1
|
Rosenberg MJ, Saway BF, Tarver WJ, Pavela JH, Hall J, Al Kasab S, Porto G, Roberts DR. Prevention of Cerebrovascular Emergencies in Spaceflight: A Review and a Proposal for Enhanced Medical Screening Guidelines. Neurol Clin Pract 2025; 15:e200445. [PMID: 40182317 PMCID: PMC11966524 DOI: 10.1212/cpj.0000000000200445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/14/2025] [Indexed: 04/05/2025]
Abstract
Purpose of Review A growing number of opportunities for paying customers to travel to space are becoming available. Preflight medical screening of these potential private astronauts will likely be performed by local physicians, with referral to specialists in aerospace medicine as required for more in-depth evaluation before flight qualification. Neurologic concerns contribute a portion of the potential medical risks for these private astronauts, especially with the participation of more diversified crews than traditional governmental astronauts. The objective of this article was to review the current knowledge base concerning cerebrovascular adaptation to spaceflight to inform risk factor assessment for flight-associated cerebrovascular emergencies by the neurologic community when performing initial medical screening of potential private astronauts. Recent Findings A review of published human spaceflight studies and medical guidelines regarding cerebrovascular risks for spaceflight was conducted. Most of the available literature describes cohorts of a small number of astronauts undergoing spaceflight missions of various flight profiles. While there are gaps in the literature, cerebrovascular adaptation to spaceflight occurs, which may alter the medical risk profile in susceptible individuals. The occurrence of an inflight cerebrovascular emergency could have devastating consequences; therefore, additional screening tests may be required, based on risk level and mission profile, in assessing the more diverse commercial spaceflight population expected over the next decade. Summary With increasing interest in commercial space tourism among diverse participant populations, the stroke risk in microgravity/reduced gravity environments is unknown. Furthermore, stresses of rocket ascent/descent, abnormal fluid dynamics in microgravity, altered atmospheric conditions, and other unknown occupational hazards add additional complexity. Because inflight emergency management protocols have yet to be developed, the most effective tool to ensure spaceflight participant safety is comprehensive preflight preventative screenings. Determining neurologic risk factors is critical for developing evidence-based guidelines for preventative measures and treatment protocols in the future.
Collapse
Affiliation(s)
- Mark J Rosenberg
- Department of Neurology, Medical University of South Carolina, Charleston
| | - Brian F Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston
| | | | | | | | - Sami Al Kasab
- Department of Neurosurgery, Medical University of South Carolina, Charleston
| | - Guilherme Porto
- Department of Neurosurgery, Medical University of South Carolina, Charleston
| | - Donna R Roberts
- International Space Station National Laboratory, Melbourne, FL; and
- Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston
| |
Collapse
|
2
|
Nguyen T, Ong J, Brunstetter T, Gibson CR, Macias BR, Laurie S, Mader T, Hargens A, Buckey JC, Lan M, Wostyn P, Kadipasaoglu C, Smith SM, Zwart SR, Frankfort BJ, Aman S, Scott JM, Waisberg E, Masalkhi M, Lee AG. Spaceflight Associated Neuro-ocular Syndrome (SANS) and its countermeasures. Prog Retin Eye Res 2025; 106:101340. [PMID: 39971096 PMCID: PMC12103276 DOI: 10.1016/j.preteyeres.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Astronauts can develop a distinct collection of neuro-ophthalmic findings during long duration spaceflight, collectively known as Spaceflight Associated Neuro-ocular Syndrome (SANS). These clinical characteristics include optic disc edema, hyperopic refractive shifts, globe flattening, and chorioretinal folds, which may pose a health risk for future space exploration. Obtaining knowledge of SANS and countermeasures for its prevention is crucial for upcoming crewed space missions and warrants a multidisciplinary approach. This review examines the potential causes and countermeasures of SANS, including space anticipation glasses, lower body negative pressure, venoconstrictive thigh cuffs, impedance threshold devices, translaminar pressure gradient modulation, centrifugation, artificial gravity, pharmaceuticals, and precision nutritional supplementation. This paper highlights future research directions for understanding the genetic, anthropometric, behavioral, and environmental susceptibilities to SANS as well as how to use terrestrial analogs for testing future mitigation strategies.
