1
|
Wood HJ, Jones N, Eack SM, Chengappa KNR, Prasad KM, Kelly C, Montrose D, Schooler NR, Ganguli R, Carter CS, Keshavan MS, Sarpal DK. Over 30 years of STEP: The Pittsburgh experience with first-episode psychosis. Early Interv Psychiatry 2024; 18:869-876. [PMID: 38637133 DOI: 10.1111/eip.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
AIMS For over 30 years, combined research and treatment settings in the US have been critical to conceptualizing care for first-episode psychosis (FEP). Here we describe an early example of such a context, the Services for the Treatment of Early Psychosis (STEP) clinic, which is affiliated with the University of Pittsburgh. METHODS We describe STEP's historical roots and establishment in the early 1990s; STEP's research and treatment contributions, alongside its growth and ongoing leadership. RESULTS Research-based clinics, like STEP, preceded and helped pave the way for the Recovery After an Initial Schizophrenia Episode project in the US and the ensuing Coordinated Specialty Care (CSC) approach, now widely adopted in the US. Early clinic-based research at STEP helped establish protocols for psychopharmacology, the relevance of effective early treatment, including psychosocial approaches, and highlighted disparities in treatment outcomes across race/ethnicity. Multidisciplinary collaboration and dialogue with consumers contributed to early treatment, combining psychosocial and pharmacological approaches. STEP adopted CSC and is situated within a bi-state Learning Health System. STEP has retained a relatively unique 5-year treatment model and exists within continuum of care ideally suited to studying psychotic illness and treatment outcomes. CONCLUSIONS STEP remains the largest academic FEP clinic in Pennsylvania. Academic FEP clinics like STEP will have a critical role within Learning Health Systems nationally to model participatory approaches, sustain early intervention treatment quality and ongoing treatment developments.
Collapse
Affiliation(s)
- Helen J Wood
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
| | - Nev Jones
- School of Social Work, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - K N Roy Chengappa
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Konasale M Prasad
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Kelly
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
| | - Debra Montrose
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
| | - Nina R Schooler
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Rohan Ganguli
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cameron S Carter
- Department of Psychiatry, University of California, Irvine, California, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak K Sarpal
- Services for the Treatment of Early Psychosis (STEP), UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Castelnovo A, Casetta C, Cavallotti S, Marcatili M, Del Fabro L, Canevini MP, Sarasso S, D'Agostino A. Proof-of-concept evidence for high-density EEG investigation of sleep slow wave traveling in First-Episode Psychosis. Sci Rep 2024; 14:6826. [PMID: 38514761 PMCID: PMC10958040 DOI: 10.1038/s41598-024-57476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Schizophrenia is thought to reflect aberrant connectivity within cortico-cortical and reentrant thalamo-cortical loops, which physiologically integrate and coordinate the function of multiple cortical and subcortical structures. Despite extensive research, reliable biomarkers of such "dys-connectivity" remain to be identified at the onset of psychosis, and before exposure to antipsychotic drugs. Because slow waves travel across the brain during sleep, they represent an ideal paradigm to study pathological conditions affecting brain connectivity. Here, we provide proof-of-concept evidence for a novel approach to investigate slow wave traveling properties in First-Episode Psychosis (FEP) with high-density electroencephalography (EEG). Whole-night sleep recordings of 5 drug-naïve FEP and 5 age- and gender-matched healthy control subjects were obtained with a 256-channel EEG system. One patient was re-recorded after 6 months and 3 years of continuous clozapine treatment. Slow wave detection and traveling properties were obtained with an open-source toolbox. Slow wave density and slow wave traveled distance (measured as the line of longest displacement) were significantly lower in patients (p < 0.05). In the patient who was tested longitudinally during effective clozapine treatment, slow wave density normalized, while traveling distance only partially recovered. These preliminary findings suggest that slow wave traveling could be employed in larger samples to detect cortical "dys-connectivity" at psychosis onset.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Italian Switzerland, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland.
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Cecilia Casetta
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Cavallotti
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Matteo Marcatili
- Psychiatric Department, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Del Fabro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maria Paola Canevini
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Armando D'Agostino
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy.
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
4
|
Sargazi S, Mirani Sargazi F, Moudi M, Heidari Nia M, Saravani R, Mirinejad S, Shahraki S, Shakiba M. Impact of Proliferator-Activated Receptor γ Gene Polymorphisms on Risk of Schizophrenia: A Case-Control Study and Computational Analyses. IRANIAN JOURNAL OF PSYCHIATRY 2020; 15:286-296. [PMID: 33240378 PMCID: PMC7610076 DOI: 10.18502/ijps.v15i4.4294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective: Schizophrenia (SCZ) is a common psychiatric disorder characterized by a complex mode of inheritance. Peroxisome proliferator-activated receptor-γ (PPARG) mainly regulates lipid and glucose metabolisms while it is constitutively expressed in rat primary microglial cultures. This preliminary study was aimed to investigate the relationship of two polymorphisms in the PPARG gene, rs1801282 C/G, and rs3856806 C/T, to the risk of SCZ in the southeast Iranian population. Method: A total of 300 participants (150 patients with SCZ and 150 healthy controls) were enrolled. Genotyping was done using the amplification refractory mutation system polymerase chain reaction (ARMS–PCR) technique. Computational analyses were carried out to predict the potential effects of the studied polymorphisms. Results: A significant link was found between genotypes of rs1801282 and SCZ susceptibility. The G allele of rs1801282 in CG and GG form of the codominant model increased the risk of SCZ by 2.49 and 2.64 folds, respectively. With regards to rs3856806, enhanced risk of SCZ was also observed under different inheritance models except for the overdominant model. Also, the T allele of rs3856806 enhanced the risk of SCZ by 3.19 fold. Computational analyses predicted that rs1801282 polymorphism might alter the secondary structure of PPARG-mRNA and protein function. At the same time, the other variant created the binding sites for some enhancer and silencer motifs. Conclusion: Our findings showed that PPARG rs1821282 and rs3856806 polymorphisms associate with SCZ susceptibility. Replication studies in different ethnicities with a larger population are needed to validate our findings.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Moudi
- Genetics of Noncommunicable Disease Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Abstract
SummaryNegative symptoms are sometimes assumed to be specific to schizophrenia, but in fact they are not. This paper examines the frequency of negative symptoms in schizophrenia, mania, and major depression and indicates that both positive and negative symptoms may occur in all three. Clinicians judge these disorders to be present, not by observing a single pathognomonic symptom or group of symptoms, but rather by a process of pattern recognition of the characteristic clustering of symptoms. In addition to being diagnostically nonspecific, negative symptoms can also be produced by a broad range of factors, including positive symptoms, depression, and neuroleptic drugs. Research attempting to determine whether negative symptoms are treatment-refractory or treatment-responsive must take these factors into account.
