1
|
Owen MJ, Bray NJ, Walters JTR, O'Donovan MC. Genomics of schizophrenia, bipolar disorder and major depressive disorder. Nat Rev Genet 2025:10.1038/s41576-025-00843-0. [PMID: 40355602 DOI: 10.1038/s41576-025-00843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Schizophrenia, bipolar disorder and major depressive disorder - which are the most common adult disorders requiring psychiatric care - contribute substantially to premature mortality and morbidity globally. Treatments for these disorders are suboptimal, there are no diagnostic pathologies or biomarkers and their pathophysiologies are poorly understood. Novel therapeutic and diagnostic approaches are thus badly needed. Given the high heritability of psychiatric disorders, psychiatry has potentially much to gain from the application of genomics to identify molecular risk mechanisms and to improve diagnosis. Recent large-scale, genome-wide association studies and sequencing studies, together with advances in functional genomics, have begun to illuminate the genetic architectures of schizophrenia, bipolar disorder and major depressive disorder and to identify potential biological mechanisms. Genomic findings also point to the aetiological relationships between different diagnoses and to the relationships between adult psychiatric disorders and childhood neurodevelopmental conditions.
Collapse
Affiliation(s)
- Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Nicholas J Bray
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Dennison CA, Martin J, Shakeshaft A, Riglin L, Powell V, Kirov G, Owen MJ, O'Donovan MC, Thapar A. Early Manifestations of Neurodevelopmental Copy Number Variants in Children: A Population-Based Investigation. Biol Psychiatry 2025:S0006-3223(25)01050-9. [PMID: 40090564 DOI: 10.1016/j.biopsych.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND There is clinical interest in recognizing copy number variants (CNVs) in children because many have immediate and long-term health implications. Neurodevelopmental (ND) CNVs are associated with intellectual disability, autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), conditions typically diagnosed by medical practitioners. However, ND CNVs may have additional, early developmental impacts that have yet to be examined in unselected populations. METHODS Carriers of known ND CNVs were identified in 2 UK birth cohorts: ALSPAC (Avon Longitudinal Study of Parents and Children) (carriers = 144, controls = 6217) and MCS (Millennium Cohort Study) (carriers = 151, controls = 6559). In ALSPAC, we assessed associations between CNV carrier status and birth complications; preschool development; cognitive ability; ND conditions (ASD, ADHD, reading, language, and motor difficulties); and psychiatric, social, and educational outcomes. Corresponding phenotypes were identified in MCS and meta-analyzed, where available. RESULTS In ALSPAC, ND CNVs were associated with low cognitive ability, ADHD, and ASD. ND CNV carriers showed a greater likelihood of preterm birth, fine and gross motor delay, difficulties in motor coordination, language, and reading, and special educational needs (SEND). Meta-analysis with available measures in MCS identified elevated likelihood of ASD, ADHD, low birth weight, reading difficulties, SEND, and peer problems. CONCLUSIONS ND CNVs are associated with a broad range of developmental impacts. While clinicians who see children with intellectual disability, ASD, or ADHD may be aware of the impacts of CNVs and consider genetic testing, our investigation suggests that this training and awareness may need to extend to other professional groups (e.g., speech and language therapists).
Collapse
Affiliation(s)
- Charlotte A Dennison
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, United Kingdom; Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Joanna Martin
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, United Kingdom; Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Amy Shakeshaft
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, United Kingdom; Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lucy Riglin
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, United Kingdom; Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Victoria Powell
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, United Kingdom; Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Thapar
- Wolfson Centre for Young People's Mental Health, Cardiff University, Cardiff, United Kingdom; Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, United Kingdom.
| |
Collapse
|
3
|
Wu XR, Wu BS, Kang JJ, Chen LM, Deng YT, Chen SD, Dong Q, Feng JF, Cheng W, Yu JT. Contribution of copy number variations to education, socioeconomic status and cognition from a genome-wide study of 305,401 subjects. Mol Psychiatry 2025; 30:889-898. [PMID: 39215183 DOI: 10.1038/s41380-024-02717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Li-Min Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Goh S, Thiyagarajan L, Dudding-Byth T, Pinese M, Kirk EP. A systematic review and pooled analysis of penetrance estimates of copy-number variants associated with neurodevelopment. Genet Med 2025; 27:101227. [PMID: 39092588 DOI: 10.1016/j.gim.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Many copy-number variants (CNVs) are reported to cause a variety of neurodevelopmental disabilities including intellectual disability, developmental delay, autism, and other phenotypes with incomplete penetrance. Therefore, not all individuals with a pathogenic CNV are affected. Penetrance estimates vary between studies. A systematic review was conducted to clarify CNV penetrance for 83 recurrent CNVs. METHODS A systematic review using PRISMA guidelines (PROSPERO #CRD42021253955) was conducted to identify penetrance estimates for CNVs associated with neurodevelopment. Pooled analysis was performed using forest plots. The Ottawa Risk of Bias Assessment facilitated evaluation. RESULTS Fifteen studies were reviewed in detail with 9 affected cohorts pooled and compared with the gnomAD v4.0 CNV control cohort of 269,885 individuals. Several CNVs previously associated with nonstatistically significant penetrance estimates now exhibit statistically significant differences, contributing to emerging evidence for their pathogenicity (15q24 duplication [A-D breakpoints], 15q24.2q24.5 deletion and duplication [FBXO22], 17q11.2 duplication [NF1], 17q21.31 duplication [KANSL1] and 22q11.2 distal duplication). Additionally, evidence is presented for the benign nature of some CNVs (15q11.2 duplication [NIPA1] and 2q13 proximal duplication [NPHP1]). CONCLUSION This is a large-scale systematic review of CNVs associated with neurodevelopment. A synopsis analyzing penetrance and pathogenicity is provided for each of the 83 recurrent CNVs.