Collapse
Affiliation(s)
- Tuan Nguyen
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York City, New York, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - C Robert Gibson
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA; South Shore Eye Center, League City, TX, USA
| | | | - Steven Laurie
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA
| | | | - Alan Hargens
- Department of Orthopaedic Surgery, University of California, Altman Clinical and Translational Research Institute, La Jolla, CA, San Diego, USA
| | - Jay C Buckey
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Mimi Lan
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Benjamin J Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Aman
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Andrew G Lee
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA; University of Texas MD Anderson Cancer Center, Houston, TX, USA; Texas A&M College of Medicine, Bryan, TX, USA; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Kadipasaoglu CM, Lee VA, Ong J, Lee AG. The optic nerve in spaceflight: novel concepts in the pathogenesis of optic disc edema in microgravity. Curr Opin Neurol 2025; 38:87-95. [PMID: 39629511 DOI: 10.1097/wco.0000000000001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Spaceflight-associated neuro-ocular syndrome (SANS) encompasses a unique constellation of neuro-ocular findings in astronauts, including optic disc edema (ODE), globe flattening, chorioretinal folds, and hyperopic refractive shift. Although there are numerous neuro-ocular findings in SANS, the purpose of this review is to describe the novel, emerging concepts of the pathogenesis for the ODE specifically in SANS. RECENT FINDINGS While the initial hypotheses on the pathogenesis of ODE in SANS focused on possible elevated intracranial pressures (i.e., papilledema), the most prominent current hypothesis is microgravity-induced cephalad fluid shift. More recent studies however suggest that the pathogenesis of the ODE in SANS is likely multifactorial including possible underlying metabolic and genetic components. SUMMARY We review the literature on ODE in SANS including recent work integrating the complex physiologic interactions of microgravity-induced disruption in intracerebral and intraocular fluid dynamics, vascular congestion, cellular stress responses, and genetic predisposition. We believe that the development of ODE in SANS is likely multifactorial in origin, and further understanding of the mechanical, cellular, metabolic, and genetic components is of utmost importance to develop future countermeasures in preparation for possible future crewed missions to the moon, the asteroid belt, and Mars.
Collapse
Affiliation(s)
| | - Virginia A Lee
- Houston Methodist Hospital Rosenberg Summer Scholar, Houston Methodist Hospital, Houston, Texas
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | - Andrew G Lee
- Department of Ophthalmology, Baylor College of Medicine, Houston
- Texas A&M College of Medicine, Bryan
- Department of Ophthalmology, University of Texas Medical Branch, Galveston
- Department of Ophthalmology, Blanton Eye Institute
- The Houston Methodist Research Institute, Houston Methodist Hospital
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York
- University of Texas MD Anderson Cancer Center, Houston, Bryan, Texas
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Hu Y, Lin Y, Cheng L, Xu Y, Zhang J, Zheng Z, Wang H, Yan M, Chen H. Hypothesis on the outflow of optic nerve cerebrospinal fluid in spaceflight associated neuro ocular syndrome. NPJ Microgravity 2024; 10:112. [PMID: 39702371 DOI: 10.1038/s41526-024-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts. However, its pathogenesis is not fully understood. New findings indicate the impaired outflow of the optic nerve cerebrospinal fluid may participate or contribute to some changes in SANS. In this perspective, we generated a hypothesis that the outflow of cerebrospinal fluid through the optic nerve sheath may be impaired under micro-gravity and then may potentially lead to SANS-related alterations.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuanxi Lin
- University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Cheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Ophthalmology, The Third People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Wang
- Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Min Yan
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Chen
- University of Shanghai for Science and Technology, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Solano MM, Dumas R, Lesk MR, Costantino S. Ocular Biomechanical Responses to Long-Duration Spaceflight. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:127-132. [PMID: 39698125 PMCID: PMC11655104 DOI: 10.1109/ojemb.2024.3453049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 12/20/2024] Open
Abstract
Objective: To assess the impact of microgravity exposure on ocular rigidity (OR), intraocular pressure (IOP), and ocular pulse amplitude (OPA) following long-term space missions. OR was evaluated using optical coherence tomography (OCT) and deep learning-based choroid segmentation. IOP and OPA were measured with the PASCAL Dynamic Contour Tonometer (DCT). Results: The study included 26 eyes from 13 crew members who spent 157 to 186 days on the International Space Station. Post-mission results showed a 25% decrease in OPA (p < 0.005), an 11% decrease in IOP from 16.0 mmHg to 14.2 mmHg (p = 0.04), and a 33% reduction in OR (p = 0.04). No significant differences were observed between novice and experienced astronauts. Conclusions: These findings reveal previously unknown effects of microgravity on the eye's mechanical properties, contributing to a deeper understanding of Spaceflight-Associated Neuro-ocular Syndrome (SANS). Long-term space missions significantly alter ocular biomechanics and have the potential to become biomarkers of disease progression.
