1
|
Meyhoefer I, Sprenger A, Derad D, Grotegerd D, Leenings R, Leehr EJ, Breuer F, Surmann M, Rolfes K, Arolt V, Romer G, Lappe M, Rehder J, Koutsouleris N, Borgwardt S, Schultze-Lutter F, Meisenzahl E, Kircher TTJ, Keedy SS, Bishop JR, Ivleva EI, McDowell JE, Reilly JL, Hill SK, Pearlson GD, Tamminga CA, Keshavan MS, Gershon ES, Clementz BA, Sweeney JA, Hahn T, Dannlowski U, Lencer R. Evidence from comprehensive independent validation studies for smooth pursuit dysfunction as a sensorimotor biomarker for psychosis. Sci Rep 2024; 14:13859. [PMID: 38879556 PMCID: PMC11180169 DOI: 10.1038/s41598-024-64487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 64% for the prediction of psychosis status are in line with recent results from other large heterogenous psychiatric samples. They are confirmed by external validation in independent large samples including probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis (N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis syndromes. Our findings make a significant contribution to the identification of biologically defined profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of sensorimotor dysfunction in psychosis.
Collapse
Affiliation(s)
- Inga Meyhoefer
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Duesseldorf/LVR, Duesseldorf, Germany
| | - Andreas Sprenger
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - David Derad
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Marian Surmann
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Karen Rolfes
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Georg Romer
- Department of Child Adolescence Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Markus Lappe
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Institute of Psychology, University of Muenster, Muenster, Germany
| | - Johanna Rehder
- Institute of Psychology, University of Muenster, Muenster, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Munich, Munich, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Max-Planck-Institute of Psychiatry Munich, Munich, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany
- Department of Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Duesseldorf/LVR, Duesseldorf, Germany
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Duesseldorf/LVR, Duesseldorf, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Sarah S Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
| | - Elena I Ivleva
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scot Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, and Olin Research Center, Institute of Living/Hartford Hospital, Hartford, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany.
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany.
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
2
|
Lyu H, St Clair D, Wu R, Benson PJ, Guo W, Wang G, Liu Y, Hu S, Zhao J. Eye Movement Abnormalities Can Distinguish First-Episode Schizophrenia, Chronic Schizophrenia, and Prodromal Patients From Healthy Controls. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgac076. [PMID: 39145342 PMCID: PMC11207660 DOI: 10.1093/schizbullopen/sgac076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background This study attempts to replicate in a Chinese population an earlier UK report that eye movement abnormalities can accurately distinguish schizophrenia (SCZ) cases from healthy controls (HCs). It also seeks to determine whether first-episode SCZ differ from chronic SCZ and whether these eye movement abnormalities are enriched in psychosis risk syndrome (PRS). Methods The training set included 104 Chinese HC and 60 Chinese patients with SCZ, and the testing set included 20 SCZ patients and 20 HC from a UK cohort. An additional 16 individuals with PRS were also enrolled. Eye movements of all participants were recorded during free-viewing, smooth pursuit, and fixation stability tasks. Group differences in 55 performance measures were compared and a gradient-boosted decision tree model was built for predictive analyses. Results Extensive eye-movement abnormalities were observed in patients with SCZ on almost all eye-movement tests. On almost all individual variables, first-episode patients showed no statistically significant differences compared with chronic patients. The classification model was able to discriminate patients from controls with an area under the curve of 0.87; the model also classified 88% of PRS individuals as SCZ-like. Conclusions Our findings replicate and extend the UK results. The overall accuracy of the Chinese study is virtually identical to the UK findings. We conclude that eye-movement abnormalities appear early in the natural history of the disorder and can be considered as potential trait markers for SCZ diathesis.
Collapse
Affiliation(s)
- Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - David St Clair
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Renrong Wu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Philip J Benson
- Department of Psychology, University of Aberdeen, Aberdeen, UK
| | - Wenbin Guo
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guodong Wang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Hangzhou, China
| | - Jingping Zhao
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Chrobak AA, Rybakowski JK, Abramowicz M, Perdziak M, Gryncewicz W, Dziuda S, Fafrowicz M, Czarnecki P, Soltys Z, Ceglarek A, Ober JK, Marek T, Dudek D, Siwek M. Vergence eye movements impairments in schizophrenia and bipolar disorder. J Psychiatr Res 2022; 156:379-389. [PMID: 36323140 DOI: 10.1016/j.jpsychires.2022.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
One of the most evaluated eye tracking tasks in schizophrenia (SZ) and bipolar disorder (BD) are smooth pursuit eye movements. They rely on the maintenance of slowly moving object on the fovea. While most of the studies evaluated tracking of a target that moves in the fronto-parallel plane, only two assessed vergence eye movements (VEM), which relies on the pursuit of object that moves in depth. The aim of our study was to compare VEM performance in SZ and BD. We evaluated 28 SZ patients, 32 BD patients and 25 healthy controls (HC). Participants underwent thorough optometric examination before eye tracking task. VEM were measured with the use of infrared eye tracker and dedicated vergence stimuli generator. SZ patients showed higher mean break and recovery points of fusion and shorter correct tracking time than HC. BD individuals revealed tracking accuracy deficits and higher number of saccades than HC. Compared to BD, SZ patients showed decrease of maximal convergence and divergence. Moreover, they presented tracking accuracy deficits of non-dominant eye: altered eyes positioning error during convergence and divergence gain. Exploratory analysis revealed significant gender differences between groups in terms of binocular VEM parameters. In this study we have recognized pattern of eye movement disturbances differentiating abovementioned groups. SZ patients showed decreased vergence tracking range with shorter tracking time and impaired accuracy of non-dominant eye, while BD patients showed higher number of saccades with decreased tracking accuracy. Neuroimaging studies are necessary to identify neuronal underpinnings of VEM impairments in SZ and BD.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Jagiellonian University Medical College, Department of Adult Psychiatry, Kopernika St. 21a, 31-501, Cracow, Poland