Collapse
Affiliation(s)
- Shuxiang Goh
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; New South Wales Health, NSW, Australia.
| | - Lavvina Thiyagarajan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; New South Wales Health, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | - Mark Pinese
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Children's Cancer Institute, Sydney, NSW, Australia
| | - Edwin P Kirk
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; New South Wales Health, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; NSW Health Pathology Randwick Genomics Laboratory, Sydney, NSW, Australia
| |
Collapse
|
5
|
Kushima I, Nakatochi M, Ozaki N. Copy Number Variations and Human Well-Being: Integrating Psychiatric, Physical, and Socioeconomic Perspectives. Biol Psychiatry 2024:S0006-3223(24)01788-8. [PMID: 39643102 DOI: 10.1016/j.biopsych.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Copy number variations (CNVs) have emerged as crucial genetic factors that influence a wide spectrum of human health outcomes, with particularly strong associations to psychiatric disorders. In this review, we present a synthesis of diverse impacts of psychiatric disorder-associated CNVs on neurodevelopment, brain function, and physical health across the lifespan. Large-scale studies have revealed that CNV carriers exhibit an increased risk for psychiatric disorders, cognitive deficits, sleep disturbances, neurological disorders, and other physical conditions, including cardiovascular diseases, diabetes, and renal disease, highlighting the wide-ranging impact of CNVs beyond the brain. Neuroimaging studies have revealed substantial CNV effects on brain structure, from cortical and subcortical alterations to white matter microstructure, with effect sizes often exceeding those observed in idiopathic psychiatric disorders. Cellular and animal models have begun to elucidate dynamic CNV effects on neurodevelopment, neuronal function, and cellular energy metabolism, while revealing complex CNV-environment interactions and cell type-specific responses, particularly in studies of 22q11.2 deletion syndrome. This review also explores the complex interplay between psychiatric and physical health conditions in CNV carriers and how these interactions contribute to adverse socioeconomic outcomes, including reduced educational attainment and income levels, creating a feedback loop that further impacts health outcomes. Finally, in this review, we also highlight research limitations and propose key priorities for clinical implementation, including the need for longitudinal studies, standardized guidelines for CNV result reporting and genetic counseling, and integrated care networks to provide a foundation for advancing the field of precision psychiatry.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Si Y, Lu W, Holloway S, Wang H, Tucci AA, Brucker A, Cheng Y, Wang LS, Schellenberger G, Lee WP, Tzeng JY. CNV-Profile Regression: A New Approach for Copy Number Variant Association Analysis in Whole Genome Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624994. [PMID: 39651129 PMCID: PMC11623527 DOI: 10.1101/2024.11.23.624994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Copy number variants (CNVs) are DNA gains or losses involving >50 base pairs. Assessing CNV effects on disease risk requires consideration of several factors. First, there are no natural definitions for CNV loci. Second, CNV effects can depend on dosage and length. Third, CNV effects can be more accurately estimated when all CNV events in a genomic region are analyzed together to assess their joint effects. We propose a new framework for association analysis that directly models an individual's entire CNV profile within a genomic region. This framework represents an individual's CNVs using a CNV profile curve to capture variations in CNV length and dosage and to bypass the need to predefine CNV loci. CNV effects are estimated at each genome position, making the results comparable across different studies. To jointly estimate the effects of all CNVs, we use a Lasso penalty to select CNVs associated with the trait and integrate a weighted L2-fusion penalty to encourage similar effects of adjacent CNVs when supported by the data. Simulations show that the proposed model can more effectively identify causal CNVs while maintaining false positive rates comparable to baseline methods and yield more precise effect-size estimates across different settings. When applied to CNV derived from whole genome sequencing data of the Alzheimer's Disease Sequencing Project, the proposed methods identify additional CNVs associated with Alzheimer's Disease (AD). These identified CNVs overlap with several known AD-risk genes and are significantly enriched by biological processes related to neuron structures and functions crucial in AD development.