Collapse
Affiliation(s)
- Marissé Masís Solano
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
- University of MontrealMontrealQCH3T 1J4Canada
| | - Remy Dumas
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
| | - Mark R Lesk
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
- University of MontrealMontrealQCH3T 1J4Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
- University of MontrealMontrealQCH3T 1J4Canada
| |
Collapse
|
6
|
Seidler RD, Mao XW, Tays GD, Wang T, Zu Eulenburg P. Effects of spaceflight on the brain. Lancet Neurol 2024; 23:826-835. [PMID: 38945144 DOI: 10.1016/s1474-4422(24)00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.
Collapse
Affiliation(s)
- Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Tianyi Wang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Peter Zu Eulenburg
- Institute for Neuroradiology, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
7
|
Roberts DR, Tidwell J, Taylor JA. Reply. AJNR Am J Neuroradiol 2024; 45:E7. [PMID: 38724192 PMCID: PMC11288546 DOI: 10.3174/ajnr.a8279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Affiliation(s)
- Donna R Roberts
- Department of Radiology and Radiological ScienceMedical University of South CarolinaCharleston, South CarolinaInternational Space Station National LaboratoryMelbourne, Florida
| | - Joe Tidwell
- Department of Radiology and Radiological ScienceMedical University of South CarolinaCharleston, South Carolina
| | - J Andrew Taylor
- Department of Radiology and Radiological ScienceMedical University of South CarolinaCharleston, South Carolina
| |
Collapse
|
8
|
Bateman GA, Bateman AR. A perspective on the evidence for glymphatic obstruction in spaceflight associated neuro-ocular syndrome and fatigue. NPJ Microgravity 2024; 10:23. [PMID: 38418508 PMCID: PMC10901896 DOI: 10.1038/s41526-024-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) alters the vision of astronauts during long-duration spaceflights. Previously, the current authors have discussed the similarities and differences between SANS and idiopathic intracranial hypertension to try to elucidate a possible pathophysiology. Recently, a theory has been advanced that SANS may occur secondary to failure of the glymphatic system caused by venous dilatation within the brain and optic nerves. There is recent evidence to suggest glymphatic obstruction occurs in childhood hydrocephalus, multiple sclerosis and syringomyelia due to venous outflow dilatation similar to that proposed in SANS. The purpose of the current paper is to discuss the similarities and differences between the known CSF and venous pathophysiology in SANS with these other terrestrial diseases, to see if they can shed any further light on the underlying cause of this microgravity-induced disease.
Collapse
Affiliation(s)
- Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia.
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia.
| | | |
Collapse
|
9
|
Li Z, Wu J, Zhao T, Wei Y, Xu Y, Liu Z, Li X, Chen X. Microglial activation in spaceflight and microgravity: potential risk of cognitive dysfunction and poor neural health. Front Cell Neurosci 2024; 18:1296205. [PMID: 38425432 PMCID: PMC10902453 DOI: 10.3389/fncel.2024.1296205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Due to the increased crewed spaceflights in recent years, it is vital to understand how the space environment affects human health. A lack of gravitational force is known to risk multiple physiological functions of astronauts, particularly damage to the central nervous system (CNS). As innate immune cells of the CNS, microglia can transition from a quiescent state to a pathological state, releasing pro-inflammatory cytokines that contribute to neuroinflammation. There are reports indicating that microglia can be activated by simulating microgravity or exposure to galactic cosmic rays (GCR). Consequently, microglia may play a role in the development of neuroinflammation during spaceflight. Prolonged spaceflight sessions raise concerns about the chronic activation of microglia, which could give rise to various neurological disorders, posing concealed risks to the neural health of astronauts. This review summarizes the risks associated with neural health owing to microglial activation and explores the stressors that trigger microglial activation in the space environment. These stressors include GCR, microgravity, and exposure to isolation and stress. Of particular focus is the activation of microglia under microgravity conditions, along with the proposal of a potential mechanism.