| | - Janusz Kazimierz Rybakowski
- Poznan University of Medical Sciences, Department of Adult Psychiatry, Szpitalna St. 27/33, 61-572, Poznań, Poland
| | - Maria Abramowicz
- Poznan University of Medical Sciences, Department of Adult Psychiatry, Szpitalna St. 27/33, 61-572, Poznań, Poland
| | - Maciej Perdziak
- Poznan University of Medical Sciences, Department of Optometry, Chair of Ophthalmology and Optometry, Rokietnicka St. 5D, 60-806, Poznań, Poland
| | - Wojciech Gryncewicz
- Polish Academy of Sciences, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Księcia Trojdena St. 4, 02-109, Warsaw, Poland
| | - Sebastian Dziuda
- Poznan University of Medical Sciences, Department of Adult Psychiatry, Szpitalna St. 27/33, 61-572, Poznań, Poland
| | - Magdalena Fafrowicz
- Jagiellonian University, Institute of Applied Psychology, Department of Cognitive Neuroscience and Neuroergonomics, Łojasiewicza St. 4, 30-348, Cracow, Poland
| | - Paweł Czarnecki
- Polish Academy of Sciences, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Księcia Trojdena St. 4, 02-109, Warsaw, Poland
| | - Zbigniew Soltys
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387, Cracow, Poland
| | - Anna Ceglarek
- Jagiellonian University, Institute of Applied Psychology, Department of Cognitive Neuroscience and Neuroergonomics, Łojasiewicza St. 4, 30-348, Cracow, Poland
| | - Jan Krzysztof Ober
- Poznan University of Medical Sciences, Department of Optometry, Chair of Ophthalmology and Optometry, Rokietnicka St. 5D, 60-806, Poznań, Poland
| | - Tadeusz Marek
- Jagiellonian University, Institute of Applied Psychology, Department of Cognitive Neuroscience and Neuroergonomics, Łojasiewicza St. 4, 30-348, Cracow, Poland
| | - Dominika Dudek
- Jagiellonian University Medical College, Department of Adult Psychiatry, Kopernika St. 21a, 31-501, Cracow, Poland
| | - Marcin Siwek
- Jagiellonian University Medical College, Department of Affective Disorders, Kopernika St. 21a, 31-501, Cracow, Poland.
| |
Collapse
|
4
|
Zhang T, Yang Y, Xu L, Tang X, Hu Y, Xiong X, Wei Y, Cui H, Tang Y, Liu H, Chen T, Liu Z, Hui L, Li C, Guo X, Wang J. Inefficient integration during multiple facial processing in pre-morbid and early phases of psychosis. World J Biol Psychiatry 2022; 23:361-373. [PMID: 34842500 DOI: 10.1080/15622975.2021.2011402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES We used eye-tracking to evaluate multiple facial context processing and event-related potential (ERP) to evaluate multiple facial recognition in individuals at clinical high risk (CHR) for psychosis. METHODS In total, 173 subjects (83 CHRs and 90 healthy controls [HCs]) were included and their emotion perception performances were accessed. A total of 40 CHRs and 40 well-matched HCs completed an eye-tracking task where they viewed pictures depicting a person in the foreground, presented as context-free, context-compatible, and context-incompatible. During the two-year follow-up, 26 CHRs developed psychosis, including 17 individuals who developed first-episode schizophrenia (FES). Eighteen well-matched HCs were made to complete the face number detection ERP task with image stimuli of one, two, or three faces. RESULTS Compared to the HC group, the CHR group showed reduced visual attention to contextual processing when viewing multiple faces. With the increasing complexity of contextual faces, the differences in eye-tracking characteristics also increased. In the ERP task, the N170 amplitude decreased with a higher face number in FES patients, while it increased with a higher face number in HCs. CONCLUSIONS Individuals in the very early phase of psychosis showed facial processing deficits with supporting evidence of different scan paths during context processing and disruption of N170 during multiple facial recognition.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - YingYu Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - Xin Xiong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Waterloo, Ontario, Canada.,Senior Research Fellow, Labor and Worklife Program, Harvard University, Cambridge, Massachusetts, United States.,Niacin (Shanghai) Technology Co., Ltd, Shanghai, China
| | - Zhi Liu
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Li Hui
- Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China
| | - XiaoLi Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders(13dz2260500), Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Schröder R, Kasparbauer AM, Meyhöfer I, Steffens M, Trautner P, Ettinger U. Functional connectivity during smooth pursuit eye movements. J Neurophysiol 2020; 124:1839-1856. [PMID: 32997563 DOI: 10.1152/jn.00317.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth pursuit eye movements (SPEM) hold the image of a slowly moving stimulus on the fovea. The neural system underlying SPEM primarily includes visual, parietal, and frontal areas. In the present study, we investigated how these areas are functionally coupled and how these couplings are influenced by target motion frequency. To this end, healthy participants (n = 57) were instructed to follow a sinusoidal target stimulus moving horizontally at two different frequencies (0.2 Hz, 0.4 Hz). Eye movements and blood oxygen level-dependent (BOLD) activity were recorded simultaneously. Functional connectivity of the key areas of the SPEM network was investigated with a psychophysiological interaction (PPI) approach. How activity in five eye movement-related seed regions (lateral geniculate nucleus, V1, V5, posterior parietal cortex, frontal eye fields) relates to activity in other parts of the brain during SPEM was analyzed. The behavioral results showed clear deterioration of SPEM performance at higher target frequency. BOLD activity during SPEM versus fixation occurred in a geniculo-occipito-parieto-frontal network, replicating previous findings. PPI analysis yielded widespread, partially overlapping networks. In particular, frontal eye fields and posterior parietal cortex showed task-dependent connectivity to large parts of the entire cortex, whereas other seed regions demonstrated more regionally focused connectivity. Higher target frequency was associated with stronger activations in visual areas but had no effect on functional connectivity. In summary, the results confirm and extend previous knowledge regarding the neural mechanisms underlying SPEM and provide a valuable basis for further investigations such as in patients with SPEM impairments and known alterations in brain connectivity.NEW & NOTEWORTHY This study provides a comprehensive investigation of blood oxygen level-dependent (BOLD) functional connectivity during smooth pursuit eye movements. Results from a large sample of healthy participants suggest that key oculomotor regions interact closely with each other but also with regions not primarily associated with eye movements. Understanding functional connectivity during smooth pursuit is important, given its potential role as an endophenotype of psychoses.