Collapse
|
6
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
7
|
İnce E, Üçok A. Relationship Between Persistent Negative Symptoms and Findings of Neurocognition and Neuroimaging in Schizophrenia. Clin EEG Neurosci 2018; 49:27-35. [PMID: 29243526 DOI: 10.1177/1550059417746213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Negative symptoms are defined as loss or reduction of otherwise present behaviors or functions in illness situation, and they have constituted an important aspect of schizophrenia. Although negative symptoms have usually been considered as a single entity, neurobiological investigations yielded discrepant results. To overcome challenges that derive from this discrepancy, researchers have proposed several approaches to structure negative symptoms into more homogenous constructs. Concept of persistent negative symptoms (PNS) is one of the proposed approaches, and includes both primary and secondary negative symptoms that persist after adequate treatment. PNS is relatively easy to assess, and by definition, more inclusive; yet it represents an unmet therapeutic need. Therefore, it is a target of several neurobiological and pharmacological studies. There are several structural and functional brain alterations associated with negative symptoms. On the other hand, neurocognitive investigations in patients with schizophrenia have revealed deficits in several domains that showed correlations with negative symptoms. There are several shared features between negative symptoms and neurocognitive deficits in schizophrenia such as prevalence rates, course through the illness, prognostic importance, and impact on social functioning. However, exact mechanisms behind the neurobiology of PNS and how it interacts with neurocognition remain to be explained. Earlier reviews on neuroimaging and neurocognitive correlates of PNS have been focused on studies with broadly defined negative symptoms that were selected by methodological closeness to PNS. In this review, we focus on neural correlates and neurocognitive associations of PNS, and we discuss PNS findings available to date.
Collapse
Affiliation(s)
- Ezgi İnce
- 1 Department of Psychiatry, Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey
| | - Alp Üçok
- 1 Department of Psychiatry, Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey
| |
Collapse
|
8
|
Valaparla VL, Nehra R, Mehta UM, Thirthalli J, Grover S. Social cognition of patients with schizophrenia across the phases of illness - A longitudinal study. Schizophr Res 2017; 190:150-159. [PMID: 28285028 DOI: 10.1016/j.schres.2017.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
AIM This longitudinal study aimed to evaluate social cognition of patients with schizophrenia at two points, i.e., during the symptomatic phase and clinical remission phase. Additional aim was to evaluate the relationship of social cognition with psychopathology and functional outcome. METHODOLOGY Fifty-one patients (N=51) were evaluated on Social Cognition Rating Tools in Indian Setting (SOCRATIS), Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning (GAF), Socio-occupational functioning scale (SOFS) and Indian Disability Evaluation and Assessment Scale (IDEAS) during the symptomatic phase of illness. These patients were followed-up longitudinally for achieving clinical remission. Out of the 51 patients, 32 patients underwent second assessment after a mean duration of 143 (SD 34.9) days, while in clinical remission. Data of 111 healthy controls was used for comparison. RESULTS Social cognitive deficits were present in both the phases of illness. However, when the baseline and follow-up data was compared, it was evident that the severity of social cognition deficits is lower during the clinical remission phase. Higher levels of social cognitive deficits in both phases of illness are associated with higher socio-occupational dysfunction and higher disability. CONCLUSION Present study suggests that impairment in social cognition in patients with schizophrenia is present both in symptomatic and remission phase, with higher level of deficits during the symptomatic phase. Social cognition impairments are associated with poor social and occupational functioning and higher level of disability.
Collapse
Affiliation(s)
| | - Ritu Nehra
- Department of Psychiatry, PGIMER, Chandigarh, India
| | | | | | | |
Collapse
|
9
|
Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res 2017; 180:36-43. [PMID: 27269670 PMCID: PMC5423439 DOI: 10.1016/j.schres.2016.05.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12-16Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia.
Collapse
|
10
|
Kani AS, Shinn AK, Lewandowski KE, Öngür D. Converging effects of diverse treatment modalities on frontal cortex in schizophrenia: A review of longitudinal functional magnetic resonance imaging studies. J Psychiatr Res 2017; 84:256-276. [PMID: 27776293 PMCID: PMC5135290 DOI: 10.1016/j.jpsychires.2016.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVES A variety of treatment options exist for schizophrenia, but the effects of these treatments on brain function are not clearly understood. To facilitate the development of more effective treatment strategies, it is important to identify how brain function in schizophrenia patients is affected by the diverse therapeutic approaches that are currently available. The aim of the present article is to systematically review the evidence for functional brain changes associated with different treatment modalities for schizophrenia. METHODS We searched PubMed for longitudinal functional MRI (fMRI) studies reporting on the effects of antipsychotic medications (APM), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), cognitive remediation therapy (CRT) and cognitive behavioral therapy for psychosis (CBTp) on brain function in schizophrenia. RESULTS Thirty six studies fulfilled the inclusion criteria. Functional alterations were observed in diverse brain regions. Across intervention modalities, changes in fMRI parameters were reported most commonly in frontal brain regions including prefrontal cortex, anterior cingulate and inferior frontal cortex. CONCLUSIONS We conclude that current treatments for schizophrenia commonly induce functional brain alterations in frontal brain regions. However, interpretability is limited by inconsistency in task and region of interest selection, and failures to replicate. Further task independent fMRI studies examining treatment effects with whole brain analysis are needed to deepen our insights.
