype-phenotype correlation of PAX6 and non-PAX6 mutations, and the genetic testing plan. The various systemic associations and their implications in screening and genetic testing have been discussed. Finally, the future course of aniridia treatment in the form of drugs (such as ataluren) and targeted gene therapy has been discussed.
Collapse
Affiliation(s)
- Shailja Tibrewal
- Department of Ocular Genetics; Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Abha Gour
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Sumita Agarkar
- Department of Pediatric Ophthalmology and Strabismus, Medical Research Foundation, Sankara Netralaya, Chennai, Tamil Nadu, India
| | - Suneeta Dubey
- Department of Glaucoma, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Suma Ganesh
- Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, L V Prasad Eye Institute, KAR Campus, Hyderabad, Telangana, India
| | - Virender Sangwan
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
9
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
10
|
Shen T, Qiu X, Lin X, Lin J, Li X, Chen Q, Pan L, Wang Z, Shen H, Zhang Q, Yan J. Missense mutation in the PAX6 gene can cause a complex mild variable phenotype predominated by concomitant strabismus. Ophthalmic Genet 2021; 43:88-96. [PMID: 34344282 DOI: 10.1080/13816810.2021.1961283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE We aimed to reveal the underlying genetic defect in a multigenerational Chinese family with autosomal dominant concomitant strabismus complicated by multiple ocular developmental abnormalities. METHODS Comprehensive ophthalmic examinations were performed in 14 patients and 24 healthy family members. Whole exome sequencing was performed, and Sanger sequencing was used to confirm the probable mutation in all the family members. RESULTS Concomitant strabismus was the predominant phenotype in the affected family members, although the patients also exhibited variable phenotypes, including nystagmus, mild iris abnormalities, myopia, cataract, and coloboma. An R208W mutation in PAX6 was identified as the pathogenic mutation in the affected family members. CONCLUSIONS We recommend considering PAX6 as a candidate gene in the diagnostic screen for familial concomitant strabismus in order to avoid missed diagnosis of the mild ocular abnormalities. Careful examinations of mild ocular phenotypes are necessary for an accurate diagnosis of varied ocular abnormalities in the families with the PAX6 mutation, and proper diagnosis can facilitate genetic and clinical counseling for affected patients.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiuling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liuqing Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhonghao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Rajasekaran AK, Shivashankar N, Sinha S, Saini J, Subbakrishna DK, Satishchandra P. Auditory Temporal Ordering in Patients with Medial Temporal Lobe Epilepsy with and without Hippocampal Sclerosis. Neurol India 2021; 69:414-418. [PMID: 33904465 DOI: 10.4103/0028-3886.314569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Temporal lobe epilepsy can affect central auditory processing (CAP) skills. Auditory temporal ordering (ATO) is a CAP skill that can be evaluated using duration pattern test (DPT). Aim The aim is to evaluate ATO in patients with medial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (MTLE + HS) and without hippocampal sclerosis (MTLE-HS) and in their subgroups. Settings and Design It was a prospective cross-sectional behavioral observational study conducted in a tertiary neuropsychiatric hospital. Subjects and Methods The subjects were patients with refractory MTLE (N = 100), comprising 50 "MTLE + HS" patients and 50 "MTLE-HS". Age-range matched normal healthy subjects (n = 50) formed the control group. Both groups were administered duration pattern test (DPT). Statistical Analysis Used Analysis of variance (ANOVA) with post hoc analysis, Dunnett's two-sided and Bonferroni, paired sample t-test, Pearson's correlation, and independent t-test. Results The clinical groups performed significantly poorer than the control group, and however, did not differ significantly between them. The age at onset and the duration of the seizures did not have significant relation with the test measures. Conclusions Patients with "MTLE + HS" as well as those with "MTLE-HS" and their respective subgroups revealed abnormal ATO indicating CAP dysfunction.
Collapse
Affiliation(s)
- Aravind K Rajasekaran
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Nagarajarao Shivashankar
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
12
|
Landsend ECS, Lagali N, Utheim TP. Congenital aniridia - A comprehensive review of clinical features and therapeutic approaches. Surv Ophthalmol 2021; 66:1031-1050. [PMID: 33675823 DOI: 10.1016/j.survophthal.2021.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Congenital aniridia is a rare genetic eye disorder with total or partial absence of the iris from birth. In most cases the genetic origin of aniridia is a mutation in the PAX6 gene, leading to involvement of most eye structures. Hypoplasia of the fovea is usually present and is associated with reduced visual acuity and nystagmus. Aniridia-associated keratopathy, glaucoma, and cataract are serious and progressive complications that can further reduce visual function. Treatment of the ocular complications of aniridia is challenging and has a high risk of side effects. New approaches such as stem cell therapy may, however, offer better prognoses. We describe the various ocular manifestations of aniridia, with a special focus on conditions that commonly require treatment. We also review the growing literature reporting systemic manifestations of the disease.
Collapse
Affiliation(s)
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tor P Utheim
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Grant MK, Bobilev AM, Branch A, Lauderdale JD. Structural and functional consequences of PAX6 mutations in the brain: Implications for aniridia. Brain Res 2021; 1756:147283. [PMID: 33515537 DOI: 10.1016/j.brainres.2021.147283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
The paired-box 6 (PAX6) gene encodes a highly conserved transcription factor essential for the proper development of the eye and brain. Heterozygous loss-of-function mutations in PAX6 are causal for a condition known as aniridia in humans and the Small eye phenotype in mice. Aniridia is characterized by iris hypoplasia and other ocular abnormalities, but recent evidence of neuroanatomical, sensory, and cognitive impairments in this population has emerged, indicating brain-related phenotypes as a prevalent feature of the disorder. Determining the neurophysiological origins of brain-related phenotypes in this disorder presents a substantial challenge, as the majority of extra-ocular traits in aniridia demonstrate a high degree of heterogeneity. Here, we summarize and integrate findings from human and rodent model studies, which have focused on neuroanatomical and functional consequences of PAX6 mutations. We highlight novel findings from PAX6 central nervous system studies in adult mammals, and integrate these findings into what we know about PAX6's role in development of the central nervous system. This review presents the current literature in the field in order to inform clinical application, discusses what is needed in future studies, and highlights PAX6 as a lens through which to understand genetic disorders affecting the human nervous system.