Collapse
|
7
|
Vaez M, Montalbano S, Waples R, Krebs MD, Hellberg KLG, Gådin J, Bybjerg-Grauholm J, Mortensen PB, Børglum AD, Nordentoft M, Geschwind DH, Helenius D, Werge T, Schork AJ, Ingason A. Evaluating the Joint Effects of Recurrent Copy Number Variants and Polygenic Scores on the Risk of Psychiatric Disorders in the iPSYCH2015 Case-Cohort Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24314234. [PMID: 39398991 PMCID: PMC11469389 DOI: 10.1101/2024.09.23.24314234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The impact of rare recurrent copy number variants (rCNVs) and polygenic background attributed to common variants, on the risk of psychiatric disorders is well-established in separate studies. However, it remains unclear how polygenic background modulates the effect of rCNVs. Using the population-representative iPSYCH2015 case-cohort sample (N=96,599), we investigated the association between absolute risk of psychiatric disorders and carriage of rCNVs and polygenic scores (PGS), as well as the interaction effect between the two on disease risk. Carriers of rCNVs with higher gene constraint scores had an increased absolute risk for autism, ADHD, and schizophrenia, but not depression, whereas an increase in PGS for each respective disorder was associated with higher absolute risk across all four disorders. Similarly, elevated absolute risks were observed with the increase of both PGS and gene constraints of rCNVs except in the case of depression. In contrast to some previous case-control studies, our joint analysis of rCNV groups and PGS revealed no indication of significant interactive effect between these two factors on disease risk. Also, we found no significant interactions of PGS with any of the most common individual rCNVs, except in the case of 16p13.11 duplication, which was found to attenuate the effect of ADHD-PGS on the absolute risk of ADHD. This study advances our understanding of the interplay between rare and common important genetic risk factors for major psychiatric disorders and sheds light on the importance of population-based samples in implementing precision medicine.
Collapse
|
8
|
Auwerx C, Moix S, Kutalik Z, Reymond A. Disentangling mechanisms behind the pleiotropic effects of proximal 16p11.2 BP4-5 CNVs. Am J Hum Genet 2024; 111:2347-2361. [PMID: 39332408 PMCID: PMC11568757 DOI: 10.1016/j.ajhg.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Whereas 16p11.2 BP4-5 copy-number variants (CNVs) represent one of the most pleiotropic etiologies of genomic syndromes in both clinical and population cohorts, the mechanisms leading to such pleiotropy remain understudied. Identifying 73 deletion and 89 duplication carrier individuals among unrelated White British UK Biobank participants, we performed a phenome-wide association study (PheWAS) between the region's copy number and 117 complex traits and diseases, mimicking four dosage models. Forty-six phenotypes (39%) were affected by 16p11.2 BP4-5 CNVs, with the deletion-only, mirror, U-shape, and duplication-only models being the best fit for 30, 10, 4, and 2 phenotypes, respectively, aligning with the stronger deleteriousness of the deletion. Upon individually adjusting CNV effects for either body mass index (BMI), height, or educational attainment (EA), we found that sixteen testable deletion-driven associations-primarily with cardiovascular and metabolic traits-were BMI dependent, with EA playing a more subtle role and no association depending on height. Bidirectional Mendelian randomization supported that 13 out of these 16 associations were secondary consequences of the CNV's impact on BMI. For the 23 traits that remained significantly associated upon individual adjustment for mediators, matched-control analyses found that 10 phenotypes, including musculoskeletal traits, liver enzymes, fluid intelligence, platelet count, and pneumonia and acute kidney injury risk, remained associated under strict Bonferroni correction, with 10 additional nominally significant associations. These results paint a complex picture of 16p11.2 BP4-5's pleiotropic pattern that involves direct effects on multiple physiological systems and indirect co-morbidities consequential to the CNV's impact on BMI and EA, acting through trait-specific dosage mechanisms.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Samuel Moix
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Schultz LM, Knighton A, Huguet G, Saci Z, Jean-Louis M, Mollon J, Knowles EEM, Glahn DC, Jacquemont S, Almasy L. Copy-number variants differ in frequency across genetic ancestry groups. HGG ADVANCES 2024; 5:100340. [PMID: 39138864 PMCID: PMC11401192 DOI: 10.1016/j.xhgg.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Copy-number variants (CNVs) have been implicated in a variety of neuropsychiatric and cognitive phenotypes. We found that deleterious CNVs are less prevalent in non-European ancestry groups than they are in European ancestry groups of both the UK Biobank (UKBB) and a US replication cohort (SPARK). We also identified specific recurrent CNVs that consistently differ in frequency across ancestry groups in both the UKBB and SPARK. These ancestry-related differences in CNV prevalence present in both an unselected community population and a family cohort enriched with individuals diagnosed with autism spectrum disorder (ASD) strongly suggest that genetic ancestry should be considered when probing associations between CNVs and health outcomes.