Collapse
Affiliation(s)
- Ayse Sakalli Kani
- Sivas Numune State Hospital, Department of Psychiatry, Sivas, Turkey.
| | - Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Harvard Medical School, Department of Psychiatry, Boston, MA 02114, USA.
| | - Kathryn E. Lewandowski
- Psychotic Disorders Division, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Harvard Medical School, Department of Psychiatry, Boston, MA 02114, USA.
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Mikell CB, Sinha S, Sheth SA. Neurosurgery for schizophrenia: an update on pathophysiology and a novel therapeutic target. J Neurosurg 2015; 124:917-28. [PMID: 26517767 DOI: 10.3171/2015.4.jns15120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The main objectives of this review were to provide an update on the progress made in understanding specific circuit abnormalities leading to psychotic symptoms in schizophrenia and to propose rational targets for therapeutic deep brain stimulation (DBS). Refractory schizophrenia remains a major unsolved clinical problem, with 10%-30% of patients not responding to standard treatment options. Progress made over the last decade was analyzed through reviewing structural and functional neuroimaging studies in humans, along with studies of animal models of schizophrenia. The authors reviewed theories implicating dysfunction in dopaminergic and glutamatergic signaling in the pathophysiology of the disorder, paying particular attention to neurosurgically relevant nodes in the circuit. In this context, the authors focused on an important pathological circuit involving the associative striatum, anterior hippocampus, and ventral striatum, and discuss the possibility of targeting these nodes for therapeutic neuromodulation with DBS. Finally, the authors examined ethical considerations in the treatment of these vulnerable patients. The functional anatomy of neural circuits relevant to schizophrenia remains of great interest to neurosurgeons and psychiatrists and lends itself to the development of specific targets for neuromodulation. Ongoing progress in the understanding of these structures will be critical to the development of potential neurosurgical treatments of schizophrenia.
Collapse
Affiliation(s)
- Charles B Mikell
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| | - Saurabh Sinha
- Division of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Sameer A Sheth
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
12
|
Galderisi S, Merlotti E, Mucci A. Neurobiological background of negative symptoms. Eur Arch Psychiatry Clin Neurosci 2015; 265:543-58. [PMID: 25797499 DOI: 10.1007/s00406-015-0590-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/15/2015] [Indexed: 01/29/2023]
Abstract
Studies investigating neurobiological bases of negative symptoms of schizophrenia failed to provide consistent findings, possibly due to the heterogeneity of this psychopathological construct. We tried to review the findings published to date investigating neurobiological abnormalities after reducing the heterogeneity of the negative symptoms construct. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, genetics and neurobiology of schizophrenia. We searched PubMed with the keywords "negative symptoms," "deficit schizophrenia," "persistent negative symptoms," "neurotransmissions," "neuroimaging" and "genetic." Additional articles were identified by manually checking the reference lists of the relevant publications. Publications in English were considered, and unpublished studies, conference abstracts and poster presentations were not included. Structural and functional imaging studies addressed the issue of neurobiological background of negative symptoms from several perspectives (considering them as a unitary construct, focusing on primary and/or persistent negative symptoms and, more recently, clustering them into factors), but produced discrepant findings. The examined studies provided evidence suggesting that even primary and persistent negative symptoms include different psychopathological constructs, probably reflecting the dysfunction of different neurobiological substrates. Furthermore, they suggest that complex alterations in multiple neurotransmitter systems and genetic variants might influence the expression of negative symptoms in schizophrenia. On the whole, the reviewed findings, representing the distillation of a large body of disparate data, suggest that further deconstruction of negative symptomatology into more elementary components is needed to gain insight into underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Silvana Galderisi
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy.
| | - Eleonora Merlotti
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| |
Collapse
|
13
|
Prefrontal dysfunction and a monkey model of schizophrenia. Neurosci Bull 2015; 31:235-41. [PMID: 25822218 DOI: 10.1007/s12264-014-1506-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 12/28/2022] Open
Abstract
The prefrontal cortex is implicated in cognitive functioning and schizophrenia. Prefrontal dysfunction is closely associated with the symptoms of schizophrenia. In addition to the features typical of schizophrenia, patients also present with aspects of cognitive disorders. Based on these relationships, a monkey model mimicking the cognitive symptoms of schizophrenia has been made using treatment with the non-specific competitive N-methyl-D-aspartate receptor antagonist, phencyclidine. The symptoms are ameliorated by atypical antipsychotic drugs such as clozapine. The beneficial effects of clozapine on behavioral impairment might be a specific indicator of schizophrenia-related cognitive impairment.
Collapse
|
14
|
Liu D, Johnson HJ, Long JD, Magnotta VA, Paulsen JS. The power-proportion method for intracranial volume correction in volumetric imaging analysis. Front Neurosci 2014; 8:356. [PMID: 25414635 PMCID: PMC4222222 DOI: 10.3389/fnins.2014.00356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/16/2014] [Indexed: 11/13/2022] Open
Abstract
In volumetric brain imaging analysis, volumes of brain structures are typically assumed to be proportional or linearly related to intracranial volume (ICV). However, evidence abounds that many brain structures have power law relationships with ICV. To take this relationship into account in volumetric imaging analysis, we propose a power law based method-the power-proportion method-for ICV correction. The performance of the new method is demonstrated using data from the PREDICT-HD study.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Psychiatry, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Hans J Johnson
- Department of Psychiatry, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Department of Electrical and Computer Engineering, College of Engineering, University of Iowa Iowa City, IA, USA ; Department of Biomedical Engineering, College of Engineering, University of Iowa Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Department of Biostatistics, College of Public Health, University of Iowa Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Jane S Paulsen
- Department of Psychiatry, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Department of Neurology, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Department of Psychology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
15
|
Jadhav S, Greenberg ML. Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. ACTA ACUST UNITED AC 2014; 9:533-551. [PMID: 25750665 DOI: 10.2217/clp.14.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of therapies for neuropsychiatric disorders is hampered by the lack of understanding of the mechanisms underlying their pathologies. While aberrant sphingolipid metabolism is associated with psychiatric illness, the role of sphingolipids in these disorders is not understood. The genetically tractable yeast model can be exploited in order to elucidate the cellular consequences of sphingolipid perturbation. Hypotheses generated from studies in yeast and tested in mammalian cells may contribute to our understanding of the role of sphingolipids in psychiatric disorders and to the development of new treatments. Here, we compare sphingolipid metabolism in yeast and mammalian cells, discuss studies implicating sphingolipids in psychiatric disorders and propose approaches that utilize yeast in order to elucidate sphingolipid function and identify drugs that target sphingolipid synthesis.