Collapse
Affiliation(s)
- Madison K Grant
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA.
| | - Anastasia M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Grant MK, Bobilev AM, Rasys AM, Branson Byers J, Schriever HC, Hekmatyar K, Lauderdale JD. Global and age-related neuroanatomical abnormalities in a Pax6-deficient mouse model of aniridia suggests a role for Pax6 in adult structural neuroplasticity. Brain Res 2020; 1732:146698. [PMID: 32014531 PMCID: PMC10712278 DOI: 10.1016/j.brainres.2020.146698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022]
Abstract
PAX6 encodes a highly conserved transcription factor necessary for normal development of the eyes and central nervous system. Heterozygous loss-of-function mutations in PAX6 cause the disorder aniridia in humans and the Small eye trait in mice. Aniridia is a congenital and progressive disorder known for ocular phenotypes; however, recently, consequences of PAX6 haploinsufficiency in the brains of aniridia patients have been identified. These findings span structural and functional abnormalities, including deficits in cognitive and sensory processing. Furthermore, some of these abnormalities are accelerated as aniridia patients age. Although some functional abnormalities may be explained by structural changes, variability of results remain, and the effects of PAX6 heterozygous loss-of-function mutations on neuroanatomy, particularly with regard to aging, have yet to be resolved. Our study used high-resolution magnetic resonance imaging (MRI) and histology to investigate structural consequences of such mutations in the adult brain of our aniridia mouse model, Small eye Neuherberg allele (Pax6SeyNeu/+), at two adult age groups. Using both MRI and histology enables a direct comparison with human studies, while providing higher resolution for detection of more subtle changes. We show volumetric changes in major brain regions of the the Pax6SeyNeu/+ mouse compared to wild-type including genotype- and age-related olfactory bulb differences, age-related cerebellum differences, and genotype-related eye differences. We also show alterations in thickness of major interhemispheric commissures, particularly those anteriorly located within the brain including the optic chiasm, corpus callosum, and anterior commissure. Together, these genotype and age related changes to brain volumes and structures suggest a global decrease in adult brain structural plasticity in our Pax6SeyNeu/+ mice.
Collapse
Affiliation(s)
- Madison K Grant
- Department of Cellular Biology, University of Georgia, 250B Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, United States.
| | - Anastasia M Bobilev
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States; Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, United States.
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, 250B Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, United States.
| | - J Branson Byers
- Department of Cellular Biology, University of Georgia, 250B Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, United States.
| | - Hannah C Schriever
- Department of Cellular Biology, University of Georgia, 250B Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, United States.
| | - Khan Hekmatyar
- Bio-imaging Research Center, University of Georgia, Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, United States.
| | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, 250B Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, United States; Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
15
|
Bobilev AM, Hudgens-Haney ME, Hamm JP, Oliver WT, McDowell JE, Lauderdale JD, Clementz BA. Early and late auditory information processing show opposing deviations in aniridia. Brain Res 2019; 1720:146307. [PMID: 31247203 DOI: 10.1016/j.brainres.2019.146307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/12/2019] [Accepted: 06/23/2019] [Indexed: 01/29/2023]
Abstract
Aniridia is a congenital disorder, predominantly caused by heterozygous mutations of the PAX6 gene. While ocular defects have been extensively characterized in this population, brain-related anatomical and functional abnormalities are emerging as a prominent feature of the disorder. Individuals with aniridia frequently exhibit auditory processing deficits despite normal audiograms. While previous studies have reported hypoplasia of the anterior commissure and corpus callosum in some of these individuals, the neurophysiological basis of these impairments remains unexplored. This study provides direct assessment of neural activity related to auditory processing in aniridia. Participants were presented with tones designed to elicit an auditory steady-state response (ASSR) at 22 Hz, 40 Hz, and 84 Hz, and infrequent broadband target tones to maintain attention during electroencephalography (EEG) recording. Persons with aniridia showed increased early cortical responses (P50 AEP) in response to all tones, and increased high-frequency oscillatory entrainment (84 Hz ASSR). In contrast, this group showed a decreased cortical integration response (P300 AEP to target tones) and reduced neural entrainment to cortical beta-band stimuli (22 Hz ASSR). Collectively, our results suggest that subcortical and early cortical auditory processing is augmented in aniridia, while functional cortical integration of auditory information is deficient in this population.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Cellular Biology, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Matthew E Hudgens-Haney
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States; Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States
| | - Jordan P Hamm
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States; Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, United States; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, Atlanta, GA, United States
| | - William T Oliver
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States
| | - James D Lauderdale
- Department of Cellular Biology, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Letter to the Editor: An Affront to Scientific Inquiry Re: Moore, D. R. (2018) Editorial: Auditory Processing Disorder, Ear Hear, 39, 617-620. Ear Hear 2018; 39:1236-1242. [PMID: 30106770 DOI: 10.1097/aud.0000000000000644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
|
18
|
Midha N, Sidhu T, Chaturvedi N, Sinha R, Shende DR, Dada T, Gupta V, Sihota R. Systemic Associations of Childhood Glaucoma: A Review. J Pediatr Ophthalmol Strabismus 2018; 55:397-402. [PMID: 30452766 DOI: 10.3928/01913913-20180905-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE To review systemic associations of childhood glaucoma. METHODS Patients younger than 15 years and diagnosed as having glaucoma were divided into four groups: isolated primary congenital glaucoma, glaucoma with other congenital ocular anomalies, congenital glaucoma with known systemic diseases, and secondary glaucoma. Prevalence and type of systemic associations in each group were studied. RESULTS A retrospective analysis of 371 patients diagnosed as having glaucoma was done. In the primary congenital glaucoma group, 13 of 218 (5.9%) patients had an associated systemic illness: congenital heart disease and global developmental delay were the most common systemic manifestations. In the congenital ocular anomalies group, 10 of 63 (15.8%) patients had an associated systemic illness. Axenfeld-Reiger syndrome, aniridia, and Peters' anomaly frequently had systemic comorbidities with congenital heart disease. In the known systemic diseases group, all 18 (100%) patients had systemic manifestations of an associated syndrome: Sturge-Weber and Down syndrome were the most frequent. In the secondary glaucoma group, 9 of 72 (12.5%) patients had systemic involvement, which was often seen as the most common cause after congenital cataract surgery. These children had congenital heart disease and global developmental delay as a consequence of congenital rubella and congenital cytomegalovirus infection. CONCLUSIONS The study found that 12.9% of patients with childhood glaucoma had an associated systemic abnormality. Patients with congenital glaucoma and other ocular anomalies have a three times higher risk of an underlying systemic anomaly than patients with isolated primary congenital glaucoma. A team comprising an ophthalmologist, pediatrician, and anesthesiologist is recommended to treat these cases. [J Pediatr Ophthalmol Strabismus. 2018;55(6):397-402.].