Collapse
Affiliation(s)
- Laura M Schultz
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Alexys Knighton
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zohra Saci
- CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Josephine Mollon
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emma E M Knowles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sébastien Jacquemont
- CHU Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Vaez M, Montalbano S, Calle Sánchez X, Georgii Hellberg KL, Dehkordi SR, Krebs MD, Meijsen J, Shorter J, Bybjerg-Grauholm J, Mortensen PB, Børglum AD, Hougaard DM, Nordentoft M, Geschwind DH, Buil A, Schork AJ, Helenius D, Raznahan A, Thompson WK, Werge T, Ingason A. Population-Based Risk of Psychiatric Disorders Associated With Recurrent Copy Number Variants. JAMA Psychiatry 2024; 81:957-966. [PMID: 38922630 PMCID: PMC11209205 DOI: 10.1001/jamapsychiatry.2024.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Importance Recurrent copy number variants (rCNVs) have been associated with increased risk of psychiatric disorders in case-control studies, but their population-level impact is unknown. Objective To provide unbiased population-based estimates of prevalence and risk associated with psychiatric disorders for rCNVs and to compare risks across outcomes, rCNV dosage type (deletions or duplications), and locus features. Design, Setting, and Participants This genetic association study is an analysis of data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) case-cohort sample of individuals born in Denmark in 1981-2008 and followed up until 2015, including (1) all individuals (n = 92 531) with a hospital discharge diagnosis of attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder, major depressive disorder (MDD), or schizophrenia spectrum disorder (SSD) and (2) a subcohort (n = 50 625) randomly drawn from the source population. Data were analyzed from January 2021 to August 2023. Exposures Carrier status of deletions and duplications at 27 autosomal rCNV loci was determined from neonatal blood samples genotyped on single-nucleotide variant microarrays. Main Outcomes and Measures Population-based rCNV prevalence was estimated with a survey model using finite population correction to account for oversampling of cases. Hazard ratio (HR) estimates and 95% CIs for psychiatric disorders were derived using weighted Cox proportional hazard models. Risks were compared across outcomes, dosage type, and locus features using generalized estimating equation models. Results A total of 3547 rCNVs were identified in 64 735 individuals assigned male at birth (53.8%) and 55 512 individuals assigned female at birth (46.2%) whose age at the end of follow-up ranged from 7.0 to 34.7 years (mean, 21.8 years). Most observed increases in rCNV-associated risk for ADHD, ASD, or SSD were moderate, and risk estimates were highly correlated across these disorders. Notable exceptions included high ASD-associated risk observed for Prader-Willi/Angelman syndrome duplications (HR, 20.8; 95% CI, 7.9-55). No rCNV was associated with increased MDD risk. Also, rCNV-associated risk was positively correlated with locus size and gene constraint but not with dosage type. Comparison with published case-control and community-based studies revealed a higher prevalence of deletions and lower associated increase in risk for several rCNVs in iPSYCH2015. Conclusions and Relevance This study found that several rCNVs were more prevalent and conferred less risk of psychiatric disorders than estimated previously. Most case-control studies overestimate rCNV-associated risk of psychiatric disorders, likely because of selection bias. In an era where genetics is increasingly being clinically applied, these results highlight the importance of population-based risk estimates for genetics-based predictions.
Collapse
Affiliation(s)
- Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Simone Montalbano
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Xabier Calle Sánchez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Kajsa-Lotta Georgii Hellberg
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Saeid Rasekhi Dehkordi
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Morten Dybdahl Krebs
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Joeri Meijsen
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - John Shorter
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jonas Bybjerg-Grauholm
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B. Mortensen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Department of Biomedicine – Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - David M. Hougaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel H. Geschwind
- Department of Neurology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles
- Center for Human Development, University of California, San Diego
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J. Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Neurogenomics Division, Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Wesley K. Thompson
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Garcia-Argibay M, Lundström S, Cortese S, Larsson H. Trends in Body Mass Index Among Individuals With Neurodevelopmental Disorders. JAMA Netw Open 2024; 7:e2431543. [PMID: 39230900 PMCID: PMC11375475 DOI: 10.1001/jamanetworkopen.2024.31543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024] Open
Abstract
Importance Neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are increasingly common. Individuals with NDDs have heightened obesity risks, but long-term data on body mass index (BMI) trends over time in this population are lacking. Objective To assess secular BMI changes from 2004 to 2020 among children with NDDs compared with those without NDDs. Design, Setting, and Participants This repeated cross-sectional study used data from the Child and Adolescent Twin Study in Sweden. Children born between January 1, 1992, and December 31, 2010, were screened for neurodevelopmental symptoms using the Autism-Tics, ADHD, and Other Comorbidities inventory between July 2004 and April 2020 when they were 9 or 12 years of age. Data analysis was conducted between September 27, 2023, and January 30, 2024. Main Outcomes and Measures BMI percentiles (15th, 50th, and 85th) were modeled using quantile regression and compared between youths with and without NDDs. Secular changes in BMI percentiles over time spanning 2004 to 2020 were evaluated and stratified by NDD subtype. Results The cohort included 24 969 Swedish twins (12 681 [51%] boys) born between 1992 and 2010, with mean (SD) age of 9 (0.6) years. Of these, 1103 (4%) screened positive for 1 or more NDDs, including ADHD, ASD, and/or learning disability. Results indicated that at the 85th BMI percentile, there was a greater increase in BMI from 2004 to 2020 among youths with NDDs compared with those without NDDs (β for interaction [βint] between NDD status and time, 1.67; 95% CI, 0.39-2.90). The greatest divergence was seen for ASD (βint, 2.12; 95% CI, 1.26-3.70) and learning disability (βint, 1.92; 95% CI, 0.65-3.82). Within the latest cohort (2016-2020), the 85th BMI percentile was 1.99 (95% CI, 1.08-2.89) points higher among children with NDDs compared with those without NDDs. Conclusions and Relevance In this repeated cross-sectional study, at the higher end of the BMI distribution, children with NDDs had significantly greater increases in BMI compared with peers without NDDs over a 16-year period, highlighting an increasing risk of overweight over time in youths with NDDs compared with those without NDDs. Targeted obesity prevention efforts for this high-risk population are needed.