Collapse
Affiliation(s)
- Shyamalagauri Jadhav
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
16
|
Akinola RA, Idowu OE, Nelson-Paseda AO. Caval variations in neurologically diseased patients. Acta Radiol Short Rep 2014; 3:2047981614530288. [PMID: 25298867 PMCID: PMC4184453 DOI: 10.1177/2047981614530288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Abstract
Background The import of the cavum variation and its prevalence rate in healthy individuals is still not clear, likewise in neurologically diseased patients. Purpose To evaluate the frequency and pattern of caval variations in neurologically diseased patients. Material and Methods The presence or absence of the cavum septum pellucidum (CSP), cavum vergae (CV), or cavum velum interpositum (CVI) was reviewed from successive cranial computerized tomography (CT) images of patients who were aged 6 months and above. Two hundred and seventeen cranial CT images were reviewed. Results At least a cavum variation was noted in 130 (59.9%) of the CT scan images reviewed. The CV, CVI, and CSP were noted in 86 (39.6%), 53 (24.4%), and 50 images (23%), respectively. Caval multiplicity was noted in 102 patients (47%). There was no significant difference in the rate of occurrence of cavum variations in patients with congenital brain diseases and acquired brain conditions (P = 0.484), neither was there a significant difference in the frequency of cavum variation in children aged older than 6 months compared to adults (P = 0.101). Conclusion Cava variations are relatively common in neurological brain diseases. Patients with congenital brain diseases did not have a higher frequency of cava variation when compared with those that had acquired lesions. The most common type of cavum variation noted in this study was the vergae variety, while the CSP is the rarest.
Collapse
Affiliation(s)
- Rachael A Akinola
- Department of Radiology, Lagos State University College of Medicine and Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Olufemi E Idowu
- Department of Surgery (Neurosurgery Unit), Lagos State University College of Medicine and Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Adedolapo O Nelson-Paseda
- Department of Radiology, Lagos State University College of Medicine and Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
17
|
Smyth AM, Lawrie SM. The neuroimmunology of schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2013; 11:107-17. [PMID: 24465246 PMCID: PMC3897758 DOI: 10.9758/cpn.2013.11.3.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/16/2023]
Abstract
Schizophrenia (SCZ) is a polygenic, multi-factorial disorder and a definitive understanding of its pathophysiology has been lacking since it was first described more than a century ago. The predominant pharmacological approach used to treat SCZ is the use of dopamine receptor antagonists. The fact that many patients remain symptomatic, despite complying with medication regimens, emphasises the need for a more encompassing explanation for both the causes and treatment of SCZ. Recent neuroanatomical, neurobiological, environmental and genetic studies have revived the idea that inflammatory pathways are involved in the pathogenesis of SCZ. These new insights have emerged from multiple lines of evidence, including the levels of inflammatory proteins in the central nervous system of patients with SCZ and animal models. This review focuses on aberrant inflammatory mechanisms present both before and during the onset of the psychotic symptoms that characterise SCZ and discusses recent research into adjunctive immune system modulating therapies for its more effective treatment.
Collapse
Affiliation(s)
- Annya M. Smyth
- Department of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M. Lawrie
- Department of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Höistad M, Heinsen H, Wicinski B, Schmitz C, Hof PR. Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities. Neuropathol Appl Neurobiol 2013; 39:348-61. [PMID: 22860626 DOI: 10.1111/j.1365-2990.2012.01296.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS The prefrontal and anterior cingulate cortices are implicated in schizophrenia, and many studies have assessed volume, cortical thickness, and neuronal densities or numbers in these regions. Available data, however, are rather conflicting and no clear cortical alteration pattern has been established. Changes in oligodendrocytes and white matter have been observed in schizophrenia, introducing a hypothesis about a myelin deficit as a key event in disease development. METHODS We investigated the dorsal anterior cingulate cortex (dACC) in 13 men with schizophrenia and 13 age- and gender-matched controls. We assessed stereologically the dACC volume, neuronal and glial densities, total neurone and glial numbers, and glia/neurone index (GNI) in both layers II-III and V-VI. RESULTS We observed no differences in neuronal or glial densities. No changes were observed in dACC cortical volume, total neurone numbers, and total glial numbers in schizophrenia. This contrasts with previous findings and suggests that the dACC may not undergo as severe changes in schizophrenia as is generally believed. However, we observed higher glial densities in layers V-VI than in layers II-III in both controls and patients with schizophrenia, pointing to possible layer-specific effects on oligodendrocyte distribution during development. CONCLUSIONS Using rigorous stereological methods, we demonstrate a seemingly normal cortical organization in an important neocortical area for schizophrenia, emphasizing the importance of such morphometric approaches in quantitative neuropathology. We discuss the significance of subregion- and layer-specific alterations in the development of schizophrenia, and the discrepancies between post mortem histopathological studies and in vivo brain imaging findings in patients.