Collapse
Affiliation(s)
- Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jiarui Wu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yiyun Wei
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yajing Xu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiong Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
10
|
Caddy HT, Kelsey LJ, Parker LP, Green DJ, Doyle BJ. Modelling large scale artery haemodynamics from the heart to the eye in response to simulated microgravity. NPJ Microgravity 2024; 10:7. [PMID: 38218868 PMCID: PMC10787773 DOI: 10.1038/s41526-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
We investigated variations in haemodynamics in response to simulated microgravity across a semi-subject-specific three-dimensional (3D) continuous arterial network connecting the heart to the eye using computational fluid dynamics (CFD) simulations. Using this model we simulated pulsatile blood flow in an upright Earth gravity case and a simulated microgravity case. Under simulated microgravity, regional time-averaged wall shear stress (TAWSS) increased and oscillatory shear index (OSI) decreased in upper body arteries, whilst the opposite was observed in the lower body. Between cases, uniform changes in TAWSS and OSI were found in the retina across diameters. This work demonstrates that 3D CFD simulations can be performed across continuously connected networks of small and large arteries. Simulated results exhibited similarities to low dimensional spaceflight simulations and measured data-specifically that blood flow and shear stress decrease towards the lower limbs and increase towards the cerebrovasculature and eyes in response to simulated microgravity, relative to an upright position in Earth gravity.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Louis P Parker
- FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
- School of Engineering, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
11
|
Milner DC, Subramanian PS. Insights into spaceflight-associated neuro-ocular syndrome with review of intraocular and orbital findings. Curr Opin Ophthalmol 2023; 34:493-499. [PMID: 37729662 DOI: 10.1097/icu.0000000000001000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW Spaceflight-associated neuro-ocular syndrome (SANS) remains a phenomenological term, and advances in ophthalmic imaging as well as new insights from ground-based experiments have given support to new theories of how SANS develops and what may be done to counter it. RECENT FINDINGS SANS has been postulated to arise from elevated intracranial pressure (ICP) during long-duration spaceflight (LDSF). However, recent work has shown that acute microgravity exposure does not increase ICP, and the effect of cephalad fluid shifts on ICP in microgravity remain unknown. In addition, structural imaging of the retina and optic nerve show changes after LDSF that are distinct from findings in terrestrial patients with elevated ICP. Since astronauts have not reported symptoms that would be expected with chronic ICP elevation, new theories that orbital and/or intracranial venous pressure may be the primary contributors to the development of SANS. SUMMARY Research has been filling knowledge gaps that exist regarding the cause(s) of SANS, and these advances are crucial steps in the effort to design countermeasures that will be required before human deep space exploration missions can be undertaken.
Collapse
Affiliation(s)
- Dallin C Milner
- Sue Anschutz-Rodgers University of Colorado Eye Center and Department of Ophthalmology
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center and Department of Ophthalmology
- Department of Neurology
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
- Department of Surgery (Division of Ophthalmology), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Tidwell JB, Taylor JA, Collins HR, Chamberlin JH, Barisano G, Sepehrband F, Turner MD, Gauthier G, Mulder ER, Gerlach DA, Roberts DR. Longitudinal Changes in Cerebral Perfusion, Perivascular Space Volume, and Ventricular Volume in a Healthy Cohort Undergoing a Spaceflight Analog. AJNR Am J Neuroradiol 2023; 44:1026-1031. [PMID: 37562828 PMCID: PMC10494950 DOI: 10.3174/ajnr.a7949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND PURPOSE A global decrease in brain perfusion has recently been reported during exposure to a ground-based spaceflight analog. Considering that CSF and glymphatic flow are hypothesized to be propelled by arterial pulsations, it is unknown whether a change in perfusion would impact these CSF compartments. The aim of the current study was to evaluate the relationship among changes in cerebral perfusion, ventricular volume, and perivascular space volume before, during, and after a spaceflight analog. MATERIALS AND METHODS Eleven healthy participants underwent 30 days of bed rest at 6° head-down tilt with 0.5% atmospheric CO2 as a spaceflight analog. For each participant, 6 MR imaging brain scans, including perfusion and anatomic-weighted T1 sequences, were obtained before, during, and after the analog period. Global perfusion, ventricular volume, and perivascular space volume time courses were constructed and evaluated with repeated measures ANOVAs. RESULTS Global perfusion followed a divergent time trajectory from ventricular and perivascular space volume, with perfusion decreasing during the analog, whereas ventricular and perivascular space volume increased (P < .001). These patterns subsequently reversed during the 2-week recovery period. CONCLUSIONS The patterns of change in brain physiology observed in healthy participants suggest a relationship between cerebral perfusion and CSF homeostasis. Further study is warranted to determine whether a causal relationship exists and whether similar neurophysiologic responses occur during spaceflight.