Collapse
Affiliation(s)
- Miguel Garcia-Argibay
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Region Skåne, Psychiatry, Habilitation & Aid, Child and Adolescent Psychiatry, Regional Inpatient Care, Emergency Unit, Malmö, Sweden
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Solent NHS Trust, Southampton, United Kingdom
- Hassenfeld Children’s Hospital at NYU Langone, New York University Child Study Center, New York City, New York
- DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University of Bari “Aldo Moro,” Bari, Italy
| | - Henrik Larsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Forsyth JK, Zhu J, Chavannes AS, Trevorrow ZH, Hyat M, Sievertsen SA, Ferreira-Ianone S, Conomos MP, Nuechterlein KH, Asarnow RF, Green MF, Karlsgodt KH, Perkins DO, Cannon TD, Addington JM, Cadenhead KS, Cornblatt BA, Keshavan MS, Mathalon DH, Stone WS, Tsuang MT, Walker EF, Woods SW, Narr KL, McEwen SC, Schleifer CH, Yee CM, Diehl CK, Guha A, Miller GA, Alexander-Bloch AF, Seidlitz J, Bethlehem RAI, Ophoff RA, Bearden CE. Fetal Gene Regulatory Gene Deletions are Associated with Poor Cognition and Altered Cortical Morphology in Schizophrenia and Community-Based Samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311302. [PMID: 39211869 PMCID: PMC11361264 DOI: 10.1101/2024.08.02.24311302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Schizophrenia spectrum disorders (SSDs) are characterized by substantial clinical and genetic heterogeneity. Multiple recurrent copy number variants (CNVs) increase risk for SSDs; however, how known risk CNVs and broader genome-wide CNVs influence clinical variability is unclear. The current study examined associations between borderline intellectual functioning or childhood-onset psychosis, known risk CNVs, and burden of deletions affecting genes in 18 previously validated neurodevelopmental gene-sets in 618 SSD individuals. CNV associations were assessed for replication in 235 SSD relatives and 583 controls, and 9,930 youth from the Adolescent Brain Cognitive Development (ABCD) Study. Known SSD- and neurodevelopmental disorder (NDD)-risk CNVs were associated with borderline intellectual functioning in SSD cases (odds ratios (OR) = 7.09 and 4.57, respectively); NDD-risk deletions were nominally associated with childhood-onset psychosis (OR = 4.34). Furthermore, deletion of genes involved in regulating gene expression during fetal brain development was associated with borderline intellectual functioning across SSD cases and non-cases (OR = 2.58), with partial replication in the ABCD cohort. Exploratory analyses of cortical morphology showed associations between fetal gene regulatory gene deletions and altered gray matter volume and cortical thickness across cohorts. Results highlight contributions of known risk CNVs to phenotypic variability in SSD and the utility of a neurodevelopmental framework for identifying mechanisms that influence phenotypic variability in SSDs, as well as the broader population, with implications for personalized medicine approaches to care.
Collapse
|
14
|
Zaks N, Mahjani B, Reichenberg A, Birnbaum R. CLINICAL AND COGNITIVE PHENOTYPING OF COPY NUMBER VARIANTS PATHOGENIC FOR NEURODEVELOPMENTAL DISORDERS FROM A MULTI-ANCESTRY BIOBANK. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.16.24310489. [PMID: 39072027 PMCID: PMC11275656 DOI: 10.1101/2024.07.16.24310489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Rare copy number variants (CNVs) are pathogenic for neurodevelopmental disorders (NDDs) and effect neurocognitive impairment. In aggregate, NDD CNVs may present in up to 2% of population cohorts with implications for neuropsychiatric disease risk and cognitive health. However, analyses of NDD CNVs in biobanks or population cohorts have been hindered by limited clinical or cognitive phenotypes, and a lack of ancestral diversity. In the current proof-of-concept study, NDD CNV carriers were recontacted from BioMe, a multi-ancestry biobank derived from the Mount Sinai healthcare system, to enable 'deep phenotyping' beyond electronic health record outcomes. Methods From BioMe biobank, 892 adult participants were recontacted, including 335 harboring NDD CNVs, 217 with schizophrenia and 340 neurotypical controls as comparators. Clinical and cognitive assessments were administered to each recruited participant. Results Seventy-three participants completed study assessments (mean age=48.8 years; 66% female; 36% African, 26% European, 34% Hispanic), or 8% of the recontacted subset, including 30 NDD CNV carriers across 15 loci. Among NDD CNV carriers, assessments indicated 40% with mood and anxiety disorders, 30% with learning disorders, and 13% with a history of special education. NDD CNV carriers were significantly cognitively impaired compared to controls on digit span backwards (Beta=-1.76, FDR=0.04) and digit span sequencing (Beta=-2.01, FDR=0.04). Conclusions Feasibility of "recall-by-genotype" from a multi-ancestry biobank was established for NDD CNV carriers, along with comparator groups. The current study corroborated past reports of NDD CNVs effects of cognitive impairment, while elucidating clinical phenotypes for recalled individuals. Future "recall-by-genotype" studies may further facilitate clinical characterization of disease-relevant genomic variants.