Collapse
Affiliation(s)
| | | | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Peter Trautner
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Core Facility MRI, Bonn Technology Campus, University of Bonn, Bonn, Germany
| | | |
Collapse
|
6
|
Hudgens-Haney ME, Clementz BA, Ivleva EI, Keshavan MS, Pearlson GD, Gershon ES, Keedy SK, Sweeney JA, Gaudoux F, Bunouf P, Canolle B, Tonner F, Gatti-McArthur S, Tamminga CA. Cognitive Impairment and Diminished Neural Responses Constitute a Biomarker Signature of Negative Symptoms in Psychosis. Schizophr Bull 2020; 46:1269-1281. [PMID: 32043133 PMCID: PMC7505197 DOI: 10.1093/schbul/sbaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The treatment of negative symptoms (NS) in psychosis represents an urgent unmet medical need given the significant functional impairment it contributes to psychosis syndromes. The lack of progress in treating NS is impacted by the lack of known pathophysiology or associated quantitative biomarkers, which could provide tools for research. This current analysis investigated potential associations between NS and an extensive battery of behavioral and brain-based biomarkers in 932 psychosis probands from the B-SNIP database. The current analyses examined associations between PANSS-defined NS and (1) cognition, (2) pro-/anti-saccades, (3) evoked and resting-state electroencephalography (EEG), (4) resting-state fMRI, and (5) tractography. Canonical correlation analyses yielded symptom-biomarker constructs separately for each biomarker modality. Biomarker modalities were integrated using canonical discriminant analysis to summarize the symptom-biomarker relationships into a "biomarker signature" for NS. Finally, distinct biomarker profiles for 2 NS domains ("diminished expression" vs "avolition/apathy") were computed using step-wise linear regression. NS were associated with cognitive impairment, diminished EEG response amplitudes, deviant resting-state activity, and oculomotor abnormalities. While a connection between NS and poor cognition has been established, association to neurophysiology is novel, suggesting directions for future mechanistic studies. Each biomarker modality was related to NS in distinct and complex ways, giving NS a rich, interconnected fingerprint and suggesting that any one biomarker modality may not adequately capture the full spectrum of symptomology.
Collapse
Affiliation(s)
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT
- Institute of Living, Hartford Hospital, Hartford, CT
| | | | - Sarah K Keedy
- Department of Psychiatry, University of Chicago, Chicago, IL
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | | | | | | | | | | | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
7
|
Brakemeier S, Sprenger A, Meyhöfer I, McDowell JE, Rubin LH, Hill SK, Keshavan MS, Pearlson GD, Tamminga CA, Gershon ES, Keedy SS, Sweeney JA, Clementz BA, Lencer R. Smooth pursuit eye movement deficits as a biomarker for psychotic features in bipolar disorder-Findings from the PARDIP study. Bipolar Disord 2020; 22:602-611. [PMID: 31721386 DOI: 10.1111/bdi.12865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Smooth pursuit eye movement deficits are an established psychosis biomarker across schizophrenia, schizoaffective and psychotic bipolar disorder (BPwP). Whether smooth pursuit deficits are also seen in bipolar disorder without psychosis (BPwoP) is unclear. Here we present data from the Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP) study comparing bipolar patients with and without psychotic features. METHODS Probands with BPwP (N = 49) and BPwoP (N = 36), and healthy controls (HC, N = 71) performed eye tracking tasks designed to evaluate specific sensorimotor components relevant for pursuit initiation and pursuit maintenance. RESULTS While BPwoP did not differ from either BPwP or HC on initial eye acceleration, they performed significantly better than BPwP on early (P < .01) and predictive (P = .02) pursuit maintenance measures, both without differing from HC. BPwP were impaired compared to HC on initial eye acceleration, and on early and predictive pursuit maintenance (all P < .01). In contrast to the three pursuit measures, BPwP and BPwoP were both impaired on general neurocognitive assessments in relation to HC (both P < .001), without a significant difference between the two bipolar patient groups. CONCLUSIONS Our findings support the model that impairments of sensorimotor and cognitive processing as required for early and later predictive smooth pursuit maintenance are relatively specific to those bipolar patients with a history of psychosis. This suggests that the neural circuitry for developing feed-forward predictive models for accurate pursuit maintenance is associated with the occurrence of psychotic features in bipolar patients. In contrast, generalized neuropsychological impairments did not differentiate the two bipolar patient groups.
Collapse
Affiliation(s)
- Svenja Brakemeier
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Andreas Sprenger
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Inga Meyhöfer
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School, Beth Israel Deacones Medical Center, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, and Olin Research Center, Institute of Living/Hartford Hospital, Hartford, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Sarah S Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| |
Collapse
|
8
|
Barton JJS, Ranalli PJ. Vision Therapy: Ocular Motor Training in Mild Traumatic Brain Injury. Ann Neurol 2020; 88:453-461. [DOI: 10.1002/ana.25820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jason J. S. Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, and PsychologyUniversity of British Columbia Vancouver British Columbia Canada
| | - Paul J. Ranalli
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, and Oto‐LaryngologyUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
9
|
Meyhöfer I, Kumari V, Hill A, Petrovsky N, Ettinger U. Sleep deprivation as an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and antisaccades. J Psychopharmacol 2017; 31:418-433. [PMID: 28347256 DOI: 10.1177/0269881116675511] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current antipsychotic medications fail to satisfactorily reduce negative and cognitive symptoms and produce many unwanted side effects, necessitating the development of new compounds. Cross-species, experimental behavioural model systems can be valuable to inform the development of such drugs. The aim of the current study was to further test the hypothesis that controlled sleep deprivation is a safe and effective model system for psychosis when combined with oculomotor biomarkers of schizophrenia. Using a randomized counterbalanced within-subjects design, we investigated the effects of 1 night of total sleep deprivation in 32 healthy participants on smooth pursuit eye movements (SPEM), prosaccades (PS), antisaccades (AS), and self-ratings of psychosis-like states. Compared with a normal sleep control night, sleep deprivation was associated with reduced SPEM velocity gain, higher saccadic frequency at 0.2 Hz, elevated PS spatial error, and an increase in AS direction errors. Sleep deprivation also increased intra-individual variability of SPEM, PS, and AS measures. In addition, sleep deprivation induced psychosis-like experiences mimicking hallucinations, cognitive disorganization, and negative symptoms, which in turn had moderate associations with AS direction errors. Taken together, sleep deprivation resulted in psychosis-like impairments in SPEM and AS performance. However, diverging somewhat from the schizophrenia literature, sleep deprivation additionally disrupted PS control. Sleep deprivation thus represents a promising but possibly unspecific experimental model that may be helpful to further improve our understanding of the underlying mechanisms in the pathophysiology of psychosis and aid the development of antipsychotic and pro-cognitive drugs.
