1
|
Bassegoda O, Cárdenas A. The Liver Intensive Care Unit. Clin Liver Dis 2025; 29:199-215. [PMID: 40287267 DOI: 10.1016/j.cld.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Major advances in managing critically ill patients with liver disease have improved their prognosis and access to intensive care facilities. Acute-on-chronic liver failure (ACLF) is now a well-defined disease and these patients can be fast-tracked for liver transplantation (LT) with good outcomes if there are no contraindications. In acute liver failure, plasma exchange has improved prognosis for patients not eligible for immediate transplant. Further advances in novel therapies and refinement of the criteria for early LT in ACLF and also clinical implementation of artificial intelligence tools will probably constitute the next major breakthroughs in critically ill patients with liver disease.
Collapse
Affiliation(s)
- Octavi Bassegoda
- Liver Intensive Care Unit, Liver Unit, Hospital Clinic Barcelona, Barcelona, Spain
| | - Andrés Cárdenas
- Liver Intensive Care Unit, Liver Unit, Hospital Clinic Barcelona, Barcelona, Spain; GI & Liver Transplant Unit, Institut de Malalties Digestives I Metaboliques, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi-Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Department of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Zhao X, Xu Y, Feng J, Chen C, Gao Y, Deng Y. Comprehensive analysis of miRNAs-lncRNAs-mRNAs modules and ceRNA network in acute liver failure: Hsa-miR3175 and C-reactive protein determination. Int J Biol Macromol 2024; 276:133919. [PMID: 39029818 DOI: 10.1016/j.ijbiomac.2024.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Acute liver failure (ALF), also known as fulminant hepatitis, coagulation disorders, and worsening mental status. It has a poor prognosis and high mortality rate. Among these, the top 10 upregulated genes included GKA-DPA1, IGLL5, PLA2G7, CCL5, IGLJ, GUSBP11, RHOBT1, IGLL3P, CCL18, and ADRBK2. On the other hand, the top 10 downregulated genes were SLC6A1, PID1, AVPR1A, PP1R1A, ST3GAL6, TPST, ERO1LB, SLCO4C1, and KLF15. Furthermore, the DEGs were found to be enriched in processes related to LIAO metastasis and creighton endocrine therapy resistance. To explore the interactions among the DEGs, we constructed a PPI network. This network revealed 16 hub genes that play crucial roles in ALF pathogenesis. Within this network, hsa-mir-375 and hsa-mir-650 were identified as central nodes, indicating their potential importance in ALF. By identifying and analyzing the transcriptional-level ceRNA network, we have provided valuable insights into the etiology of ALF.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Junqi Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Chen Chen
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| |
Collapse
|
3
|
Chen L, Li Z, Wei W, An B, Tian Y, Liu W, Niu S, Wang Y, Wang L, Li W, Hao J, Wu J. Human embryonic stem cell-derived immunity-and-matrix regulatory cells promote intrahepatic cell renewal to rescue acute liver failure. Biochem Biophys Res Commun 2023; 662:104-113. [PMID: 37104880 DOI: 10.1016/j.bbrc.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Acute liver failure (ALF) is a clinical syndrome characterized by the accelerated development of hepatocyte necrosis and significant mortality. Given that liver transplantation is now the only curative treatment available for ALF, there is an urgent need to explore innovative therapies. Mesenchymal stem cells (MSCs) have been applied in preclinical studies for ALF. It had been demonstrated that human embryonic stem cell-derived immunity-and-matrix regulatory cells (IMRCs) met the properties of MSCs and had been employed in a wide range of conditions. In this study, we conducted a preclinical evaluation of IMRCs in the treatment of ALF and investigated the mechanism involved. ALF was induced in C57BL/6 mice via intraperitoneal administration of 50% CCl4 (6 mL/kg) mixed with corn oil, followed by intravenous injection of IMRCs (3 × 106 cells/each). IMRCs improved histopathological changes in the liver and reduced alanine transaminase (ALT) or aspartate transaminase (AST) levels in serum. IMRCs also promoted cell renewal in the liver and protected it from CCl4 damage. Furthermore, our data indicated that IMRCs protected against CCl4-induced ALF by regulating the IGFBP2-mTOR-PTEN signaling pathway, which is associated with the repopulation of intrahepatic cells. Overall, IMRCs offered protection against CCl4-induced ALF and were capable of preventing apoptosis and necrosis in hepatocytes, which provided a new perspective for treating and improving the prognosis of ALF.