Collapse
Affiliation(s)
- M Höistad
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
19
|
Andreasen NC, Liu D, Ziebell S, Vora A, Ho BC. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 2013; 170:609-15. [PMID: 23558429 PMCID: PMC3835590 DOI: 10.1176/appi.ajp.2013.12050674] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Longitudinal structural MRI studies have shown that patients with schizophrenia have progressive brain tissue loss after onset. Recurrent relapses are believed to play a role in this loss, but the relationship between relapse and structural MRI measures has not been rigorously assessed. The authors analyzed longitudinal data to examine this question. METHODS The authors studied data from 202 patients drawn from the Iowa Longitudinal Study of first-episode schizophrenia for whom adequate structural MRI data were available (N=659 scans) from scans obtained at regular intervals over an average of 7 years. Because clinical follow-up data were obtained at 6-month intervals, the authors were able to compute measures of relapse number and duration and relate them to structural MRI measures. Because higher treatment intensity has been associated with smaller brain tissue volumes, the authors also examined this countereffect in terms of dose-years. RESULTS Relapse duration was related to significant decreases in both general (e.g., total cerebral volume) and regional (e.g., frontal) brain measures. Number of relapses was unrelated to brain measures. Significant effects were also observed for treatment intensity. CONCLUSIONS Extended periods of relapse may have a negative effect on brain integrity in schizophrenia, suggesting the importance of implementing proactive measures that may prevent relapse and improve treatment adherence. By examining the relative balance of effects, that is, relapse duration versus antipsychotic treatment intensity, this study sheds light on a troublesome dilemma that clinicians face. Relapse prevention is important, but it should be sustained using the lowest possible medication dosages that will control symptoms.
Collapse
|
20
|
Zhang T, Davatzikos C. Optimally-Discriminative Voxel-Based Morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease. Neuroimage 2013; 79:94-110. [PMID: 23631985 DOI: 10.1016/j.neuroimage.2013.04.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/28/2022] Open
Abstract
Optimally-Discriminative Voxel-Based Analysis (ODVBA) (Zhang and Davatzikos, 2011) is a recently-developed and validated framework of voxel-based group analysis, which transcends limitations of traditional Gaussian smoothing in the forms of analysis such as the General Linear Model (GLM). ODVBA estimates the optimal non-stationary and anisotropic filtering of the data prior to statistical analyses to maximize the ability to detect group differences. In this paper, we extensively evaluate ODVBA to three sets of previously published data from studies in schizophrenia, mild cognitive impairment, and Alzheimer's disease, and evaluate the regions of structural difference identified by ODVBA versus standard Gaussian smoothing and other related methods. The experimental results suggest that ODVBA is considerably more sensitive in detecting group differences, presumably because of its ability to adapt the regional filtering to the underlying extent and shape of a group difference, thereby maximizing the ability to detect such difference. Although there is no gold standard in these clinical studies, ODVBA demonstrated highest significance in group differences within the identified voxels. In terms of spatial extent of detected area, agreement of anatomical boundary, and classification, it performed better than other tested voxel-based methods and competitively with the cluster enhancing methods.
Collapse
Affiliation(s)
- Tianhao Zhang
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, PA, USA.
| | | |
Collapse
|
21
|
Narayanaswamy JC, Venkatasubramanian G, Gangadhar BN. Neuroimaging studies in schizophrenia: an overview of research from Asia. Int Rev Psychiatry 2012; 24:405-16. [PMID: 23057977 DOI: 10.3109/09540261.2012.704872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits.
Collapse
Affiliation(s)
- Janardhanan C Narayanaswamy
- Schizophrenia Clinic, Department of Psychiatry, Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | |
Collapse
|
22
|
Mura G, Petretto DR, Bhat KM, Carta MG. Schizophrenia: from epidemiology to rehabilitation. Clin Pract Epidemiol Ment Health 2012; 8:52-66. [PMID: 22962559 PMCID: PMC3434422 DOI: 10.2174/1745017901208010052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/26/2011] [Accepted: 01/01/2012] [Indexed: 12/27/2022]
Abstract
Purpose/Objective: We discuss recent evidences about schizophrenia (frequency, onset, course, risk factors and genetics) and their influences to some epidemiological myths about schizophrenia diffuse between psychiatric and psychopathology clinicians. The scope is to evaluate if the new acquisitions may change the rehabilitation approaches to schizophrenia modifying the balance about the neurodevelopmental hypothesis of schizophrenia accepting that the cognitive deficits are produced by errors during the normal development of the brain (neurodevelopmental hypothesis) that remains stable in the course of illness and the neurodegenerative hypothesis according of which they derived from a degenerative process that goes on inexorably. Research Method/Design: A review of the literature about epidemiology of schizophrenia has been performed and the contributions of some of these evidence to neurodevelopmental hypothesis and to rehabilitation has been described. Results: It cannot be definitively concluded for or against the neurodevelopmental or degenerative hypothesis, but efforts in understanding basis of schizophrenia must go on. Until now, rehabilitation programs are based on the vulnerability-stress model: supposing an early deficit that go on stable during the life under favorable circumstances. So, rehabilitation approaches (as neuro-cognitive approaches, social skill training, cognitive-emotional training) are focused on the individual and micro-group coping skills, aiming to help people with schizophrenia to cope with environmental stress factors. Conclusions/Implications: Coping of cognitive deficits in schizophrenia may represents the starting-point for further research on schizophrenia, cohort studies and randomized trials are necessary to defined the range of effectiveness and the outcome of the treatments.
Collapse
Affiliation(s)
- Gioia Mura
- Consultation Liaison Psychiatric Unit at the University Hospital of Cagliari, University of Cagliari and AOU Cagliari - Italy
| | | | | | | |
Collapse
|
23
|
McCormick LM, Brumm MC, Beadle JN, Paradiso S, Yamada T, Andreasen N. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res 2012; 201:233-9. [PMID: 22510432 PMCID: PMC3545445 DOI: 10.1016/j.pscychresns.2012.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 11/25/2022]
Abstract
Processing of social and emotional information has been shown to be disturbed in schizophrenia. The biological underpinnings of these abnormalities may be explained by an abnormally functioning mirror neuron system. Yet the relationship between mirror neuron system activity in schizophrenia, as measured using an electroencephalography (EEG) paradigm, and socio-emotional functioning has not been assessed. The present research measured empathy and mirror neuron activity using an established EEG paradigm assessing the integrity of the Mu rhythm (8-13Hz) suppression over the sensorimotor cortex during observed and actual hand movement in 16 schizophrenia-spectrum disorder (SSD) participants (n=8 actively psychotic and n=8 in residual illness phase) and 16 age- and gender-matched healthy comparison participants. Actively psychotic SSD participants showed significantly greater mu suppression over the sensorimotor cortex of the left hemisphere than residual phase SSD and healthy comparison individuals. The latter two groups showed similar levels of mu suppression. Greater left-sided mu suppression was positively correlated with psychotic symptoms (i.e., greater mu suppression/mirror neuron activity was highest among subjects with the greater severity of psychotic symptoms). SSD subjects tended to have significantly higher levels of Personal Distress (as measured by the Interpersonal Reactivity Index) than healthy participants. The present study suggests that abnormal mirror neuron activity may exist among patients with schizophrenia during the active (psychotic) phase of the illness, and correlates with severity of psychosis.