Collapse
Affiliation(s)
- Inga Meyhöfer
- 1 Department of Psychology, University of Bonn, Bonn, Germany
| | - Veena Kumari
- 2 Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,3 NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Antje Hill
- 1 Department of Psychology, University of Bonn, Bonn, Germany.,4 Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| | | | - Ulrich Ettinger
- 1 Department of Psychology, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Morita K, Miura K, Fujimoto M, Yamamori H, Yasuda Y, Iwase M, Kasai K, Hashimoto R. Eye movement as a biomarker of schizophrenia: Using an integrated eye movement score. Psychiatry Clin Neurosci 2017; 71:104-114. [PMID: 27673731 DOI: 10.1111/pcn.12460] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
AIM Studies have shown that eye movement abnormalities are possible neurophysiological biomarkers for schizophrenia. The aim of this study was to investigate the utility of eye movement abnormalities in identifying patients with schizophrenia from healthy controls. METHODS Eighty-five patients with schizophrenia and 252 healthy controls participated in this study. Eye movement measures were collected from free viewing, fixation stability, and smooth pursuit tests. In an objective and stepwise method, eye movement measures were extracted to create an integrated eye movement score. RESULTS The discriminant analysis resulted in three eye movement measures; the scanpath length during the free viewing test, the horizontal position gain during the fast Lissajous paradigm of the smooth pursuit test, and the duration of fixations during the far distractor paradigm of the fixation stability test. An integrated score using these variables can distinguish patients with schizophrenia from healthy controls with 82% accuracy. The integrated score was correlated with Wechsler Adult Intelligence Scale-Third Edition full scale IQ, Positive and Negative Syndrome Scale scores, and chlorpromazine equivalents, with different correlation patterns in the three eye movement measures used. The discriminant analysis in subgroups matched for age, sex, years of education, and premorbid IQ revealed a sustained classification rate. CONCLUSION We established an integrated eye movement score with high classification accuracy between patients with schizophrenia and healthy controls, although there was a significant effect of medication. This study provides further evidence of the utility of eye movement abnormalities in schizophrenia pathology and treatment.
Collapse
Affiliation(s)
- Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.,Oncology Center, Osaka University Hospital, Osaka, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
De Rossi P, Chiapponi C, Spalletta G. Brain Functional Effects of Psychopharmacological Treatments in Schizophrenia: A Network-based Functional Perspective Beyond Neurotransmitter Systems. Curr Neuropharmacol 2016; 13:435-44. [PMID: 26412063 PMCID: PMC4790396 DOI: 10.2174/1570159x13666150507223542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Psychopharmacological treatments for schizophrenia have always been a matter of debate and a very important issue in public health given the chronic, relapsing and disabling nature of the disorder. A thorough understanding of the pros and cons of currently available pharmacological treatments for schizophrenia is critical to better capture the features of treatment-refractory clinical pictures and plan the developing of new treatment strategies. This review focuses on brain functional changes induced by antipsychotic drugs as assessed by modern functional neuroimaging techniques (i.e. fMRI, PET, SPECT, MRI spectroscopy). The most important papers on this topic are reviewed in order to draw an ideal map of the main functional changes occurring in the brain during antipsychotic treatment. This supports the hypothesis that a network-based perspective and a functional connectivity approach are needed to fill the currently existing gap of knowledge in the field of psychotropic drugs and their mechanisms of action beyond neurotransmitter systems.
Collapse
Affiliation(s)
| | | | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179 Rome, Italy.
| |
Collapse
|
12
|
Lencer R, Sprenger A, Reilly JL, McDowell JE, Rubin LH, Badner JA, Keshavan MS, Pearlson GD, Tamminga CA, Gershon ES, Clementz BA, Sweeney JA. Pursuit eye movements as an intermediate phenotype across psychotic disorders: Evidence from the B-SNIP study. Schizophr Res 2015; 169:326-333. [PMID: 26481615 PMCID: PMC4681655 DOI: 10.1016/j.schres.2015.09.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 10/22/2022]
Abstract
Smooth pursuit eye tracking deficits are a promising intermediate phenotype for schizophrenia and possibly for psychotic disorders more broadly. The Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium investigated the severity and familiality of different pursuit parameters across psychotic disorders. Probands with schizophrenia (N=265), schizoaffective disorder (N=178), psychotic bipolar disorder (N=231), their first-degree relatives (N=306, N=217, N=273, respectively) and healthy controls (N=305) performed pursuit tracking tasks designed to evaluate sensorimotor and cognitive/predictive aspects of pursuit. Probands from all diagnostic groups were impaired on all pursuit measures of interest compared to controls (p<0.001). Schizophrenia probands were more impaired than other proband groups on both early pursuit gain and predictive gain. Relatives with and without enhanced psychosis spectrum personality traits were impaired on initial eye acceleration, the most direct sensorimotor pursuit measure, but not on pursuit gain measures. This suggests that alterations in early sensorimotor function may track susceptibility to psychosis even in the absence of psychosis related personality traits. There were no differences in pursuit measures between relatives of the three proband groups. Familiality estimates of pursuit deficits indicate that early pursuit gain was more familial than predictive gain, which has been the most widely used measure in previous family studies of psychotic disorders. Thus, while disease-related factors may induce significant impairments of pursuit gain, especially in schizophrenia, the pattern of deficits in relatives and their familiality estimates suggest that alterations in sensorimotor function at pursuit onset may indicate increased susceptibility across psychotic disorders.