Collapse
Affiliation(s)
- Nina Zaks
- Department of Child and Adolescent Psychiatry, NYU Langone Health
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai
| | - Rebecca Birnbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
15
|
Birnbaum R, Weinberger DR. The Genesis of Schizophrenia: An Origin Story. Am J Psychiatry 2024; 181:482-492. [PMID: 38822584 DOI: 10.1176/appi.ajp.20240305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Schizophrenia is routinely referred to as a neurodevelopmental disorder, but the role of brain development in a disorder typically diagnosed during early adult life is enigmatic. The authors revisit the neurodevelopmental model of schizophrenia with genomic insights from the most recent schizophrenia clinical genetic association studies, transcriptomic and epigenomic analyses from human postmortem brain studies, and analyses from cellular models that recapitulate neurodevelopment. Emerging insights into schizophrenia genetic risk continue to converge on brain development, particularly stages of early brain development, that may be perturbed to deviate from a typical, normative course, resulting in schizophrenia clinical symptomatology. As the authors explicate, schizophrenia genetic risk is likely dynamic and context dependent, with effects of genetic risk varying spatiotemporally, across the neurodevelopmental continuum. Optimizing therapeutic strategies for the heterogeneous collective of individuals with schizophrenia may likely be guided by leveraging markers of genetic risk and derivative functional insights, well before the emergence of psychosis. Ultimately, rather than a focus on therapeutic intervention during adolescence or adulthood, principles of prediction and prophylaxis in the pre- and perinatal and neonatal stages may best comport with the biology of schizophrenia to address the early-stage perturbations that alter the normative neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Rebecca Birnbaum
- Departments of Psychiatry, Genetics, and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (Birnbaum); Lieber Institute of Brain Development, Maltz Research Laboratory, and Departments of Psychiatry, Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore (Weinberger)
| | - Daniel R Weinberger
- Departments of Psychiatry, Genetics, and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (Birnbaum); Lieber Institute of Brain Development, Maltz Research Laboratory, and Departments of Psychiatry, Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore (Weinberger)
| |
Collapse
|
16
|
Sun C, Kathuria K, Emery SB, Kim B, Burbulis IE, Shin JH, Weinberger DR, Moran JV, Kidd JM, Mills RE, McConnell MJ. Mapping recurrent mosaic copy number variation in human neurons. Nat Commun 2024; 15:4220. [PMID: 38760338 PMCID: PMC11101435 DOI: 10.1038/s41467-024-48392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Kunal Kathuria
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA
| | - ByungJun Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, 22902, USA
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede de la Patagonia, Puerto Montt, Chile
| | - Joo Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences and Neuroscience, Johns Hopkins School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21230, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Jeffrey M Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Mim RA, Soorajkumar A, Kosaji N, Rahman MM, Sarker S, Karuvantevida N, Eshaque TB, Rahaman MA, Islam A, Chowdhury MSJ, Shams N, Uddin KMF, Akter H, Uddin M. Expanding deep phenotypic spectrum associated with atypical pathogenic structural variations overlapping 15q11-q13 imprinting region. Brain Behav 2024; 14:e3437. [PMID: 38616334 PMCID: PMC11016631 DOI: 10.1002/brb3.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND The 15q11-q13 region is a genetic locus with genes subject to genomic imprinting, significantly influencing neurodevelopment. Genomic imprinting is an epigenetic phenomenon that causes differential gene expression based on the parent of origin. In most diploid organisms, gene expression typically involves an equal contribution from both maternal and paternal alleles, shaping the phenotype. Nevertheless, in mammals, including humans, mice, and marsupials, the functional equivalence of parental alleles is not universally maintained. Notably, during male and female gametogenesis, parental alleles may undergo differential marking or imprinting, thereby modifying gene expression without altering the underlying DNA sequence. Neurodevelopmental disorders, such as Prader-Willi syndrome (PWS) (resulting from the absence of paternally expressed genes in this region), Angelman syndrome (AS) (associated with the absence of the maternally expressed UBE3A gene), and 15q11-q13 duplication syndrome (resulting from the two common forms of duplications-either an extra isodicentric 15 chromosome or an interstitial 15 duplication), are the outcomes of genetic variations in this imprinting region. METHODS Conducted a genomic study to identify the frequency of pathogenic variants impacting the 15q11-q13 region in an ethnically homogenous population from Bangladesh. Screened all known disorders from the DECIPHER database and identified variant enrichment within this cohort. Using the Horizon analysis platform, performed enrichment analysis, requiring at least >60% overlap between a copy number variation and a disorder breakpoint. Deep clinical phenotyping was carried out through multiple examination sessions to evaluate a range of clinical symptoms. RESULTS This study included eight individuals with clinically suspected PWS/AS, all previously confirmed through chromosomal microarray analysis, which revealed chromosomal breakpoints within the 15q11-q13 region. Among this cohort, six cases (75%) exhibited variable lengths of deletions, whereas two cases (25%) showed duplications. These included one type 2 duplication, one larger atypical duplication, one shorter type 2 deletion, one larger type 1 deletion, and four cases with atypical deletions. Furthermore, thorough clinical assessments led to the diagnosis of four PWS patients, two AS patients, and two individuals with 15q11-q13 duplication syndrome. CONCLUSION Our deep phenotypic observations identified a spectrum of clinical features that overlap and are unique to PWS, AS, and Dup15q syndromes. Our findings establish genotype-phenotype correlation for patients impacted by variable structural variations within the 15q11-q13 region.