Collapse
|
19
|
Zic4-Lineage Cells Increase Their Contribution to Visual Thalamic Nuclei during Murine Embryogenesis If They Are Homozygous or Heterozygous for Loss of Pax6 Function. eNeuro 2018; 5:eN-CFN-0367-18. [PMID: 30406191 PMCID: PMC6220585 DOI: 10.1523/eneuro.0367-18.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/22/2022] Open
Abstract
Our aim was to study the mechanisms that contribute to the development of discrete thalamic nuclei during mouse embryogenesis (both sexes included). We characterized the expression of the transcription factor coding gene Zic4 and the distribution of cells that expressed Zic4 in their lineage. We used genetic fate mapping to show that Zic4-lineage cells mainly contribute to a subset of thalamic nuclei, in particular the lateral geniculate nuclei (LGNs), which are crucial components of the visual pathway. We observed that almost all Zic4-lineage diencephalic progenitors express the transcription factor Pax6 at variable location-dependent levels. We used conditional mutagenesis to delete either one or both copies of Pax6 from Zic4-lineage cells. We found that Zic4-lineage cells carrying either homozygous or heterozygous loss of Pax6 contributed in abnormally high numbers to one or both of the main lateral geniculate nuclei (LGNs). This could not be attributed to a change in cell production and was likely due to altered sorting of thalamic cells. Our results indicate that positional information encoded by the levels of Pax6 in diencephalic progenitors is an important determinant of the eventual locations of their daughter cells.
Collapse
|
20
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
21
|
Musalem HM, Dirar QS, Al-Hazzaa SAF, Al Zoba AAA, El-Mansoury J. Unusual Association of Aniridia with Aicardi-Goutières Syndrome-Related Congenital Glaucoma in a Tertiary Care Center. AMERICAN JOURNAL OF CASE REPORTS 2018; 19:500-504. [PMID: 29703882 PMCID: PMC5944404 DOI: 10.12659/ajcr.908036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patient: Male, 4 Final Diagnosis: Aicardi-Goutières syndrome Symptoms: Congenital glaucoma Medication: — Clinical Procedure: Trabeculectomy procedure with mitomycin C Specialty: Ophthalmology
Collapse
Affiliation(s)
- Hebah M Musalem
- Department of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Qais S Dirar
- Department of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Selwa A F Al-Hazzaa
- Department of Ophthalmology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdul-Aziz A Al Zoba
- Department of Ophthalmology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jeylan El-Mansoury
- Department of Ophthalmology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
23
|
Wawrocka A, Krawczynski MR. The genetics of aniridia - simple things become complicated. J Appl Genet 2018; 59:151-159. [PMID: 29460221 PMCID: PMC5895662 DOI: 10.1007/s13353-017-0426-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Aniridia is a rare, panocular disorder characterized by a variable degree of hypoplasia or the absence of iris tissue associated with additional ocular abnormalities. It is inherited in an autosomal dominant manner, with high penetrance and variable expression even within the same family. In most cases the disease is caused by haploinsufficiency truncating mutations in the PAX6 gene; however, in up to 30% of aniridia patients, disease results from chromosomal rearrangements at the 11p13 region. The aim of this review is to present the clinical and genetic aspects of the disease. Furthermore, we present a molecular diagnostic strategy in the aniridia patients. Recent improvement in the genetic diagnostic approach will precisely diagnosis aniridia patients, which is essential especially for children with aniridia in order to determine the risk of developing a Wilms tumor or neurodevelopmental disorder. Finally, based on the previous studies we describe the current knowledge and latest research findings in the topic of pathogenesis of aniridia and possible future treatment.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
24
|
Käsmann‐Kellner B, Latta L, Fries FN, Viestenz A, Seitz B. Diagnostic impact of anterior segment angiography of limbal stem cell insufficiency in PAX6‐related aniridia. Clin Anat 2018; 31:392-397. [DOI: 10.1002/ca.22987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Barbara Käsmann‐Kellner
- Department of OphthalmologySaarland University Medical Center UKS, Section Pediatric Ophthalmology, Orthoptics, Low Vision & Neuroophthalmology, Homburg/Saar, Kirrbergerstr, 100, 66424Homburg Saar Germany
| | - Lorenz Latta
- Department of OphthalmologySaarland University Medical Center UKS, Homburg/Saar, Kirrbergerstr, 100Homburg Saar66424 Germany
| | - Fabian N. Fries
- Department of OphthalmologySaarland University Medical Center UKS, Homburg/Saar, Kirrbergerstr, 100Homburg Saar66424 Germany
| | - Arne Viestenz
- Department of OphthalmologyUniversity Medical Center of Martin Luther University Halle‐Wittenberg, Ernst‐Grube‐Straße 40Halle (Saale)06120 Germany
| | - Berthold Seitz
- Department of OphthalmologySaarland University Medical Center UKS, Homburg/Saar, Kirrbergerstr, 100Homburg Saar66424 Germany
| |
Collapse
|
25
|
Landsend ES, Utheim ØA, Pedersen HR, Lagali N, Baraas RC, Utheim TP. The genetics of congenital aniridia—a guide for the ophthalmologist. Surv Ophthalmol 2018; 63:105-113. [DOI: 10.1016/j.survophthal.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
|
26
|
Iliadou VV, Ptok M, Grech H, Pedersen ER, Brechmann A, Deggouj N, Kiese-Himmel C, Śliwińska-Kowalska M, Nickisch A, Demanez L, Veuillet E, Thai-Van H, Sirimanna T, Callimachou M, Santarelli R, Kuske S, Barajas J, Hedjever M, Konukseven O, Veraguth D, Stokkereit Mattsson T, Martins JH, Bamiou DE. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus. Front Neurol 2017; 8:622. [PMID: 29209272 PMCID: PMC5702335 DOI: 10.3389/fneur.2017.00622] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022] Open
Abstract
Current notions of “hearing impairment,” as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as “Auditory Processing Disorder” (APD) or “Central Auditory Processing Disorder” is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimum diagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus.