Collapse
Affiliation(s)
- Rebekka Lencer
- Department of Psychiatry and Psychotherapy, and Otto Creutzfeld Center, University of Muenster, Muenster, Germany
| | - Andreas Sprenger
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - James L. Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | | | - Leah H. Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, USA
| | - Judith A. Badner
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Harvard Medical School, Beth Israel Deacones Medical Center, Boston, USA
| | - Godfrey D. Pearlson
- Departments of Psychiatry and Neurobiology, Yale School of Medicine, and Olin Research Center, Institute of Living/Hartford Hospital, Hartford, USA
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, USA
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | | | - John A. Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
13
|
Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 2015; 9:296. [PMID: 26388713 PMCID: PMC4555040 DOI: 10.3389/fnins.2015.00296] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas Lawrence, KS, USA ; Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| | - Zheng Wang
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Lauren M Schmitt
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Peter Tsai
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA ; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Dallas, TX, USA ; Department of Neuroscience, University of Texas Southwestern Dallas, TX, USA
| | - John A Sweeney
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| |
Collapse
|
14
|
Schwab S, Jost M, Altorfer A. Impaired top-down modulation of saccadic latencies in patients with schizophrenia but not in first-degree relatives. Front Behav Neurosci 2015; 9:44. [PMID: 25759644 PMCID: PMC4338814 DOI: 10.3389/fnbeh.2015.00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023] Open
Abstract
Impaired eye movements have a long history in schizophrenia research and meet the criteria of a reliable biomarker. However, the effects of cognitive load and task difficulty on saccadic latencies (SL) are less understood. Recent studies showed that SL are strongly task dependent: SL are decreased in tasks with higher cognitive demand, and increased in tasks with lower cognitive demand. The present study investigates SL modulation in patients with schizophrenia and their first-degree relatives. A group of 13 patients suffering from ICD-10 schizophrenia, 10 first-degree relatives, and 24 control subjects performed two different types of visual tasks: a color task and a Landolt ring orientation task. We used video-based oculography to measure SL. We found that patients exhibited a similar unspecific SL pattern in the two different tasks, whereas controls and relatives exhibited 20–26% shorter average latencies in the orientation task (higher cognitive demand) compared to the color task (lower cognitive demand). Also, classification performance using support vector machines suggests that relatives should be assigned to the healthy controls and not to the patient group. Therefore, visual processing of different content does not modulate SL in patients with schizophrenia, but modulates SL in the relatives and healthy controls. The results reflect a specific oculomotor attentional dysfunction in patients with schizophrenia that is a potential state marker, possibly caused by impaired top-down disinhibition of the superior colliculus by frontal/prefrontal areas such as the frontal eye fields.
Collapse
Affiliation(s)
- Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Miriam Jost
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Andreas Altorfer
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| |
Collapse
|
15
|
Association of variants in DRD2 and GRM3 with motor and cognitive function in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci 2014; 264:345-55. [PMID: 24682224 PMCID: PMC4290665 DOI: 10.1007/s00406-013-0464-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
Similar smooth pursuit eye tracking dysfunctions are present across psychotic disorders. They include pursuit initiation and maintenance deficits that implicate different functional brain systems. This candidate gene study examined psychosis-related genotypes regulating dopamine and glutamate neurotransmission in relation to these pursuit deficits. One hundred and thirty-eight untreated first-episode patients with a psychotic disorder were genotyped for four markers in DRD2 and four markers in GRM3. The magnitude of eye movement abnormality in patients was defined in relation to performance of matched healthy controls (N = 130). Eighty three patients were followed after 6 weeks of antipsychotic treatment. At baseline, patients with a -141C deletion in DRD2 rs1799732 had slower initiation eye velocity and longer pursuit latency than CC insertion carriers. Further, GRM3 rs274622_CC carriers had poorer pursuit maintenance than T-carriers. Antipsychotic treatment resulted in prolonged pursuit latency in DRD2 rs1799732_CC insertion carriers and a decline in pursuit maintenance in GRM3 rs6465084_GG carriers. The present study demonstrates for the first time that neurophysiological measures of motor and neurocognitive deficits in patients with psychotic disorders have different associations with genes regulating dopamine and glutamate systems, respectively. Alterations in striatal D2 receptor activity through the -141C Ins/Del polymorphism could contribute to pursuit initiation deficits in psychotic disorders. Alterations in GRM3 coding for the mGluR3 protein may impair pursuit maintenance by compromising higher perceptual and cognitive processes that depend on optimal glutamate signaling in corticocortical circuits. DRD2 and GRM3 genotypes also selectively modulated the severity of adverse motor and neurocognitive changes resulting from antipsychotic treatment.
Collapse
|
16
|
Schmechtig A, Lees J, Perkins A, Altavilla A, Craig KJ, Dawson GR, William Deakin JF, Dourish CT, Evans LH, Koychev I, Weaver K, Smallman R, Walters J, Wilkinson LS, Morris R, Williams SCR, Ettinger U. The effects of ketamine and risperidone on eye movement control in healthy volunteers. Transl Psychiatry 2013; 3:e334. [PMID: 24326395 PMCID: PMC4030328 DOI: 10.1038/tp.2013.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023] Open
Abstract
The non-competitive N-methyl-D-aspartate receptor antagonist ketamine leads to transient psychosis-like symptoms and impairments in oculomotor performance in healthy volunteers. This study examined whether the adverse effects of ketamine on oculomotor performance can be reversed by the atypical antipsychotic risperidone. In this randomized double-blind, placebo-controlled study, 72 healthy participants performed smooth pursuit eye movements (SPEM), prosaccades (PS) and antisaccades (AS) while being randomly assigned to one of four drug groups (intravenous 100 ng ml(-1) ketamine, 2 mg oral risperidone, 100 ng ml(-1) ketamine plus 2 mg oral risperidone, placebo). Drug administration did not lead to harmful adverse events. Ketamine increased saccadic frequency and decreased velocity gain of SPEM (all P < 0.01) but had no significant effects on PS or AS (all P > or = 0.07). An effect of risperidone was observed for amplitude gain and peak velocity of PS and AS, indicating hypometric gain and slower velocities compared with placebo (both P < or = 0.04). No ketamine by risperidone interactions were found (all P > or = 0.26). The results confirm that the administration of ketamine produces oculomotor performance deficits similar in part to those seen in schizophrenia. The atypical antipsychotic risperidone did not reverse ketamine-induced deteriorations. These findings do not support the cognitive enhancing potential of risperidone on oculomotor biomarkers in this model system of schizophrenia and point towards the importance of developing alternative performance-enhancing compounds to optimise pharmacological treatment of schizophrenia.