Collapse
Affiliation(s)
- Laurie M. McCormick
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
,Corresponding author. Department of Psychiatry, Psychiatric Iowa Neuroimaging Consortium, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, W278 GH, Iowa City, IA 52242-1057, USA. Tel.: +1 319 384 7136; fax: +1 319 384 5532.
| | - Michael C. Brumm
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Janelle N. Beadle
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sergio Paradiso
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Thoru Yamada
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nancy Andreasen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
24
|
Landgraf S, Steingen J, Eppert Y, Niedermeyer U, van der Meer E, Krueger F. Temporal information processing in short- and long-term memory of patients with schizophrenia. PLoS One 2011; 6:e26140. [PMID: 22053182 PMCID: PMC3203868 DOI: 10.1371/journal.pone.0026140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.
Collapse
Affiliation(s)
- Steffen Landgraf
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Inserm-Laboratory of Psychopathology and Mental Diseases, Center for Psychiatry and Neuroscience, U984, Sainte Anne Hospital, Service-Hospitalo Universitaire, Paris, France
| | - Joerg Steingen
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yvonne Eppert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Elke van der Meer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Krueger
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- Department of Psychology, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Martins-de-Souza D, Harris LW, Guest PC, Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 2011; 15:2067-79. [PMID: 20673161 DOI: 10.1089/ars.2010.3459] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a psychiatric illness that affects approximately 30 million people worldwide. Converging lines of evidence suggest that mitochondrial function may be compromised in this disorder, and this can lead to perturbations in calcium buffering, oxidative phosphorylation, increased production of reactive oxygen species, and apoptotic factors, which can, in turn, affect neuronal processes such as neurotransmitter synthesis and synaptic plasticity. Proteomics studies in brain and peripheral tissues of schizophrenia patients have provided considerable evidence and identified biomarker fingerprints corresponding to such pathways. Here we review the results of these studies with a focus on the biomarker pattern depicting alterations in energy metabolism and oxidative stress in this debilitating illness.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol Psychiatry 2011; 70:672-9. [PMID: 21784414 PMCID: PMC3496792 DOI: 10.1016/j.biopsych.2011.05.017] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Schizophrenia has a characteristic onset during adolescence or young adulthood but also tends to persist throughout life. Structural magnetic resonance studies indicate that brain abnormalities are present at onset, but longitudinal studies to assess neuroprogression have been limited by small samples and short or infrequent follow-up intervals. METHODS The Iowa Longitudinal Study is a prospective study of 542 first-episode patients who have been followed up to 18 years. In this report, we focus on those patients (n = 202) and control subjects (n = 125) for whom we have adequate structural magnetic resonance data (n = 952 scans) to provide a relatively definitive determination of whether progressive brain change occurs over a time interval of up to 15 years after intake. RESULTS A repeated-measures analysis showed significant age-by-group interaction main effects that represent a significant decrease in multiple gray matter regions (total cerebral, frontal, thalamus), multiple white matter regions (total cerebral, frontal, temporal, parietal), and a corresponding increase in cerebrospinal fluid (lateral ventricles and frontal, temporal, and parietal sulci). These changes were most severe during the early years after onset. They occur at severe levels only in a subset of patients. They are correlated with cognitive impairment but only weakly with other clinical measures. CONCLUSIONS Progressive brain change occurs in schizophrenia, affects both gray matter and white matter, is most severe during the early stages of the illness, and occurs only in a subset of patients. Measuring severity of progressive brain change offers a promising new avenue for phenotype definition in genetic studies of schizophrenia.
Collapse
|
27
|
|
28
|
Testing the Swerdlow/Koob model of schizophrena pathophysiology using positron emission tomography. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00078171] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Habituation in prepulse inhibition is affected by a polymorphism on the NMDA receptor 2B subunit gene (GRIN2B). Psychiatr Genet 2010; 20:191-8. [PMID: 20421849 DOI: 10.1097/ypg.0b013e32833a201d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To identify the reliable connectivity between causal genes or variants with an abnormality expressed in a certain endophenotype has been viewed as a crucial step in unraveling the etiology of schizophrenia because of the considerable heterogeneity in this disorder. METHODS According to this practical and scientific demand, we aimed to investigate the relationship between seven top-ranked variants in the SZgene database [120-bpTR in DRD4, rs1801028 and rs6277 in DRD2, rs1019385 (T200G) in GRIN2B, rs1800532 in TPH1, rs1801133 (C677T) in MTHFR, rs2619528 (P1765) in DTNBP1] and prepulse inhibition (PPI) and habituation after acoustic stimulus (HAB). RESULTS Both PPI and HAB were decreased significantly in patients with schizophrenia. In addition, we observed a significant effect of GRIN2B (human NMDA receptor 2B subunit gene, NR2B) genotype on HAB (P<0.05, not corrected). CONCLUSION Although these findings need to be replicated in other samples, an underlying mechanism of impaired biological reaction may be influenced by NMDA hypofunctioning in schizophrenia.