Collapse
Affiliation(s)
| | - Martin Ptok
- Department of Phoniatrics and Pediatric Audiology, Hannover, Germany
| | | | - Ellen Raben Pedersen
- The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | | | - Naïma Deggouj
- Audio-Phonological Center, St Luc's University Hospital, Université Catholique de Louvain (UcL), Brussels, Belgium
| | - Christiane Kiese-Himmel
- Phoniatric and Pediatric Audiological Psychology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Andreas Nickisch
- Department of Hearing-Language-Cochlear Implants, Kbo-Kinderzentrum München, Munich, Germany
| | | | | | | | - Tony Sirimanna
- Department of Audiology and Audiological Medicine, Great Ormond Street Hospital, London, United Kingdom
| | | | | | | | - Jose Barajas
- Clnica Barajas, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Mladen Hedjever
- Faculty of Education and Rehabilitation Sciences, Speech Therapy Department, University of Zagreb, Zagreb, Croatia
| | - Ozlem Konukseven
- Faculty of Health Sciences, Audiology Department, Istanbul Aydın University, Istanbul, Turkey
| | - Dorothy Veraguth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Switzerland
| | - Tone Stokkereit Mattsson
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway
| | - Jorge Humberto Martins
- Cochlear Implant Unit, Department of Otorhinolaryngology and Head and Neck Surgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Doris-Eva Bamiou
- Faculty of Brain Sciences, UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Aniridia is a rare and panocular disorder affecting most of the ocular structures which may have significant impact on vision. The purpose of this review is to describe the clinical features, genetics, and therapeutic options for this disease and to provide an update of current knowledge and latest research findings. RECENT FINDINGS Aside from the ocular features, a variety of associated systemic abnormalities, including hormonal, metabolic, gastrointestinal, genitourinary, and neurologic pathologies have been reported in children with aniridia. Although mutations in PAX6 are a major cause of aniridia, genetic defects in nearby genes, such as TRIM44 or ELP4, have also been reported to cause aniridia. Recent improvement in genetic testing technique will help more rapid and precise diagnosis for aniridia. A promising therapeutic approach called nonsense suppression therapy has been introduced and successfully used in an animal model. SUMMARY Aniridia is a challenging disease. The progressive nature of this condition and its potential complications require continuous and life-long ophthalmologic care. Genetic diagnosis for aniridia is important for establishing definitive molecular characterization as well as identifying individuals at high risk for Wilms tumor. Recent advancement in understanding the genetic pathogenesis of this disease offers promise for the approaches to treatment.
Collapse
|
28
|
Maurya SK, Mishra R. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice. J Chem Neuroanat 2017; 82:60-64. [PMID: 28476689 DOI: 10.1016/j.jchemneu.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
29
|
Grant MK, Bobilev AM, Pierce JE, DeWitte J, Lauderdale JD. Structural brain abnormalities in 12 persons with aniridia. F1000Res 2017; 6:255. [PMID: 29034075 PMCID: PMC5615777 DOI: 10.12688/f1000research.11063.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Aniridia is a disorder predominately caused by heterozygous loss-of-function mutations of the
PAX6 gene, which is a transcriptional regulator necessary for normal eye and brain development. The ocular abnormalities of aniridia have been well characterized, but mounting evidence has implicated brain-related phenotypes as a prominent feature of this disorder as well. Investigations using neuroimaging in aniridia patients have shown reductions in discrete brain structures and changes in global grey and white matter. However, limited sample sizes and substantive heterogeneity of structural phenotypes in the brain remain a challenge.
Methods: Here, we examined brain structure in a new population sample in an effort to add to the collective understanding of anatomical abnormalities in aniridia. The current study used 3T magnetic resonance imaging to acquire high-resolution structural data in 12 persons with aniridia and 12 healthy demographically matched comparison subjects.
Results: We examined five major structures: the anterior commissure, the posterior commissure, the pineal gland, the corpus callosum, and the optic chiasm. The most consistent reductions were found in the anterior commissure and the pineal gland; however, abnormalities in all of the other structures examined were present in at least one individual.
Conclusions: Our results indicate that the anatomical abnormalities in aniridia are variable and largely individual-specific. These findings suggest that future studies investigate this heterogeneity further, and that normal population variation should be considered when evaluating structural abnormalities.
Collapse
Affiliation(s)
- Madison K Grant
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Anastasia M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, 30602, USA
| | - Jordan E Pierce
- Department of Psychology, University of Georgia, Athens, GA, 30602, USA
| | - Jon DeWitte
- Athens Radiology Associates, Athens, GA, 30604, USA
| | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.,Neuroscience Division of the Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
30
|
Clinical utility gene card for: Aniridia. Eur J Hum Genet 2016; 24:ejhg201673. [PMID: 27381094 DOI: 10.1038/ejhg.2016.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
|
31
|
Hiraoka K, Sumiyoshi A, Nonaka H, Kikkawa T, Kawashima R, Osumi N. Regional Volume Decreases in the Brain of Pax6 Heterozygous Mutant Rats: MRI Deformation-Based Morphometry. PLoS One 2016; 11:e0158153. [PMID: 27355350 PMCID: PMC4927189 DOI: 10.1371/journal.pone.0158153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
Pax6 is a transcription factor that pleiotropically regulates various developmental processes in the central nervous system. In a previous study, we revealed that Pax6 heterozygous mutant (rSey2/+) adult rats exhibit abnormalities in social interaction. However, the brain malformations underlying the behavioral abnormality are unknown. To elucidate the brain malformations in rSey2/+ rats, we morphometrically analyzed brains of rSey2/+ and wild type rats using small-animal magnetic resonance imaging (MRI). Sixty 10-week-old rats underwent brain MRI (29 rSey2/+ rats and 31 wild type rats). SPM8 software was used for image preprocessing and statistical image analysis. Normalized maps of the Jacobian determinant, a parameter for the expansion and/or contraction of brain regions, were obtained for each rat. rSey2/+ rats showed significant volume decreases in various brain regions including the neocortex, corpus callosum, olfactory structures, hippocampal formation, diencephalon, and midbrain compared to wild type rats. Among brain regions, the anterior commissure showed significant interaction between genotype and sex, indicating the effect of genotype difference on the anterior commissure volume was more robust in females than in males. The rSey2/+ rats exhibited decreased volume in various gray and white matter regions of the brain, which may contribute to manifestation of abnormal social behaviors.