Collapse
Affiliation(s)
- A Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK,Department of Neuroimaging, CNS Building PO89, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - J Lees
- Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - A Perkins
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - A Altavilla
- School of Psychology, Cardiff University, Cardiff, UK
| | - K J Craig
- P1vital Ltd, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - G R Dawson
- P1vital Ltd, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - C T Dourish
- P1vital Ltd, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - L H Evans
- School of Psychology, Cardiff University, Cardiff, UK
| | - I Koychev
- Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - K Weaver
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - R Smallman
- Neuroscience and Psychiatry Unit, School of Community Based Medicine, The University of Manchester, Manchester, UK
| | - J Walters
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - L S Wilkinson
- School of Psychology, Cardiff University, Cardiff, UK,Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - R Morris
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - S C R Williams
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - U Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Schwab S, Würmle O, Razavi N, Müri RM, Altorfer A. Eye-head coordination abnormalities in schizophrenia. PLoS One 2013; 8:e74845. [PMID: 24040351 PMCID: PMC3769305 DOI: 10.1371/journal.pone.0074845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Eye-movement abnormalities in schizophrenia are a well-established phenomenon that has been observed in many studies. In such studies, visual targets are usually presented in the center of the visual field, and the subject's head remains fixed. However, in every-day life, targets may also appear in the periphery. This study is among the first to investigate eye and head movements in schizophrenia by presenting targets in the periphery of the visual field. METHODOLOGY/PRINCIPAL FINDINGS Two different visual recognition tasks, color recognition and Landolt orientation tasks, were presented at the periphery (at a visual angle of 55° from the center of the field of view). Each subject viewed 96 trials, and all eye and head movements were simultaneously recorded using video-based oculography and magnetic motion tracking of the head. Data from 14 patients with schizophrenia and 14 controls were considered. The patients had similar saccadic latencies in both tasks, whereas controls had shorter saccadic latencies in the Landolt task. Patients performed more head movements, and had increased eye-head offsets during combined eye-head shifts than controls. CONCLUSIONS/SIGNIFICANCE Patients with schizophrenia may not be able to adapt to the two different tasks to the same extent as controls, as seen by the former's task-specific saccadic latency pattern. This can be interpreted as a specific oculomotoric attentional dysfunction and may support the hypothesis that schizophrenia patients have difficulties determining the relevance of stimuli. Patients may also show an uneconomic over-performance of head-movements, which is possibly caused by alterations in frontal executive function that impair the inhibition of head shifts. In addition, a model was created explaining 93% of the variance of the response times as a function of eye and head amplitude, which was only observed in the controls, indicating abnormal eye-head coordination in patients with schizophrenia.
Collapse
Affiliation(s)
- Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
- * E-mail:
| | - Othmar Würmle
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| | - Nadja Razavi
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| | - René M. Müri
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
- Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital and University of Bern, Bern, Switzerland
| | - Andreas Altorfer
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Schmechtig A, Lees J, Grayson L, Craig KJ, Dadhiwala R, Dawson GR, Deakin JFW, Dourish CT, Koychev I, McMullen K, Migo EM, Perry C, Wilkinson L, Morris R, Williams SCR, Ettinger U. Effects of risperidone, amisulpride and nicotine on eye movement control and their modulation by schizotypy. Psychopharmacology (Berl) 2013; 227:331-45. [PMID: 23430159 DOI: 10.1007/s00213-013-2973-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 12/19/2012] [Indexed: 12/29/2022]
Abstract
RATIONALE The increasing demand to develop more efficient compounds to treat cognitive impairments in schizophrenia has led to the development of experimental model systems. One such model system combines the study of surrogate populations expressing high levels of schizotypy with oculomotor biomarkers. OBJECTIVES We aimed (1) to replicate oculomotor deficits in a psychometric schizotypy sample and (2) to investigate whether the expected deficits can be remedied by compounds shown to ameliorate impairments in schizophrenia. METHODS In this randomized double-blind, placebo-controlled study 233 healthy participants performed prosaccade (PS), antisaccade (AS) and smooth pursuit eye movement (SPEM) tasks after being randomly assigned to one of four drug groups (nicotine, risperidone, amisulpride, placebo). Participants were classified into medium- and high-schizotypy groups based on their scores on the Schizotypal Personality Questionnaire (SPQ, Raine (Schizophr Bull 17:555-564, 1991)). RESULTS AS error rate showed a main effect of Drug (p < 0.01), with nicotine improving performance, and a Drug by Schizotypy interaction (p = 0.04), indicating higher error rates in medium schizotypes (p = 0.01) but not high schizotypes under risperidone compared to placebo. High schizotypes had higher error rates than medium schizotypes under placebo (p = 0.03). There was a main effect of Drug for saccadic peak velocity and SPEM velocity gain (both p ≤ 0.01) indicating impaired performance with risperidone. CONCLUSIONS We replicate the observation of AS impairments in high schizotypy under placebo and show that nicotine enhances performance irrespective of group status. Caution should be exerted in applying this model as no beneficial effects of antipsychotics were seen in high schizotypes.
Collapse
Affiliation(s)
- Anne Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, P089, London, SE5 8AF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Enhanced top-down control during pursuit eye tracking in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 263:223-31. [PMID: 22639244 DOI: 10.1007/s00406-012-0332-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Alterations in sensorimotor processing and predictive mechanisms have both been proposed as the primary cause of eye tracking deficits in schizophrenia. 20 schizophrenia patients and 20 healthy controls were assessed on blocks of predictably moving visual targets at constant speeds of 10, 15 or 30°/s. To assess internal drive to the eye movement system based on predictions about the ongoing target movement, targets were blanked off for either 666 or 1,000 ms during the ongoing pursuit movement in additional conditions. Main parameters of interest were eye deceleration after extinction of the visual target and residual eye velocity during blanking intervals. Eye deceleration after target extinction, reflecting persistence of predictive signals, was slower in patients than in controls, implying greater rather than diminished utilization of predictive mechanisms for pursuit in schizophrenia. Further, residual gain was not impaired in patients indicating a basic integrity of internal predictive models. Pursuit velocity gain in patients was reduced in all conditions with visible targets replicating previous findings about a sensorimotor transformation deficit in schizophrenia. A pattern of slower eye deceleration and unimpaired residual gain during blanking intervals implies greater adherence to top-down predictive models for pursuit tracking in schizophrenia. This suggests that predictive modeling is relatively intact in schizophrenia and that the primary cause of abnormal visual pursuit is impaired sensorimotor transformation of the retinal error signal needed for the maintenance of accurate visually driven pursuit. This implies that disruption in extrastriate and sensorimotor systems rather than frontostriatal predictive mechanisms may underlie this widely reported endophenotypes for schizophrenia.