Collapse
Affiliation(s)
- Rabeya Akter Mim
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
| | - Anjana Soorajkumar
- Center for Applied and Translational Genomics (CATG)Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai HealthDubaiUAE
| | - Noor Kosaji
- Center for Applied and Translational Genomics (CATG)Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai HealthDubaiUAE
| | - Muhammad Mizanur Rahman
- Department of Paediatric NeurologyBangabandhu Sheikh Mujib Medical UniversityDhakaBangladesh
| | - Shaoli Sarker
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
- Bangladesh Shishu Hospital and InstituteDhakaBangladesh
| | - Noushad Karuvantevida
- Center for Applied and Translational Genomics (CATG)Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai HealthDubaiUAE
| | | | - Md Atikur Rahaman
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
| | - Amirul Islam
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
- GenomeArc Inc.MississaugaOntarioCanada
| | - Mohammod Shah Jahan Chowdhury
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
- Ministry of Health and Family WelfareDhakaBangladesh
| | - Nusrat Shams
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
- National Institute of Neuroscience and HospitalDhakaBangladesh
| | - K. M. Furkan Uddin
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
| | - Hosneara Akter
- Genetics and Genomic Medicine Centre (GGMC)NeuroGen HealthcareDhakaBangladesh
| | - Mohammed Uddin
- Center for Applied and Translational Genomics (CATG)Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai HealthDubaiUAE
- GenomeArc Inc.MississaugaOntarioCanada
| |
Collapse
|
18
|
Goh CJ, Kwon HJ, Kim Y, Jung S, Park J, Lee IK, Park BR, Kim MJ, Kim MJ, Lee MS. Improving CNV Detection Performance in Microarray Data Using a Machine Learning-Based Approach. Diagnostics (Basel) 2023; 14:84. [PMID: 38201393 PMCID: PMC10871075 DOI: 10.3390/diagnostics14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Copy number variation (CNV) is a primary source of structural variation in the human genome, leading to several disorders. Therefore, analyzing neonatal CNVs is crucial for managing CNV-related chromosomal disabilities. However, genomic waves can hinder accurate CNV analysis. To mitigate the influences of the waves, we adopted a machine learning approach and developed a new method that uses a modified log R ratio instead of the commonly used log R ratio. Validation results using samples with known CNVs demonstrated the superior performance of our method. We analyzed a total of 16,046 Korean newborn samples using the new method and identified CNVs related to 39 genetic disorders were identified in 342 cases. The most frequently detected CNV-related disorder was Joubert syndrome 4. The accuracy of our method was further confirmed by analyzing a subset of the detected results using NGS and comparing them with our results. The utilization of a genome-wide single nucleotide polymorphism array with wave offset was shown to be a powerful method for identifying CNVs in neonatal cases. The accurate screening and the ability to identify various disease susceptibilities offered by our new method could facilitate the identification of CNV-associated chromosomal disease etiologies.
Collapse
Affiliation(s)
- Chul Jun Goh
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
| | - Hyuk-Jung Kwon
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
- Department of Computer Science and Engineering, Incheon National University (INU), Incheon 22012, Republic of Korea
| | - Yoonhee Kim
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
| | - Seunghee Jung
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
| | - Jiwoo Park
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
| | - Isaac Kise Lee
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
- Department of Computer Science and Engineering, Incheon National University (INU), Incheon 22012, Republic of Korea
- NGENI Foundation, San Diego, CA 92127, USA
| | - Bo-Ram Park
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
| | - Myeong-Ji Kim
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
| | - Min-Jeong Kim
- Diagnomics, Inc., 5795 Kearny Villa Rd., San Diego, CA 92123, USA;
| | - Min-Seob Lee
- Eone-Diagnomics Genome Center, Inc., 143, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea; (C.J.G.); (H.-J.K.); (Y.K.); (S.J.); (J.P.); (I.K.L.); (B.-R.P.); (M.-J.K.)