Collapse
Affiliation(s)
- Kotaro Hiraoka
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
- * E-mail:
| | - Akira Sumiyoshi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
32
|
Yogarajah M, Matarin M, Vollmar C, Thompson PJ, Duncan JS, Symms M, Moore AT, Liu J, Thom M, van Heyningen V, Sisodiya SM. PAX6, brain structure and function in human adults: advanced MRI in aniridia. Ann Clin Transl Neurol 2016; 3:314-30. [PMID: 27231702 PMCID: PMC4863745 DOI: 10.1002/acn3.297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 01/13/2023] Open
Abstract
Objective PAX6 is a pleiotropic transcription factor essential for the development of several tissues including the eyes, central nervous system, and some endocrine glands. Recently it has also been shown to be important for the maintenance and functioning of corneal and pancreatic tissues in adults. We hypothesized that PAX6 is important for the maintenance of brain integrity in humans, and that adult heterozygotes may have abnormalities of cortical patterning analogous to those found in mouse models. Methods We used advanced magnetic resonance imaging techniques, including surface‐based morphometry and region‐of‐interest analysis in adult humans heterozygously mutated for PAX6 mutations (n = 19 subjects and n = 21 controls). Using immunohistochemistry, we also studied PAX6 expression in the adult brain tissue of healthy subjects (n = 4) and patients with epilepsy (n = 42), some of whom had focal injuries due to intracranial electrode track placement (n = 17). Results There were significant reductions in frontoparietal cortical area after correcting for age and intracranial volume. A greater decline in thickness of the frontoparietal cortex with age, in subjects with PAX6 mutations compared to controls, correlated with age‐corrected, accelerated decline in working memory. These results also demonstrate genotypic effects: those subjects with the most severe genotypes have the most widespread differences compared with controls. We also demonstrated significant increases in PAX6‐expressing cells in response to acute injury in the adult human brain. Interpretation These findings suggest a role for PAX6 in the maintenance and consequent functioning of the adult brain, homologous to that found in other tissues. This has significant implications for the understanding and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahinda Yogarajah
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom; Present address: St George's University Hospitals NHS Foundation Trust London United Kingdom
| | - Mar Matarin
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Mark Symms
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Anthony T Moore
- UCL Institute of Ophthalmology and Moorfields Eye Hospital London United Kingdom; Present address: Department of Ophthalmology University of California San Francisco California
| | - Joan Liu
- Division of Neuropathology UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Maria Thom
- Division of Neuropathology UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics UnitI GMM University of Edinburgh Crewe Road Edinburgh EH4 2XU United Kingdom; Present address: UCL Institute of Ophthalmology London United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom; Epilepsy Society Chalfont-St-Peter Bucks SL9 0RJ United Kingdom
| |
Collapse
|
33
|
Bobilev AM, McDougal ME, Taylor WL, Geisert EE, Netland PA, Lauderdale JD. Assessment of PAX6 alleles in 66 families with aniridia. Clin Genet 2016; 89:669-77. [PMID: 26661695 DOI: 10.1111/cge.12708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022]
Abstract
We report on PAX6 alleles associated with a clinical diagnosis of classical aniridia in 81 affected individuals representing 66 families. Allelic variants expected to affect PAX6 function were identified in 61 families (76 individuals). Ten cases of sporadic aniridia (10 families) had complete (8 cases) or partial (2 cases) deletion of the PAX6 gene. Sequence changes that introduced a premature termination codon into the open reading frame of PAX6 occurred in 47 families (62 individuals). Three individuals with sporadic aniridia (three families) had sequence changes (one deletion, two run-on mutations) expected to result in a C-terminal extension. An intronic deletion of unknown functional significance was detected in one case of sporadic aniridia (one family), but not in unaffected relatives. Within these 61 families, single nucleotide substitutions accounted for 30/61 (49%), indels for 23/61 (38%), and complete deletion of the PAX6 locus for 8/61 (13%). In five cases of sporadic aniridia (five families), no disease-causing mutation in the coding region was detected. In total, 23 unique variants were identified that have not been reported in the Leiden Open Variation Database (LOVD) database. Within the group assessed, 92% had sequence changes expected to reduce PAX6 function, confirming the primacy of PAX6 haploinsufficiency as causal for aniridia.
Collapse
Affiliation(s)
- A M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA, USA
| | - M E McDougal
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - W L Taylor
- Molecular Resource Center, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - E E Geisert
- Department of Ophthalmology in the Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - P A Netland
- Molecular Resource Center, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - J D Lauderdale
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA, USA.,Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
34
|
Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9:70. [PMID: 25805971 PMCID: PMC4354436 DOI: 10.3389/fncel.2015.00070] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development.
