1
|
Chandra S, Amer A, Shih CH, Shao Q, Wang X, Xie H. COVID-19 Pandemic Impacts on STRESS, PTSD, and Prefrontal Cortical Thickness in Pre-Pandemic Trauma Survivors. J Pers Med 2025; 15:127. [PMID: 40278306 PMCID: PMC12028702 DOI: 10.3390/jpm15040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: The COVID-19 pandemic increased psychiatric symptoms in patients with pre-pandemic mental health conditions. However, the effects of pandemic on the brain, stress, and mental illness remain largely conjectural. Our objective was to examine how the pandemic affected prefrontal cortical thicknesses (CTs), stress, and PTSD symptoms in people with pre-pandemic trauma histories. Methods: Fifty-one survivors from a pre-pandemic trauma study who had completed a pre-pandemic PTSD Checklist-5 (PCL) to assess PTSD symptoms and a sMRI scan to measure prefrontal CTs were re-recruited after the pandemic. They subsequently completed the COVID Stress Scale (CSS) to assess stress, the Clinician Administered PTSD Scale-5 (CAPS) to diagnose PTSD, and a second sMRI scan. COVID-19 infection was self-reported. Associations between stress and symptom assessments and post-pandemic CTs, differences in CTs in PTSD vs. non-PTSD groups, and changes in pre- to post-pandemic CTs were examined. Results: Pre-pandemic PCL scores were positively associated with CSS scores which, in turn, were higher in the PTSD group. Thicker IFG-opercularis CTs were associated with COVID-19 infection. Post-pandemic rMFG and IFG-orbitalis CTs were positively associated with CAPS scores. rACC CTs were negatively associated with CSS scores. Pre- to post-pandemic rMFG and frontal pole CTs thickened in the PTSD group but thinned in the non-PTSD group, whereas rACC CTs thinned in the PTSD group but thickened in the non-PTSD group. Conclusions: These findings provide novel evidence that the COVID-19 pandemic had diverse effects involving prefrontal cortex structure, stress, and PTSD symptoms in subjects with pre-pandemic trauma history and suggest that treatments are needed to counter these diverse effects.
Collapse
Affiliation(s)
- Sharad Chandra
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Atheer Amer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Chia-Hao Shih
- Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Qin Shao
- Department of Mathematics and Statistics, University of Toledo, Toledo, OH 43606, USA
| | - Xin Wang
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Hong Xie
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
2
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Zeng X, Li M, Zhou F. Decreases in frequency-dependent intrinsic activity of the default mode network are associated with depression and cognition in patients with postacute sequelae of SARS-CoV-2 infection. Brain Struct Funct 2025; 230:36. [PMID: 39869209 DOI: 10.1007/s00429-025-02895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited. The voxel-level fractional amplitude of low-frequency fluctuation (fALFF) was calculated in different frequency bands (typical frequency band: 0.01-0.10 Hz; slow 5: 0.01-0.023 Hz; slow 4: 0.023-0.073 Hz) to assess regional intrinsic activity patterns within different groups. Correlation analyses were performed to explore the associations between frequency-dependent alterations and clinical variables. Significant frequency-dependent alterations in intrinsic activity patterns were observed in both the PASC and non-PASC groups, primarily involving regions of the default mode network (DMN). The decreased fALFF values of the DMN in different frequency bands were associated with different symptoms in PASC. For example, decreased fALFF in the left precuneus in the typical frequency band was related to general attention impairment in PASC, whereas decreased fALFF in the left superior frontal gyrus appeared in non-PASC. The fALFF alterations in the left precuneus/posterior cingulate gyrus in the slow 5 band were also related to cognitive performance in PASC. Additionally, in the slow 4 band, decreased fALFF in the right angular gyrus was associated with depressive symptoms in the PASC. Our results may provide insights into the potential neural mechanisms underlying symptoms in PASC patients.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiankun Dai
- MR Research, GE Healthcare, Beijing, 100000, China
| | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
3
|
Pongutta S, Tangcharoensathien V, Leung K, Larson HJ, Lin L. Social Vulnerability and Compliance With World Health Organization Advice on Protective Behaviors Against COVID-19 in African and Asia Pacific Countries: Factor Analysis to Develop a Social Vulnerability Index. JMIR Public Health Surveill 2024; 10:e54383. [PMID: 39137034 DOI: 10.2196/54383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND COVID-19 protective behaviors are key interventions advised by the World Health Organization (WHO) to prevent COVID-19 transmission. However, achieving compliance with this advice is often challenging, particularly among socially vulnerable groups. OBJECTIVE We developed a social vulnerability index (SVI) to predict individuals' propensity to adhere to the WHO advice on protective behaviors against COVID-19 and identify changes in social vulnerability as Omicron evolved in African countries between January 2022 and August 2022 and Asia Pacific countries between August 2021 and June 2022. METHODS In African countries, baseline data were collected from 14 countries (n=15,375) during the first Omicron wave, and follow-up data were collected from 7 countries (n=7179) after the wave. In Asia Pacific countries, baseline data were collected from 14 countries (n=12,866) before the first Omicron wave, and follow-up data were collected from 9 countries (n=8737) after the wave. Countries' socioeconomic and health profiles were retrieved from relevant databases. To construct the SVI for each of the 4 data sets, variables associated with COVID-19 protective behaviors were included in a factor analysis using polychoric correlation with varimax rotation. Influential factors were adjusted for cardinality, summed, and min-max normalized from 0 to 1 (most to least vulnerable). Scores for compliance with the WHO advice were calculated using individuals' self-reported protective behaviors against COVID-19. Multiple linear regression analyses were used to assess the associations between the SVI and scores for compliance to WHO advice to validate the index. RESULTS In Africa, factors contributing to social vulnerability included literacy and media use, trust in health care workers and government, and country income and infrastructure. In Asia Pacific, social vulnerability was determined by literacy, country income and infrastructure, and population density. The index was associated with compliance with the WHO advice in both time points in African countries but only during the follow-up period in Asia Pacific countries. At baseline, the index values in African countries ranged from 0.00 to 0.31 in 13 countries, with 1 country having an index value of 1.00. The index values in Asia Pacific countries ranged from 0.00 to 0.23 in 12 countries, with 2 countries having index values of 0.79 and 1.00. During the follow-up phase, the index values decreased in 6 of 7 African countries and the 2 most vulnerable Asia Pacific countries. The index values of the least vulnerable countries remained unchanged in both regions. CONCLUSIONS In both regions, significant inequalities in social vulnerability to compliance with WHO advice were observed at baseline, and the gaps became larger after the first Omicron wave. Understanding the dimensions that influence social vulnerability to protective behaviors against COVID-19 may underpin targeted interventions to enhance compliance with WHO recommendations and mitigate the impact of future pandemics among vulnerable groups.
Collapse
Affiliation(s)
- Suladda Pongutta
- International Health Policy Program, Ministry of Public Health, Muang, Nonthaburi, Thailand
| | | | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
- The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Heidi J Larson
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, United States
| | - Leesa Lin
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|