Collapse
Affiliation(s)
- J B Tidwell
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - J A Taylor
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - H R Collins
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - J H Chamberlin
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - G Barisano
- Laboratory of Neuroimaging (F.S.), University of Southern California, Los Angeles, California
| | - F Sepehrband
- Department of Neurosurgery (G.B.), Stanford University, Stanford, California
| | - M D Turner
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - G Gauthier
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| | - E R Mulder
- Department of Neurosurgery (G.B.), Stanford University, Stanford, California
| | - D A Gerlach
- Department of Neurosurgery (G.B.), Stanford University, Stanford, California
| | - D R Roberts
- From the Department of Radiology and Radiological Science (J.B.T., J.A.T., H.R.C., J.H.C., M.D.T., G.G., D.R.R.), Medical University of South Carolina; Charleston, South Carolina
| |
Collapse
|
13
|
Boschert AL, Gauger P, Bach A, Gerlach D, Johannes B, Jordan J, Li Z, Elmenhorst D, Bauer A, Marshall-Goebel K, Tank J, Zange J, Rittweger J. External to internal cranial perfusion shifts during simulated weightlessness: Results from a randomized cross-over trial. NPJ Microgravity 2023; 9:25. [PMID: 36977696 PMCID: PMC10050182 DOI: 10.1038/s41526-023-00267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The exact pathophysiology of the spaceflight-associated neuro-ocular syndrome (SANS) has so far not been completely elucidated. In this study we assessed the effect of acute head-down tilt position on the mean flow of the intra- and extracranial vessels. Our results suggest a shift from the external to the internal system that might play an important role in the pathomechanism of SANS.
Collapse
Affiliation(s)
- Alessa L Boschert
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.
| | - Peter Gauger
- Department of Cardiovascular Aerospace Medicine, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Anja Bach
- Department of Cardiovascular Aerospace Medicine, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Darius Gerlach
- Department of Cardiovascular Aerospace Medicine, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Bernd Johannes
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR) and Chair of Aerospace Medicine, Cologne, Germany
| | - Zhili Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - David Elmenhorst
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Jülich, Germany
| | - Andreas Bauer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-2), Jülich, Germany
| | | | - Jens Tank
- Department of Cardiovascular Aerospace Medicine, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jochen Zange
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jörn Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Pessa JE. Identification of a novel path for cerebrospinal fluid (CSF) drainage of the human brain. PLoS One 2023; 18:e0285269. [PMID: 37141309 PMCID: PMC10159342 DOI: 10.1371/journal.pone.0285269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
How cerebrospinal fluid (CSF) drains from the human brain is of paramount importance to cerebral health and physiology. Obstructed CSF drainage results in increased intra-cranial pressure and a predictable cascade of events including dilated cerebral ventricles and ultimately cell death. The current and accepted model of CSF drainage in humans suggests CSF drains from the subarachnoid space into the sagittal sinus vein. Here we identify a new structure in the sagittal sinus of the human brain by anatomic cadaver dissection. The CSF canalicular system is a series of channels on either side of the sagittal sinus vein that communicate with subarachnoid cerebrospinal fluid via Virchow-Robin spaces. Fluorescent injection confirms that these channels are patent and that flow occurs independent of the venous system. Fluoroscopy identified flow from the sagittal sinus to the cranial base. We verify our previous identification of CSF channels in the neck that travel from the cranial base to the subclavian vein. Together, this information suggests a novel path for CSF drainage of the human brain that may represent the primary route for CSF recirculation. These findings have implications for basic anatomy, surgery, and neuroscience, and highlight the continued importance of gross anatomy to medical research and discovery.
Collapse
Affiliation(s)
- Joel E Pessa
- Private Practice, Arlington, Massachusetts, United States of America
| |
Collapse
|
15
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
16
|
A perspective on spaceflight associated neuro-ocular syndrome causation secondary to elevated venous sinus pressure. NPJ Microgravity 2022; 8:3. [PMID: 35169156 PMCID: PMC8847421 DOI: 10.1038/s41526-022-00188-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) alters the vision of astronauts during long-duration spaceflights. There is controversy regarding SANS being similar to patients with idiopathic intracranial hypertension (IIH). IIH has been shown to be due to an elevation in venous sinus pressure. The literature suggests an increase in jugular vein pressure secondary to a headward shift of fluid occurs in SANS but this may not be enough to significantly alter the intracranial pressure (ICP). The literature regarding cardiac output and cerebral blood flow (CBF) in long-duration spaceflight is contradictory, however, more recent data suggests increased flow. Recent modelling has shown that an increase in CBF can significantly increase sinus pressure. The purpose of the present paper is to review the SANS vascular dynamics literature and through mathematical modelling suggest the possible underlying cause of SANS as an elevation in venous sinus pressure, secondary to the redistribution of fluids towards the head, together with a significant increase in pressure drop across the venous system related to the CBF.
Collapse
|