Collapse
Affiliation(s)
- Martine N Manuel
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - Da Mi
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
35
|
Hu P, Meng L, Ma D, Qiao F, Wang Y, Zhou J, Yi L, Xu Z. A novel 11p13 microdeletion encompassing PAX6 in a Chinese Han family with aniridia, ptosis and mental retardation. Mol Cytogenet 2015; 8:3. [PMID: 25628759 PMCID: PMC4307215 DOI: 10.1186/s13039-015-0110-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Purpose To explore possible genetic aberrations in a Chinese family with aniridia, ptosis and mental retardation, and provide genetic evidence for the prenatal diagnosis. Methods 14 exons of PAX6 in the proband were sequenced by the Sanger sequencing technique. Multiplex ligation-dependent probe amplification (MLPA) technique was employed to further explore gene alterations of PAX6. Single nucleotide polymorphisms-array (SNP-array) assay was applied to screen potential pathologic genome-wide copy number variations (CNV). Results There were no detectable pathogenic mutations in the 14 exons of PAX6 in the proband. MLPA indicated a heterozygous deletion encompassing all PAX6 gene regions covered and a partial upstream region. SNP-array assay detected a heterozygous 11p13 microdeletion with a length of 518 kb in the proband, spanning two whole annotated genes, elongation factor protein 4 (ELP4), the paired box gene 6 (PAX6), and partial IMP1 inner-mitochondrial membrane (IMMP1L) gene. SNP-array revealed her affected brother carried the identical deletion. Conclusions The 518 kb heterozygous deletion in 11p13 encompassing PAX6 should be the genetic etiology for the familial aniridia.
Collapse
Affiliation(s)
- Ping Hu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Lulu Meng
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Dingyuan Ma
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Fengchang Qiao
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Yan Wang
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Jing Zhou
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| | - Long Yi
- Department of Pathology, Nanjing University Medical School, Nanjing, China
| | - Zhengfeng Xu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123# Tianfei Street, Baixia District Nanjing, 210029 China
| |
Collapse
|
36
|
Pierce JE, Krafft CE, Rodrigue AL, Bobilev AM, Lauderdale JD, McDowell JE. Increased functional connectivity in intrinsic neural networks in individuals with aniridia. Front Hum Neurosci 2014; 8:1013. [PMID: 25566032 PMCID: PMC4271605 DOI: 10.3389/fnhum.2014.01013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Mutations affecting the PAX6 gene result in aniridia, a condition characterized by the lack of an iris and other panocular defects. Among humans with aniridia, structural abnormalities also have been reported within the brain. The current study examined the functional implications of these deficits through "resting state" or task-free functional magnetic resonance imaging (fMRI) in 12 individuals with aniridia and 12 healthy age- and gender-matched controls. Using independent components analysis (ICA) and dual regression, individual patterns of functional connectivity associated with three intrinsic connectivity networks (ICNs; executive control, primary visual, and default mode) were compared across groups. In all three analyses, the aniridia group exhibited regions of greater connectivity correlated with the network, while the controls did not show any such regions. These differences suggest that individuals with aniridia recruit additional neural regions to supplement function in critical intrinsic networks, possibly due to inherent structural or sensory abnormalities related to the disorder.
Collapse
Affiliation(s)
- Jordan E Pierce
- Department of Psychology, University of Georgia Athens, GA, USA
| | | | | | | | - James D Lauderdale
- Department of Neuroscience, University of Georgia Athens, GA, USA ; Department of Cellular Biology, University of Georgia Athens, GA, USA
| | - Jennifer E McDowell
- Department of Psychology, University of Georgia Athens, GA, USA ; Department of Neuroscience, University of Georgia Athens, GA, USA
| |
Collapse
|
37
|
|
38
|
|
39
|
Severino M, Allegri AEM, Pistorio A, Roviglione B, Di Iorgi N, Maghnie M, Rossi A. Midbrain-hindbrain involvement in septo-optic dysplasia. AJNR Am J Neuroradiol 2014; 35:1586-92. [PMID: 24763416 DOI: 10.3174/ajnr.a3959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Midbrain-hindbrain involvement in septo-optic dysplasia has not been well described, despite reported mutations of genes regulating brain stem patterning. We aimed to describe midbrain-hindbrain involvement in patients with septo-optic dysplasia and to identify possible clinical-neuroimaging correlations. MATERIALS AND METHODS Using MR imaging, we categorized 38 patients (21 males) based on the presence (group A, 21 patients) or absence (group B, 17 patients) of visible brain stem anomalies. We measured height and anteroposterior diameter of midbrain, pons, and medulla, anteroposterior midbrain/pons diameter (M/P ratio), vermian height, and tegmento-vermian angle, and compared the results with 114 healthy age-matched controls. Furthermore, patients were subdivided based on the type of midline anomalies. The associations between clinical and neuroradiological features were investigated. Post hoc tests were corrected according to Bonferroni adjustment (pB). RESULTS Patients with brain stem abnormalities had smaller anteroposterior pons diameter than controls (pB < .0001) and group B (pB = .012), higher M/P ratio than controls (pB < .0001) and group B (pB < .0001), and smaller anteroposterior medulla diameter (pB = .001), pontine height (pB = .00072), and vermian height (pB = .0009) than controls. Six of 21 patients in group A had thickened quadrigeminal plate, aqueductal stenosis, and hydrocephalus; 3 also had agenesis of the epithalamus. One patient had a short midbrain with long pons and large superior vermis. There was a statistically significant association between brain stem abnormalities and callosal dysgenesis (P = .011) and developmental delay (P = .035), respectively. CONCLUSION Midbrain-hindbrain abnormalities are a significant, albeit underrecognized, component of the septo-optic dysplasia spectrum, and are significantly associated with developmental delay in affected patients.