Collapse
|
20
|
Abstract
OBJECTIVE The smooth pursuit eye movements and fixation ability of children aged 8 to 16 years with Tourette syndrome (TS) were examined. BACKGROUND Although several studies have examined the saccadic ability of patients with TS, there have been only a few studies examining pursuit ability in TS. METHOD Pursuit gain (eye velocity/target velocity) and intrusive saccades during fixation were measured in children with TS-only, TS+attention deficit hyperactivity disorder (ADHD), and TS+ADHD+obsessive compulsive disorder (OCD), and in controls (8 to 16 y). Two pursuit tasks and 1 fixation task were used. In random pursuit 1 (RP1), each step and ramp cycle began from fixation; in random pursuit 2 (RP2), each cycle followed the next. In the fixation task, children were required to maintain fixation on a center dot and ignore distractor stimuli. RESULTS All children had significantly higher pursuit gains in RP2 than in RP1 when pursuing a 30 degrees/s moving target. In addition, in RP2, the TS+ADHD+OCD group displayed significantly higher pursuit gains relative to the TS-only, TS+ADHD, and control groups. In the fixation task, the TS+ADHD group exhibited significantly more intrusive saccades than the TS+ADHD+OCD and control groups. CONCLUSIONS Our findings support an enhanced oculomotor ability in the TS+ADHD+OCD group and the presence of an online gain control mechanism during ongoing pursuit. These findings are discussed in more detail.
Collapse
|
21
|
Sprenger A, Trillenberg P, Pohlmann J, Herold K, Lencer R, Helmchen C. The role of prediction and anticipation on age-related effects on smooth pursuit eye movements. Ann N Y Acad Sci 2011; 1233:168-76. [PMID: 21950990 DOI: 10.1111/j.1749-6632.2011.06114.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Externally guided sensory-motor processes deteriorate with increasing age. Internally guided, for example, predictive, behavior usually helps to overcome sensory-motor delays. We studied whether predictive components of visuomotor transformation decline with age. We investigated smooth pursuit eye movements (SPEM) of 45 healthy subjects with paradigms of different degrees of predictability with respect to target motion onset, type (smoothed triangular, ramp stimulation), and direction by blanking the target at various intervals of the ramp stimulation. Using repetitive trials of SPEM stimulation, we could dissociate anticipatory and predictive components of extraretinal smooth pursuit behavior. The main results suggest that basic motor parameters decline with increasing age, whereas both anticipation and prediction of target motion did not change with age. We suggest that the elderly maintain their capability of using prediction in the immediate control of motor behavior, which might be a way to compensate for age-related delays in sensory-motor transformation, even in the absence of sensory signals.
Collapse
Affiliation(s)
- Andreas Sprenger
- Department of Neurology, University of Luebeck, Luebeck, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Lencer R, Keedy SK, Reilly JL, McDonough BE, Harris MSH, Sprenger A, Sweeney JA. Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: implications for pursuit eye tracking. Psychiatry Res 2011; 194:30-8. [PMID: 21873035 PMCID: PMC3185164 DOI: 10.1016/j.pscychresns.2011.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/12/2011] [Accepted: 06/17/2011] [Indexed: 11/19/2022]
Abstract
Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher-level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders.
Collapse
Affiliation(s)
- Rebekka Lencer
- Center for Cognitive Medicine, University of Illinois at Chicago, USA
- Department of Psychiatry and Psychotherapy, University of Luebeck
- Department of Psychiatry and Psychotherapy, University of Muenster, Germany
| | - Sarah K. Keedy
- Center for Cognitive Medicine, University of Illinois at Chicago, USA
| | - James L. Reilly
- Center for Cognitive Medicine, University of Illinois at Chicago, USA
| | | | | | | | - John A. Sweeney
- Center for Cognitive Medicine, University of Illinois at Chicago, USA
- Corresponding author: John A. Sweeney, PhD, Center for Cognitive Medicine, University of Illinois at Chicago, 912 S Wood St., M/C 913, Chicago, IL 60612, USA, , Phone (312) 355-1582, Fax (312) 413-8837
| |
Collapse
|
23
|
Martin LF, Olincy A, Ross RG, Du YP, Singel D, Shatti S, Tregellas JR. Cerebellar hyperactivity during smooth pursuit eye movements in bipolar disorder. J Psychiatr Res 2011; 45:670-7. [PMID: 20950824 DOI: 10.1016/j.jpsychires.2010.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/14/2010] [Accepted: 09/21/2010] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Smooth pursuit eye movements (SPEM) are abnormal in individuals with schizophrenia and individuals with bipolar disorder. Functional imaging methods have revealed greater hippocampal activity and less frontotemporal, visual, and posterior cerebellar activity in individuals with schizophrenia when performing a SPEM task. The underlying neurobiology of SPEM deficits in bipolar disorder is unknown. METHODS Functional magnetic resonance imaging at 3T was performed on fourteen subjects with bipolar disorder and 14 subjects without psychiatric illness during a block design SPEM task. Clinical measures were assessed on the day of testing and related to imaging measures. RESULTS Subjects with bipolar disorder had greater hemodynamic response than control subjects in cerebellar vermis. Responses were associated with levels of depressive symptoms on the day of study. DISCUSSION Increased cerebellar vermis activity during the smooth pursuit eye movement task in individuals with bipolar disorder further implicates cerebellar involvement in bipolar disorder. Increased hemodynamic response within the hippocampus was not seen in these individuals and may be a finding specific to schizophrenia.
