1
|
Pfefferbaum A, Sullivan EV, Saranathan M, Pohl KM, Bischoff-Grethe A, Stoner SA, Riley EP. Thalamic Nuclear Volumes in Fetal Alcohol Spectrum Disorders: from Adolescence to Middle-Age 20 Years Later. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00130-2. [PMID: 40254272 DOI: 10.1016/j.bpsc.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Midline orofacial and brain structures, including the multinucleated thalamus, may be differentially sensitive to prenatal alcohol exposure and vulnerable to accelerated aging. METHODS Two sets of MRI data separated by 20 years are reported for controls, individuals with fetal alcohol syndrome (FAS), and nondysmorphic individuals with heavy fetal alcohol exposure (FAE). MRI1 included 179 participants with 69 reassessed at MRI2. Segmentation produced estimates of bilateral thalamic volume and 10 bilateral nuclei, which were aggregated into Anterior, Ventral, Posterior, and Medial Volumes. Differences were assessed without and with correction for intracranial volume (ICV). RESULTS MRI1 revealed stepwise group differences in ICV, total thalamic volume, and Anterior and Ventral regions uncorrected for ICV, where Controls>FAE>FAS. Corrected for ICV, the smaller volumes endured in the Anterior and Ventral regions, although differences between FAE and FAS groups were attenuated. Nuclei volumes were selectively smaller in the alcohol-exposed groups than controls even after controlling for ICV. Longitudinally, thalamic volumes typically declined over time maintaining the stepwise effects and with little evidence for accelerated decline in the FAE or FAS groups. CONCLUSIONS These novel data revealed stable deficits in thalamic nuclei of the groups with heavy fetal alcohol exposure. After 20 years, the deficits endured but without accelerated age-related decline and following the same aging pattern as controls. Despite parallel aging functions in all groups, ICV adjustment yielded volume deficits localized to the anterior and ventral thalamic nuclei, differing from patterns in the remaining thalamic nuclei and cortical brain structures.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA.
| | | | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | | | - Susan A Stoner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Edward P Riley
- Department of Psychology, San Diego State University, San Diego, CA
| |
Collapse
|
2
|
Tong M, Homans C, Pelit W, Delikkaya B, de la Monte SM. Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling. Biomolecules 2025; 15:413. [PMID: 40149949 PMCID: PMC11940526 DOI: 10.3390/biom15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. OBJECTIVES This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. METHODS Adult Long Evans rats (8-12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. RESULTS Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. CONCLUSIONS Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR's downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Camilla Homans
- Molecular Pharmacology, Physiology, and Biotechnology Graduate Program, Brown University, Providence, RI 02903, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Departments of Neurosurgery and Neurology, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Hunnicutt-Ferguson K, Stoner SA, Kable JA, Grant TM, Coles CD. Substance use and mental health symptoms in adults with prenatal alcohol exposure. Neurotoxicol Teratol 2025; 109:107436. [PMID: 40032207 DOI: 10.1016/j.ntt.2025.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Substance use and mental health problems have been documented in individuals with prenatal alcohol exposure (PAE) in young adulthood, but little is known about how these patterns progress over time into midlife. The current study examined rates of substance use in a sample of adults with PAE in mid-life compared to a demographically similar contrast group. METHODS Participants (n = 233) were drawn from two longitudinal cohorts of individuals recruited prenatally and followed into adulthood. Measures of cognition, substance use, and self-reported mental health functioning were obtained. RESULTS Differences among groups (PAE no dysmorphology, PAE with dysmorphology, No PAE contrast group) were examined on demographic variables of interest and substance use outcomes. Both PAE groups experienced higher levels of Adverse Childhood Experiences (ACEs) compared to the contrast group. We also observed higher rates of current tobacco use in those with PAE; those with PAE and no dysmorphology had almost twice the rate of current tobacco use as the nonexposed contrast group. We observed similar rates of high risk drinking on the Alcohol Use Identification Test (AUDIT) in all groups. Individuals with PAE also showed high rates of cannabis use compared to national averages. Generalized linear regressions examining predictive effects of PAE on substance use outcomes did not show significant results, though female sex at birth was predictive of current cannabis use. Current alcohol use predicted depression and PTSD symptoms, and significant interactions were observed between PAE group and ACEs on depression, PTSD, anxiety, and psychotic symptoms. CONCLUSION This is one of the only studies to examine rates of alcohol and other substance use among adults in mid-life with PAE. Results suggest that relationships between PAE, substance use, and mental health symptoms are complex, and it will be important for future studies to examine factors associated with high-risk substance use among this vulnerable population.