Collapse
|
30
|
Shenton ME, Whitford TJ, Kubicki M. Structural neuroimaging in schizophrenia: from methods to insights to treatments. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20954428 PMCID: PMC3181976 DOI: 10.31887/dcns.2010.12.3/mshenton] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Historically, Kraepelin speculated that dementia praecox resulted from damage to the cerebral cortex, most notably the frontal and temporal cortices. It is only recently, however, that tools have been available to test this hypothesis. Now, more than a century later, we know that schizophrenia is a brain disorder. This knowledge comes from critical advances in imaging technology--including computerized axial tomography, magnetic resonance imaging, and diffusion imaging--all of which provide an unprecedented view of neuroanatomical structures, in vivo. Here, we review evidence for structural neuroimaging abnormalities, beginning with evidence for focal brain abnormalities, primarily in gray matter, and proceeding to the quest to identify abnormalities in brain systems and circuits by focusing on damage to white matter connections in the brain. We then review future prospects that need to be explored and pursued in order to translate our current knowledge into an understanding of the neurobiology of schizophrenia, which can then be translated into novel treatments.
Collapse
Affiliation(s)
- Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, 1249 Boylston Street Boston, MA 02215, USA.
| | | | | |
Collapse
|
31
|
Andreasen NC. The lifetime trajectory of schizophrenia and the concept of neurodevelopment. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20954434 PMCID: PMC3181981 DOI: 10.31887/dcns.2010.12.3/nandreasen] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defining the lifetime trajectory of schizophrenia and the mechanisms that drive it is one of the major challenges of schizophrenia research. Kraepelin assumed that the mechanisms were neurodegenerative (“dementia praecox”), and the early imaging work using computerized tomography seemed to support this model. Prominent ventricular enlargement and increased cerebrospinal fluid on the brain surface suggested that the brain had atrophied. In the 1980s, however, both neuropathological findings and evidence from magnetic resonance imaging (MRI) provided evidence suggesting that neurodevelopmental mechanisms might be a better explanation. This model is supported by both clinical and MRI evidence, particularly the fact that brain abnormalities are already present in first-episode patients. However, longitudinal studies of these patients have found evidence that brain tissue is also lost during the years after onset. The most parsimonious explanation of these findings is that neurodevelopment is a process that is ongoing throughout life, and that schizophrenia occurs as a consequence of aberrations in neurodevelopmental processes that could occur at various stages of life.
Collapse
Affiliation(s)
- Nancy C Andreasen
- Department of Psychiatry, University of Iowa Health Care, Iowa City, USA.
| |
Collapse
|
32
|
Sandner G, Angst MJ, Guiberteau T, Guignard B, Brasse D. MRI and X-ray scanning images of the brain of 3-, 6- and 9-month-old rats with bilateral neonatal ventral hippocampus lesions. Neuroimage 2010; 53:44-50. [PMID: 20547225 DOI: 10.1016/j.neuroimage.2010.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/31/2010] [Accepted: 06/03/2010] [Indexed: 01/26/2023] Open
Abstract
Rats with bilateral neonatal ventral hippocampus lesions (NVHL) are commonly used for modeling developmental aspects of the pathophysiology of schizophrenia. Given that functional changes become significant only after puberty, NVHL as well as sham-operated rats were analyzed at the ages of 21, 42 and 63days (i.e. as pups, adolescents and adults), using MRI to examine the damage caused by surgery over time. Morphometric evaluations were considered and lesions were classified as small, medium and large. The volume of lesions increased regularly with age, to a greater extent than increases in overall brain size. This was relatively linear, corresponding to a gradually shrinking forebrain, and these observations held true for each class of lesions considered. Following the observation that the lesion procedure elicited calcifications in the brain, the same rats were subjected to 3D X-ray scanning the day after each MRI session, allowing precise measurements of skull size to be carried out. The NVHL rats had smaller skulls; however, the dimensions of the calcifications did not grow more than the skull size over time. The mechanisms underlying the progressive anatomical changes following surgery are discussed, and we propose this in vivo follow-up method to investigate therapeutic strategies aimed at countering or limiting the post-lesion consequences of a neonatal brain damage.
Collapse
Affiliation(s)
- Guy Sandner
- U666 INSERM, Faculté de Médecine, Université de Strasbourg (UDS), France.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striatopallido-thalamic function. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00047488] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractConsiderable evidence from preclinical and clinical investigations implicates disturbances of brain dopamine (DA) function in the pathophysiology of several psychiatric and neurologic disorders. We describe a neural model that may help organize theseindependent experimental observations. Cortical regions classically associated with the limbic system interact with infracortical structures, including the nucleus accumbens, ventral pallidum, and dorsomedial nucleus of the thalamus. In our model, overactivity in forebrain DA systems results in the loss of lateral inhibitory interactions in the nucleus accumbens, causing disinhibition of pallidothalamic efferents; this in turn causes rapid changes and a loss of focused corticothalamic activity in cortical regions controlling cognitive and emotional processes. These effects might be manifested clinically by some symptoms of psychoses. Underactivity of forebrain DA results in excess lateral inhibition in the nucleus accumbens, causing tonic inhibition of pallidothalamic efferents; this perpetuates tonic corticothalamic activity and prevents the initiation of new activity in other critical cortical regions. These effects might be manifested clinically by some symptoms of depression. This model parallels existing explanations for the etiology of several movement disorders, and may lead to testable inferences regarding the neural substrates of specific psychopathologies.
Collapse
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
Buchsbaum MS, Haznedar M, Newmark RE, Chu KW, Dusi N, Entis JJ, Goldstein KE, Goodman CR, Gupta A, Hazlett E, Iannuzzi J, Torosjan Y, Zhang J, Wolkin A. FDG-PET and MRI imaging of the effects of sertindole and haloperidol in the prefrontal lobe in schizophrenia. Schizophr Res 2009; 114:161-71. [PMID: 19695836 DOI: 10.1016/j.schres.2009.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 11/30/2022]
Abstract
Sertindole, a 2nd generation antipsychotic with low movement disorder side effects, was compared with haloperidol in a 6-week crossover study. Fifteen patients with schizophrenia (mean age=42.6, range=22-59, 11 men and 4 women) received sertindole (12-24 mg) or haloperidol (4-16 mg) for 6 weeks and then received a FDG-PET scan and an anatomical MRI. Patients were then crossed to the other treatment and received a second set of scans at week 12. Dose was adjusted by a physician blind to the medication type. Brodmann areas were identified stereotaxically using individual MRI templates applied to the coregistered FDG-PET image. Sertindole administration was associated with higher dorsolateral prefrontal cortex metabolic rates than haloperidol and lower orbitofrontal metabolic rates than haloperidol. This effect was greatest for gray matter of the dorsolateral Brodmann areas 8, 9, 10, 44, 45, and 46. Patients were further contrasted with an approximately age and sex-matched group of 33 unmedicated patients with schizophrenia and with a group of 55 normal volunteers. Sertindole administration was associated with greater change toward normal values and away from the values found in the unmedicated comparison group for dorsolateral prefrontal cortex gray matter and white matter underlying medial prefrontal and cingulate cortex. These results are consistent with the low motor side-effect profile of sertindole, greater improvement on prefrontal cognitive tasks with sertindole than haloperidol, and with the tendency of 2nd generation antipsychotic drugs to have greater frontal activation than haloperidol.