Collapse
Affiliation(s)
- Laura Frances Martin
- University of Colorado Denver School of Medicine, Pscyhiatry, Mail Stop F546, 13001 E. 17th Place, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Mosconi MW, Kay M, D'Cruz AM, Guter S, Kapur K, Macmillan C, Stanford LD, Sweeney JA. Neurobehavioral abnormalities in first-degree relatives of individuals with autism. ARCHIVES OF GENERAL PSYCHIATRY 2010; 67:830-40. [PMID: 20679591 PMCID: PMC3145411 DOI: 10.1001/archgenpsychiatry.2010.87] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. OBJECTIVE To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. DESIGN Case-control comparison of neurobehavioral functions. SETTING University medical center. PARTICIPANTS Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8-54 years). MAIN OUTCOME MEASURES Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. RESULTS On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. CONCLUSIONS Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in other neuropsychiatric disorders and are of interest given atypical brain lateralization and language development associated with the disorder. Similar oculomotor deficits have been reported in individuals with autism, suggesting that they may be familial and useful for studies of neurophysiological and genetic mechanisms in autism.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Center for Cognitive Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
van Tricht MJ, Nieman DH, Bour LJ, Boerée T, Koelman JHTM, de Haan L, Linszen DH. Increased saccadic rate during smooth pursuit eye movements in patients at Ultra High Risk for developing a psychosis. Brain Cogn 2010; 73:215-21. [PMID: 20538400 DOI: 10.1016/j.bandc.2010.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 04/28/2010] [Accepted: 05/12/2010] [Indexed: 11/17/2022]
Abstract
Abnormalities in eye tracking are consistently observed in schizophrenia patients and their relatives and have been proposed as an endophenotype of the disease. The aim of this study was to investigate the performance of patients at Ultra High Risk (UHR) for developing psychosis on a task of smooth pursuit eye movement (SPEM). Forty-six UHR patients and twenty-eight age and education matched controls were assessed with a task of SPEM and psychiatric questionnaires. Our results showed that both the corrective and non-corrective saccadic rates during pursuit were higher in the UHR group. There were however no differences in smooth pursuit gain between the two groups. The saccadic rate was related to positive UHR symptoms. Our findings indicate that abnormalities in SPEM are already present in UHR patients, prior to a first psychotic episode. These abnormalities occur only in the saccadic system.
Collapse
Affiliation(s)
- M J van Tricht
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lencer R, Reilly JL, Harris MS, Sprenger A, Keshavan MS, Sweeney JA. Sensorimotor transformation deficits for smooth pursuit in first-episode affective psychoses and schizophrenia. Biol Psychiatry 2010; 67:217-23. [PMID: 19782964 PMCID: PMC2879155 DOI: 10.1016/j.biopsych.2009.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND Smooth pursuit deficits are an intermediate phenotype for schizophrenia that may result from disturbances in visual motion perception, sensorimotor transformation, predictive mechanisms, or alterations in basic oculomotor control. Which of these components are the primary causes of smooth pursuit impairments and whether they are impaired similarly across psychotic disorders remain to be established. METHODS First-episode psychotic patients with bipolar disorder (n = 34), unipolar depression (n = 24), or schizophrenia (n = 77) and matched healthy participants (n = 130) performed three smooth pursuit tasks designed to evaluate different components of pursuit tracking. RESULTS On ramp tasks, maintenance pursuit velocity was reduced in all three patients groups with psychotic bipolar patients exhibiting the most severe impairments. Open loop pursuit velocity was reduced in psychotic bipolar and schizophrenia patients. Motion perception during pursuit initiation, as indicated by the accuracy of saccades to moving targets, was not impaired in any patient group. Analyses in 138 participants followed for 6 weeks, during which patients were treated and psychotic symptom severity decreased, and no significant change in performance in any group was revealed. CONCLUSIONS Sensorimotor transformation deficits in all patient groups suggest a common alteration in frontostriatal networks that dynamically regulate gain control of pursuit responses using sensory input and feedback about performance. Predictive mechanisms appear to be sufficiently intact to compensate for this deficit across psychotic disorders. The absence of significant changes after acute treatment and symptom reduction suggests that these deficits appear to be stable over time.
Collapse
Affiliation(s)
- Rebekka Lencer
- Center for Cognitive Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
27
|
Levy DL, Sereno AB, Gooding DC, O'Driscoll GA. Eye tracking dysfunction in schizophrenia: characterization and pathophysiology. Curr Top Behav Neurosci 2010; 4:311-47. [PMID: 21312405 PMCID: PMC3212396 DOI: 10.1007/7854_2010_60] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Eye tracking dysfunction (ETD) is one of the most widely replicated behavioral deficits in schizophrenia and is over-represented in clinically unaffected first-degree relatives of schizophrenia patients. Here, we provide an overview of research relevant to the characterization and pathophysiology of this impairment. Deficits are most robust in the maintenance phase of pursuit, particularly during the tracking of predictable target movement. Impairments are also found in pursuit initiation and correlate with performance on tests of motion processing, implicating early sensory processing of motion signals. Taken together, the evidence suggests that ETD involves higher-order structures, including the frontal eye fields, which adjust the gain of the pursuit response to visual and anticipated target movement, as well as early parts of the pursuit pathway, including motion areas (the middle temporal area and the adjacent medial superior temporal area). Broader application of localizing behavioral paradigms in patient and family studies would be advantageous for refining the eye tracking phenotype for genetic studies.
Collapse
Affiliation(s)
- Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
28
|
Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 2009; 34:295-342. [PMID: 19665479 DOI: 10.1016/j.neubiorev.2009.07.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/23/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022]
Abstract
Tobacco smoking is an extremely addictive and harmful form of nicotine (NIC) consumption, but unfortunately also the most prevalent. Although disproportionately high frequencies of smoking and its health consequences among psychiatric patients are widely known, the neurobiological background of this epidemiological association is still obscure. The diverse neuroactive effects of NIC and some other major tobacco smoke constituents in the central nervous system may underlie this association. This present paper summarizes the pharmacology of NIC and its receptors (nAChR) based on a systematic review of the literature. The role of the brain's reward system(s) in NIC addiction and the results of functional and structural neuroimaging studies on smoking-related states and behaviors (i.e. dependence, craving, withdrawal) are also discussed. In addition, the epidemiological, neurobiological, and genetic aspects of smoking in several specific neuropsychiatric disorders are reviewed and the clinical relevance of smoking in these disease states addressed.
Collapse
Affiliation(s)
- Peter Dome
- Department of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Faculty of Medicine, Kutvolgyi ut 4, 1125 Budapest, Hungary.
| | | | | | | |
Collapse
|
29
|
John Wiley & Sons, Ltd.. Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2009. [DOI: 10.1002/pds.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|