Collapse
Affiliation(s)
- Ling Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wumei Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yukai Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jie Hao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
4
|
Predicting the Onset of Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. Clin Gastroenterol Hepatol 2023; 21:681-693. [PMID: 35337983 DOI: 10.1016/j.cgh.2022.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) is a life-threatening syndrome with rapid progression. This study aimed to develop and validate a prognostic score to predict the onset of ACLF in hepatitis B virus (HBV) etiology. METHODS The prospective clinical data of 1373 patients with acute deterioration of HBV-related chronic liver disease were used to identify clinical characteristics and develop a prognostic score for the onset of ACLF. RESULTS Of the patients assessed using the Chinese Group on the Study of Severe Hepatitis B (COSSH)-ACLF criteria, 903 patients with non-ACLF at admission (1 received transplantation at 5 days) were stratified: 71 with progression to ACLF and 831 without progression to ACLF at 7 days. Four predictors (total bilirubin, international normalized ratio, alanine aminotransferase, and ferritin) were associated significantly with ACLF onset at 7 days. The COSSH-onset-ACLF score was constituted as follows: (0.101 × ln [alanine aminotransferase] + 0.819 × ln [total bilirubin] + 2.820 × ln [international normalized ratio] + 0.016 × ln [ferritin]). The C-indexes of the new score for 7-/14-/28-day onset (0.928/0.925/0.913) were significantly higher than those of 5 other scores (Chronic Liver Failure Consortium ACLF development score/Model for End-stage Liver Disease score/Model for End-stage Liver Disease sodium score/COSSH-ACLF score/Chronic liver failure Consortium ACLF score; all P < .001). The improvement in predictive errors, time-dependent receiver operating characteristic, probability density function evaluation, and calibration curves of the new score showed the highest predictive value for ACLF onset at 7/14/28 days. Risk stratification of the new score showed 2 strata with high and low risk (≥6.3/<6.3) of ACLF onset. The external validation group further confirmed the earlier results. CONCLUSIONS A new prognostic score based on 4 predictors can accurately predict the 7-/14-/28-day onset of ACLF in patients with acute deterioration of HBV-related chronic liver disease and might be used to guide clinical management.
Collapse
|
5
|
Yuan C, Fan J, Jiang L, Ye W, Chen Z, Wu W, Huang Q, Qian L. Integrated Analysis of Gut Microbiome and Liver Metabolome to Evaluate the Effects of Fecal Microbiota Transplantation on Lipopolysaccharide/D-galactosamine-Induced Acute Liver Injury in Mice. Nutrients 2023; 15:nu15051149. [PMID: 36904149 PMCID: PMC10005546 DOI: 10.3390/nu15051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute liver failure (ALF) refers to the occurrence of massive hepatocyte necrosis in a short time, with multiple complications, including inflammatory response, hepatic encephalopathy, and multiple organ failure. Additionally, effective therapies for ALF are lacking. There exists a relationship between the human intestinal microbiota and liver, so intestinal microbiota modulation may be a strategy for therapy of hepatic diseases. In previous studies, fecal microbiota transplantation (FMT) from fit donors has been used to modulate intestinal microbiota widely. Here, we established a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-gal) induced ALF to explore the preventive and therapeutic effects of FMT, and its mechanism of action. We found that FMT decreased hepatic aminotransferase activity and serum total bilirubin levels, and decreased hepatic pro-inflammatory cytokines in LPS/D-gal challenged mice (p < 0.05). Moreover, FMT gavage ameliorated LPS/D-gal induced liver apoptosis and markedly reduced cleaved caspase-3 levels, and improved histopathological features of the liver. FMT gavage also restored LPS/D-gal-evoked gut microbiota dysbiosis by modifying the colonic microbial composition, improving the abundance of unclassified_o_Bacteroidales (p < 0.001), norank_f_Muribaculaceae (p < 0.001), and Prevotellaceae_UCG-001 (p < 0.001), while reducing that of Lactobacillus (p < 0.05) and unclassified_f_Lachnospiraceae (p < 0.05). Metabolomics analysis revealed that FMT significantly altered LPS/D-gal induced disordered liver metabolites. Pearson's correlation revealed strong correlations between microbiota composition and liver metabolites. Our findings suggest that FMT ameliorate ALF by modulating gut microbiota and liver metabolism, and can used as a potential preventive and therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982171
| |
Collapse
|
6
|
Seshadri A, Appelbaum R, Carmichael SP, Cuschieri J, Hoth J, Kaups KL, Kodadek L, Kutcher ME, Pathak A, Rappold J, Rudnick SR, Michetti CP. Management of Decompensated Cirrhosis in the Surgical ICU: an American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document. Trauma Surg Acute Care Open 2022; 7:e000936. [PMID: 35991906 PMCID: PMC9345092 DOI: 10.1136/tsaco-2022-000936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022] Open
Abstract
Management of decompensated cirrhosis (DC) can be challenging for the surgical intensivist. Management of DC is often complicated by ascites, coagulopathy, hepatic encephalopathy, gastrointestinal bleeding, hepatorenal syndrome, and difficulty assessing volume status. This Clinical Consensus Document created by the American Association for the Surgery of Trauma Critical Care Committee reviews practical clinical questions about the critical care management of patients with DC to facilitate best practices by the bedside provider.
Collapse
Affiliation(s)
- Anupamaa Seshadri
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Rachel Appelbaum
- Department of Surgery, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Samuel P Carmichael
- Department of Surgery, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Joseph Cuschieri
- Department of Surgery, San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Jason Hoth
- Department of Surgery, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Krista L Kaups
- Department of Surgery, UCSF Fresno, Fresno, California, USA
| | - Lisa Kodadek
- Surgery, Yale University School of Medicine, New Haven, Connecticut, USA,Department of Surgery, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Matthew E Kutcher
- Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Abhijit Pathak
- Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Rappold
- Department of Surgery, Maine Medical Center, Portland, Oregon, USA
| | - Sean R Rudnick
- Department of Gastroenterology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
7
|
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy. Antioxidants (Basel) 2022; 11:antiox11061070. [PMID: 35739966 PMCID: PMC9220087 DOI: 10.3390/antiox11061070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages.
Collapse
|