Collapse
|
45
|
Ueda K, Fujiwara H, Miyata J, Hirao K, Saze T, Kawada R, Fujimoto S, Tanaka Y, Sawamoto N, Fukuyama H, Murai T. Investigating association of brain volumes with intracranial capacity in schizophrenia. Neuroimage 2009; 49:2503-8. [PMID: 19770046 DOI: 10.1016/j.neuroimage.2009.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/27/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022] Open
Abstract
Intracranial volume (ICV) is usually treated as a global or nuisance covariate in almost all volumetric studies of schizophrenia. However, validation for this analytic method has seldom been accomplished. In this study, we aimed to determine the effects of ICV on gray matter (GM) and white matter (WM) volumes. Sixty-three patients with schizophrenia and sixty normal controls were recruited; and high resolution T1 weighted images were obtained by 3T-MRI. After segmentation and normalization of the images into GM, WM, and cerebrospinal fluid (CSF), multiple regression analyses of global GM and WM volumes were performed using explanatory variables such as diagnosis, ICV, and diagnosis-ICV interaction. In addition, associations between regional GM and WM volumes with ICV were also investigated using voxel-based morphometry (VBM). No significant interaction between diagnosis and ICV was found for global GM volume, whereas interactions were detected in restricted GM areas using VBM. On the other hand, an interaction between ICV and diagnosis was found in WM not only for regional volumes, but also for global WM volume. The regression slope of global WM volumes against ICV was steeper in patients with schizophrenia than in healthy controls. These results imply that ICV should be carefully evaluated in the analyses of volumetric studies of schizophrenia, especially when analyzing WM volumes.
Collapse
Affiliation(s)
- Keita Ueda
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Höistad M, Segal D, Takahashi N, Sakurai T, Buxbaum JD, Hof PR. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat 2009; 3:9. [PMID: 19636386 PMCID: PMC2713751 DOI: 10.3389/neuro.05.009.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malin Höistad
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Devorah Segal
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Nagahide Takahashi
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
47
|
Raˇdulescu A. A multi-etiology model of systemic degeneration in schizophrenia. J Theor Biol 2009; 259:269-79. [DOI: 10.1016/j.jtbi.2009.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/08/2009] [Accepted: 03/11/2009] [Indexed: 01/14/2023]
|
48
|
Abstract
Neuroimaging is a powerful tool for the study of the neurobiological changes in psychiatric disorders. Functional magnetic resonance imaging (MRI) is a noninvasive method that assesses cortical activation by measuring changes in the local concentration of deoxyhemoglobin, which is paramagnetic and therefore can be detected using MRI. This method has been referred to as blood oxygen level-dependent imaging. This article discusses the application of functional MRI techniques, with emphasis on blood oxygen level-dependent imaging, to the study of psychiatric diseases. The first part of the article provides an overview of the contribution of functional MRI research to the current understanding of mood disorders, schizophrenia, and substance abuse. The last part reviews recent advances and highlights future directions for the use of the functional MRI technique for psychiatric research.
Collapse
|
49
|
Wang L, Mamah D, Harms MP, Karnik M, Price JL, Gado MH, Thompson PA, Barch DM, Miller MI, Csernansky JG. Progressive deformation of deep brain nuclei and hippocampal-amygdala formation in schizophrenia. Biol Psychiatry 2008; 64:1060-8. [PMID: 18814865 PMCID: PMC2855119 DOI: 10.1016/j.biopsych.2008.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND Progressive decreases in cortical gray matter volume have been reported in schizophrenia. However, studies of progressive change in deep brain nuclei and hippocampal-amygdala formation have not yielded consistent findings. METHODS Two high-resolution, T1-weighted magnetic resonance images were collected 2 years apart in 56 schizophrenia and 62 control subjects. Large-deformation high-dimensional brain mapping was used to generate surfaces for deep brain nuclei and hippocampal-amygdala formation at baseline and follow-up. Repeated-measures analysis of variance was used to test for longitudinal changes in volume and shape. RESULTS The pattern of progressive changes in the deep brain nuclei and hippocampal-amygdala formation in schizophrenia and control subjects was variable. Of the structures that receive direct projections from the cortex, the thalamus, caudate nucleus, nucleus accumbens, and hippocampus showed changes specific to subjects with schizophrenia, and changes in the amygdala and putamen were similar in both groups. Although different at baseline, no progressive change was observed in the globus pallidus, which does not receive direct projections from the cortex. CONCLUSIONS These findings suggest that the disease process of schizophrenia is associated with progressive effects on brain structure and that brain structures that receive direct, excitatory connections from the cortex may be more likely to show progressive changes, compared with brain structures that receive indirect, inhibitory connections from the cortex. These findings are also somewhat consistent with the hypothesis that overactivity of excitatory pathways in the brain may contribute to the neural degeneration that occurs in at least a subgroup of individuals with schizophrenia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Raˇdulescu A. Schizophrenia—a parameters’ game? J Theor Biol 2008; 254:89-98. [DOI: 10.1016/j.jtbi.2008.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/18/2008] [Accepted: 05/02/2008] [Indexed: 11/25/2022]
|