Collapse
Affiliation(s)
- Kallio Hunnicutt-Ferguson
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| | - Susan A Stoner
- Fetal Alcohol and Drug Unit, Addictions, Drug & Alcohol Institute, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Julie A Kable
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Therese M Grant
- Fetal Alcohol and Drug Unit, Addictions, Drug & Alcohol Institute, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Claire D Coles
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Bischoff-Grethe A, Stoner SA, Riley EP, Moore EM. Subcortical volume in middle-aged adults with fetal alcohol spectrum disorders. Brain Commun 2024; 6:fcae273. [PMID: 39229493 PMCID: PMC11369821 DOI: 10.1093/braincomms/fcae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Studies of youth and young adults with prenatal alcohol exposure (PAE) have most consistently reported reduced volumes of the corpus callosum, cerebellum and subcortical structures. However, it is unknown whether this continues into middle adulthood or if individuals with PAE may experience premature volumetric decline with aging. Forty-eight individuals with fetal alcohol spectrum disorders (FASD) and 28 healthy comparison participants aged 30 to 65 participated in a 3T MRI session that resulted in usable T1-weighted and T2-weighted structural images. Primary analyses included volumetric measurements of the caudate, putamen, pallidum, cerebellum and corpus callosum using FreeSurfer software. Analyses were conducted examining both raw volumetric measurements and subcortical volumes adjusted for overall intracranial volume (ICV). Models tested for main effects of age, sex and group, as well as interactions of group with age and group with sex. We found the main effects for group; all regions were significantly smaller in participants with FASD for models using raw volumes (P's < 0.001) as well as for models using volumes adjusted for ICV (P's < 0.046). Although there were no significant interactions of group with age, females with FASD had smaller corpus callosum volumes relative to both healthy comparison females and males with FASD (P's < 0.001). As seen in children and adolescents, adults aged 30 to 65 with FASD showed reduced volumes of subcortical structures relative to healthy comparison adults, suggesting persistent impact of PAE. Moreover, the observed volumetric reduction of the corpus callosum in females with FASD could suggest more rapid degeneration, which may have implications for cognition as these individuals continue to age.
Collapse
Affiliation(s)
| | - Susan A Stoner
- Department of Psychiatry and Behavioral Sciences, Fetal Alcohol and Drug Unit, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | - Edward P Riley
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| |
Collapse
|
5
|
Sautreuil C, Lecointre M, Dalmasso J, Lebon A, Leuillier M, Janin F, Lecuyer M, Bekri S, Marret S, Laquerrière A, Brasse-Lagnel C, Gil S, Gonzalez BJ. Expression of placental CD146 is dysregulated by prenatal alcohol exposure and contributes in cortical vasculature development and positioning of vessel-associated oligodendrocytes. Front Cell Neurosci 2024; 17:1294746. [PMID: 38269113 PMCID: PMC10806802 DOI: 10.3389/fncel.2023.1294746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Recent data showed that prenatal alcohol exposure (PAE) impairs the "placenta-brain" axis controlling fetal brain angiogenesis in human and preclinical models. Placental growth factor (PlGF) has been identified as a proangiogenic messenger between these two organs. CD146, a partner of the VEGFR-1/2 signalosome, is involved in placental angiogenesis and exists as a soluble circulating form. The aim of the present study was to investigate whether placental CD146 may contribute to brain vascular defects described in fetal alcohol spectrum disorder. At a physiological level, quantitative reverse transcription polymerase chain reaction experiments performed in human placenta showed that CD146 is expressed in developing villi and that membrane and soluble forms of CD146 are differentially expressed from the first trimester to term. In the mouse placenta, a similar expression pattern of CD146 was found. CD146 immunoreactivity was detected in the labyrinth zone and colocalized with CD31-positive endothelial cells. Significant amounts of soluble CD146 were quantified by ELISA in fetal blood, and the levels decreased after birth. In the fetal brain, the membrane form of CD146 was the majority and colocalized with microvessels. At a pathophysiological level, PAE induced marked dysregulation of CD146 expression. The soluble form of CD146 decreased in both placenta and fetal blood, whereas it increased in the fetal brain. Similarly, the expression of several members of the CD146 signalosome, such as VEGFR2 and PSEN, was differentially impaired between the two organs by PAE. At a functional level, targeted repression of placental CD146 by in utero electroporation (IUE) of CRISPR/Cas9 lentiviral plasmids resulted in (i) a decrease in cortical vessel density, (ii) a loss of radial vascular organization, and (iii) a reduced density of oligodendrocytes. Statistical analysis showed that the more the vasculature was impaired, the more the cortical oligodendrocyte density was reduced. Altogether, these data support that placental CD146 contributes to the proangiogenic "placenta-brain" axis and that placental CD146 dysfunction contributes to the cortical oligo-vascular development. Soluble CD146 would represent a promising placental biomarker candidate representative of alcohol-induced neurovascular defects in neonates, as recently suggested by PlGF (patents WO2016207253 and WO2018100143).
Collapse
Affiliation(s)
- Camille Sautreuil
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maryline Lecointre
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Alexis Lebon
- Rouen Université, US51 HeRacLeS, PRIMACEN Platform, Faculty of Biological Sciences, Normandie Université, Mont-Saint-Aignan, France
| | | | - François Janin
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Matthieu Lecuyer
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Soumeya Bekri
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Metabolic Biochemistry, Normandie University, Rouen, France
| | - Stéphane Marret
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Neonatal Pediatrics and Intensive Care, Rouen, France
| | - Annie Laquerrière
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Pathology, Rouen Normandy Hospital, Rouen, France
| | - Carole Brasse-Lagnel
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Gil
- Université de Paris, INSERM, UMR-S 1139, 3PHM, Paris, France
| | - Bruno J. Gonzalez
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
6
|
Darbinian N, Merabova N, Tatevosian G, Morrison M, Darbinyan A, Zhao H, Goetzl L, Selzer ME. Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH. Cells 2023; 13:2. [PMID: 38201206 PMCID: PMC10778368 DOI: 10.3390/cells13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers' blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es. METHODS Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA). RESULTS Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD. CONCLUSIONS Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Mary Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Michael Edgar Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|