Collapse
Affiliation(s)
- M Severino
- From the Neuroradiology Unit (M.S., A.R.)
| | | | - A Pistorio
- Epidemiology and Biostatistics Unit (A.P.), Istituto Giannina Gaslini, Università di Genova, Genoa, Italy
| | | | - N Di Iorgi
- Pediatric Department (A.E.M.A., N.D.I., M.M.)
| | - M Maghnie
- Pediatric Department (A.E.M.A., N.D.I., M.M.)
| | - A Rossi
- From the Neuroradiology Unit (M.S., A.R.)
| |
Collapse
|
40
|
Larson E, Lee AKC. Potential Use of MEG to Understand Abnormalities in Auditory Function in Clinical Populations. Front Hum Neurosci 2014; 8:151. [PMID: 24659963 PMCID: PMC3952190 DOI: 10.3389/fnhum.2014.00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/27/2014] [Indexed: 11/13/2022] Open
Abstract
Magnetoencephalography (MEG) provides a direct, non-invasive view of neural activity with millisecond temporal precision. Recent developments in MEG analysis allow for improved source localization and mapping of connectivity between brain regions, expanding the possibilities for using MEG as a diagnostic tool. In this paper, we first describe inverse imaging methods (e.g., minimum-norm estimation) and functional connectivity measures, and how they can provide insights into cortical processing. We then offer a perspective on how these techniques could be used to understand and evaluate auditory pathologies that often manifest during development. Here we focus specifically on how MEG inverse imaging, by providing anatomically based interpretation of neural activity, may allow us to test which aspects of cortical processing play a role in (central) auditory processing disorder [(C)APD]. Appropriately combining auditory paradigms with MEG analysis could eventually prove useful for a hypothesis-driven understanding and diagnosis of (C)APD or other disorders, as well as the evaluation of the effectiveness of intervention strategies.
Collapse
Affiliation(s)
- Eric Larson
- Institute for Learning and Brain Sciences, University of Washington , Seattle, WA , USA
| | - Adrian K C Lee
- Institute for Learning and Brain Sciences, University of Washington , Seattle, WA , USA ; Department of Speech and Hearing Sciences, University of Washington , Seattle, WA , USA
| |
Collapse
|
41
|
Abstract
Commissural circuits are brain and spinal cord connections which interconnect the two sides of the central nervous system (CNS). They play essential roles in brain and spinal cord processing, ensuring left-right coordination and synchronization of information and commands. During the formation of neuronal circuits, all commissural neurons of the central nervous system must accomplish a common task, which is to project their axon onto the other side of the nervous system, across the midline that delineates the two halves of the CNS. How this task is accomplished has been the topic of extensive studies over the last past 20 years and remains one of the best models to investigate axon guidance mechanisms. In the first part of this review, I will introduce the commissural circuits, their general role in the physiology of the nervous system, and their recognized or suspected pathogenic properties in human diseases. In the second part of the review, I will concentrate on two commissural circuits, the spinal commissures and the corpus callosum, to detail the cellular and molecular mechanisms governing their formation, mostly during their navigation at the midline.
Collapse
|
42
|
Rodríguez-López R, Pérez JMC, Balsera AM, Rodríguez GG, Moreno TH, García de Cáceres M, Serrano MGC, Freijo FC, Ruiz JRG, Angueira FB, Pérez PM, Estévez MN, Gómez EG. The modifier effect of the BDNF gene in the phenotype of the WAGRO syndrome. Gene 2013; 516:285-90. [DOI: 10.1016/j.gene.2012.11.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 01/09/2023]
|
43
|
Abstract
Aniridia is a rare congenital disorder in which there is a variable degree of hypoplasia or the absence of iris tissue associated with multiple other ocular changes, some present from birth and some arising progressively over time. Most cases are associated with dominantly inherited mutations or deletions of the PAX6 gene. This article will review the clinical manifestations, the molecular basis including genotype-phenotype correlations, diagnostic approaches and management of aniridia.
Collapse
|
44
|
Slavotinek AM, Chao R, Vacik T, Yahyavi M, Abouzeid H, Bardakjian T, Schneider A, Shaw G, Sherr EH, Lemke G, Youssef M, Schorderet DF. VAX1 mutation associated with microphthalmia, corpus callosum agenesis, and orofacial clefting: the first description of a VAX1 phenotype in humans. Hum Mutat 2011; 33:364-8. [PMID: 22095910 DOI: 10.1002/humu.21658] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/09/2011] [Indexed: 01/30/2023]
Abstract
Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia (A/M). In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate, and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for A/M.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California 94143-0748, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Netland PA, Scott ML, Boyle JW, Lauderdale JD. Ocular and systemic findings in a survey of aniridia subjects. J AAPOS 2011; 15:562-6. [PMID: 22153401 DOI: 10.1016/j.jaapos.2011.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/12/2011] [Accepted: 07/23/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the prevalence of ocular and systemic abnormalities in a group of subjects with aniridia. METHODS Survey forms developed by Aniridia Foundation International were sent to all members prior to the 2010 AFI member conference. An additional form was provided for completion by physicians caring for patients. Forms were then collected from all members who attended the meeting. RESULTS A total of 155 surveys were distributed, of which 83 (53%) were completed. The mean age was 25.4 ± 18.4 years, with 65% sporadic and 35% familial cases, and 2.4% with WAGR (Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome. Ocular abnormalities included nystagmus (83%), cataract (71%), dry eye (53%), glaucoma (46%), keratopathy (45%), foveal hypoplasia (41%), strabismus (31%), and retinal disease (5%). The mean age at diagnosis of aniridia was 22.1 months (median, 1.5 months) and glaucoma was 13.6 years (median, 8.5 years). Of 38 subjects with aniridia and glaucoma, 76% were treated medically, and 58% had been treated surgically. In subjects with glaucoma, the mean number (± SD) of glaucoma medications was 1.8 ± 1.3, and number of surgical procedures was 1.7 ± 2.0. Developmental delay was reported in 17%. The mean body mass index and the prevalence of obesity in subjects with aniridia was significantly greater (P = 0.003) than in siblings without aniridia. CONCLUSIONS In this study, aniridia was associated with nystagmus and other motility problems, cataract, glaucoma, and keratopathy. Systemic abnormalities included increased average body mass index and obesity, which appeared to occur not only in WAGR syndrome but more broadly in aniridia.
Collapse
Affiliation(s)
- Peter A Netland
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville , Virginia 22908-0715, USA.
| | | | | | | |
Collapse
|
46
|
Glaucoma and Frequency of Ocular and General Diseases in 30 Patients with Aniridia: A Clinical Study. Eur J Ophthalmol 2011; 22:104-10. [DOI: 10.5301/ejo.2011.8318] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2011] [Indexed: 11/20/2022]
Abstract
Purpose To evaluate the following in patients with aniridia: age at first examination at the University Eye Hospital and age at diagnosis of glaucoma; visual acuity; frequency of family history of aniridia; and frequency of ocular and general diseases associated with aniridia. Methods This was a consecutive examination of 30 unrelated patients with aniridia and retrospective evaluation of ophthalmologic, pediatric, and internal findings. The relative frequency of age at glaucoma diagnosis within decades was evaluated for the 20 patients with aniridia and glaucoma. Statistical analysis was performed using the Mann-Whitney test. Results Relative frequency of the age of patients with aniridia at time of glaucoma diagnosis within the following decades was as follows: from birth to 9 years: 15%, 10-19: 15%, 20-29: 15%, 30-39: 15%, 40-49: 35%, and 50-59: 5%. Visual acuity in the better eye of 20/100 or less was found in 60%. Family history of aniridia was found in 33.3% of patients, with 1-4 relatives with aniridia. A total of 76.7% of patients had congenital cataract, and 66.7% had glaucoma. Mean maximum intraocular pressure of the 20 patients with glaucoma was 35.9 mmHg in the right and 32.6 mmHg in the left eye. A total of 53.3% had nystagmus, 26.6% corneal opacifications, 16.7% bilateral lens dislocation upwards, 6.7% optic nerve hypoplasia, 3.3% poor foveal development, and 3.3% Wilms tumor. Conclusions Up to the age of 40 years, 15% of patients were diagnosed with glaucoma per age decade. Frequent bilateral glaucoma and similar bilateral height of intraocular pressure suggest a genetic glaucoma disposition with malformation at Schlemm canal, besides possible sequential anatomic changes in the chamber angle. Associated ocular abnormalities limit visual prognosis.
Collapse
|
47
|
Musiek FE, Weihing J. Perspectives on dichotic listening and the corpus callosum. Brain Cogn 2011; 76:225-32. [DOI: 10.1016/j.bandc.2011.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
|
48
|
Lei HH, Liu H, Ge LH. PAX6 polymorphisms in 20 Chinese children with supernumerary teeth in the maxillary incisor area. Int J Paediatr Dent 2011; 21:271-7. [PMID: 21348901 DOI: 10.1111/j.1365-263x.2011.01119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To search for variants of PAX6 gene in patients with nonsyndromic supernumerary teeth in the maxillary incisor area (NSST) and compare genotypes and allele frequencies of the detected polymorphisms between the patients and controls. DESIGN Twenty children with NSST and 31 controls were included. Genomic DNA was extracted from buccal epithelial cells of each individual. Sequencing analysis of all exons and exon/intron boundaries of PAX6 gene were performed in patients. Genotypes and allele frequencies of the single nucleotide polymorphisms detected in patients were compared between the two groups using chi-square tests. RESULTS Of the 20 patients examined, six showed heterozygous for rs667773 and rs3026393 simultaneously. Among them, four possessed two supernumerary teeth and the other two possessed one. Another six patients showed heterozygous for rs3026393, five of which possessed only one supernumerary tooth and the other one possessed two. Of another six patients with homozygous rs3026393, three possessed one supernumerary tooth and the other three possessed two. The distributions of genotypes and alleles frequencies of single nucleotide polymorphisms rs667773 and rs3026393 showed no significant difference between the two groups. CONCLUSIONS The present study did not find evidence of PAX6 polymorphisms being associated with supernumerary teeth in the population studied.
Collapse
Affiliation(s)
- Hai-Hua Lei
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | |
Collapse
|
49
|
Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V. Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Res 2011; 21:1349-59. [PMID: 21617155 DOI: 10.1101/gr.124115.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characterization of transcriptional networks (TNs) is essential for understanding complex biological phenomena such as development, disease, and evolution. In this study, we have designed and implemented a procedure that combines in silico target screens with zebrafish and mouse validation, in order to identify cis-elements and genes directly regulated by Pax6. We chose Pax6 as the paradigm because of its crucial roles in organogenesis and human disease. We identified over 600 putative Pax6 binding sites and more than 200 predicted direct target genes, conserved in evolution from zebrafish to human and to mouse. This was accomplished using hidden Markov models (HMMs) generated from experimentally validated Pax6 binding sites. A small sample of genes, expressed in the neural lineage, was chosen from the predictions for RNA in situ validation using zebrafish and mouse models. Validation of DNA binding to some predicted cis-elements was also carried out using chromatin immunoprecipitation (ChIP) and zebrafish reporter transgenic studies. The results show that this combined procedure is a highly efficient tool to investigate the architecture of TNs and constitutes a useful complementary resource to ChIP and expression data sets because of its inherent spatiotemporal independence. We have identified several novel direct targets, including some putative disease genes, among them Foxp2; these will allow further dissection of Pax6 function in development and disease.
Collapse
Affiliation(s)
- Pedro Coutinho
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Kiese-Himmel C. Auditive Verarbeitungs- und Wahrnehmungsstörungen (AVWS) im Kindesalter. KINDHEIT UND ENTWICKLUNG 2011. [DOI: 10.1026/0942-5403/a000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Auditive Verarbeitungs- und Wahrnehmungsstörungen (AVWS) sind umschriebene Funktionsdefizite in der auditiven Informationsverarbeitung und Wahrnehmung bei intaktem peripherem Gehör und mindestens durchschnittlicher Intelligenz. Häufig sind Lernstörungen, primäre bzw. sekundäre Spracherwerbsstörungen, supramodale Aufmerksamkeitsprobleme oder tiefgreifende Entwicklungsstörungen mit AVWS im Sinn von Komorbidität assoziiert. Deswegen erscheint Eltern, Lehrern oder Untersuchern das AVWS-Konzept zur Erklärung solcher Entwicklungs- und Lernauffälligkeiten plausibel. Da Sprachsignale zerebral anders als nicht sprachliche Signale ausgewertet werden, kann Sprachwahrnehmung allenfalls als ein Spezialfall der auditiven Verarbeitung und Wahrnehmung betrachtet werden. Kausale Beziehungen zwischen gestörten auditiven Funktionen und klinischen Störungsbildern wurden bislang nicht zuverlässig belegt. Es besteht ein Mangel an kontrollierten bzw. randomisierten Therapiestudien.
Collapse
|