- Diagnomics, Inc., 5795 Kearny Villa Rd., San Diego, CA 92123, USA;
| |
Collapse
|
19
|
Woodbury-Smith M, D'Abate L, Stavropoulos DJ, Howe J, Drmic I, Hoang N, Zarrei M, Trost B, Iaboni A, Anagnostou E, Scherer SW. The Phenotypic variability of 16p11.2 distal BP2-BP3 deletion in a transgenerational family and in neurodevelopmentally ascertained samples. J Med Genet 2023; 60:1153-1160. [PMID: 37290907 PMCID: PMC10715508 DOI: 10.1136/jmg-2022-108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND We present genomic and phenotypic findings of a transgenerational family consisting of three male offspring, each with a maternally inherited distal 220 kb deletion at locus 16p11.2 (BP2-BP3). Genomic analysis of all family members was prompted by a diagnosis of autism spectrum disorder (ASD) in the eldest child, who also presented with a low body mass index. METHODS All male offspring underwent extensive neuropsychiatric evaluation. Both parents were also assessed for social functioning and cognition. The family underwent whole-genome sequencing. Further data curation was undertaken from samples ascertained for neurodevelopmental disorders and congenital abnormalities. RESULTS On medical examination, both the second and third-born male offspring presented with obesity. The second-born male offspring met research diagnostic criteria for ASD at 8 years of age and presented with mild attention deficits. The third-born male offspring was only noted as having motor deficits and received a diagnosis of developmental coordination disorder. Other than the 16p11.2 distal deletion, no additional contributing variants of clinical significance were observed. The mother was clinically evaluated and noted as having a broader autism phenotype. CONCLUSION In this family, the phenotypes observed are most likely caused by the 16p11.2 distal deletion. The lack of other overt pathogenic mutations identified by genomic sequencing reinforces the variable expressivity that should be heeded in a clinical setting. Importantly, distal 16p11.2 deletions can present with a highly variable phenotype even within a single family. Our additional data curation provides further evidence on the variable clinical presentation among those with pathogenetic 16p11.2 (BP2-BP3) mutations.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lia D'Abate
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Irene Drmic
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ron Joyce Children's Health Centre, Autism Spectrum Disorder (ASD) Program and Child and Youth Mental Health Program, McMaster Autism Research Team, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Ny Hoang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alana Iaboni
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Centre, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Centre, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Zarrei M, Burton CL, Engchuan W, Higginbotham EJ, Wei J, Shaikh S, Roslin NM, MacDonald JR, Pellecchia G, Nalpathamkalam T, Lamoureux S, Manshaei R, Howe J, Trost B, Thiruvahindrapuram B, Marshall CR, Yuen RKC, Wintle RF, Strug LJ, Stavropoulos DJ, Vorstman JAS, Arnold P, Merico D, Woodbury-Smith M, Crosbie J, Schachar RJ, Scherer SW. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum Mol Genet 2023; 32:2411-2421. [PMID: 37154571 PMCID: PMC10360394 DOI: 10.1093/hmg/ddad074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.
Collapse
Affiliation(s)
- Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Christie L Burton
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sabah Shaikh
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lisa J Strug
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Departments of Statistical Sciences, Computer Science and Biostatistics, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jacob A S Vorstman
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul Arnold
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Psychiatry & Medical Genetics, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Deep Genomics Inc., Toronto, ON M5G 1M1, Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Russell J Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
21
|
Bassett AS, McDonald-McGinn DM, Boot E, Óskarsdóttir S, Yuen RKC. Approaches to studying the impact of 22q11.2 copy number variants. Am J Hum Genet 2023; 110:1216-1218. [PMID: 37419092 PMCID: PMC10357417 DOI: 10.1016/j.ajhg.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 07/09/2023] Open
Affiliation(s)
- Anne S Bassett
- The Dalglish Family 22q Clinic for Adults, and Department of Psychiatry, University Health Network, Toronto, ON, Canada; Toronto General Research Institute and Division of Cardiology, Department of Medicine, University Health Network, Toronto, ON, Canada; Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Donna M McDonald-McGinn
- 22q and You Center, Clinical Genetics Center, and Section of Genetic Counseling, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy
| | - Erik Boot
- The Dalglish Family 22q Clinic for Adults, and Department of Psychiatry, University Health Network, Toronto, ON, Canada; Advisium, 's Heeren Loo Zorggroep, Amersfoort, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Sólveig Óskarsdóttir
- Department of Pediatric Rheumatology and Immunology, Queen Silvia Children's Hospital, SahlgrenskaUniversity Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ryan K C Yuen
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Sun C, Kathuria K, Emery SB, Kim B, Burbulis IE, Shin JH, Weinberger DR, Moran JV, Kidd JM, Mills RE, McConnell MJ. Mapping the Complex Genetic Landscape of Human Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531594. [PMID: 36945473 PMCID: PMC10028870 DOI: 10.1101/2023.03.07.531594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
When somatic cells acquire complex karyotypes, they are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons have been limited by relatively small sample sizes. Here, we developed an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We applied this approach to 2,125 frontal cortical neurons from a neurotypical human brain. This approach identified 226 CNV neurons, as well as a class of CNV neurons with complex karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we found that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contained fewer, but longer, genes.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Kunal Kathuria
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - ByungJun Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ian E. Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA 22902, USA
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede de la Patagonia, Puerto Montt, Chile
| | - Joo Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Daniel R. Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences and Neuroscience, Johns Hopkins School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD 21230, USA
| | - John V. Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeffrey M. Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Michael J. McConnell
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Genome-Wide Sequencing Modalities for Children with Unexplained Global Developmental Delay and Intellectual Disabilities—A Narrative Review. CHILDREN 2023; 10:children10030501. [PMID: 36980059 PMCID: PMC10047410 DOI: 10.3390/children10030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Unexplained global developmental delay (GDD) and intellectual disabilities (ID) together affect nearly 2% of the pediatric population. Establishing an etiologic diagnosis is crucial for disease management, prognostic evaluation, and provision of physical and psychological support for both the patient and the family. Advancements in genome sequencing have allowed rapid accumulation of gene–disorder associations and have accelerated the search for an etiologic diagnosis for unexplained GDD/ID. We reviewed recent studies that utilized genome-wide analysis technologies, and we discussed their diagnostic yield, strengths, and limitations. Overall, exome sequencing (ES) and genome sequencing (GS) outperformed chromosomal microarrays and targeted panel sequencing. GS provides coverage for both ES and chromosomal microarray regions, providing the maximal diagnostic potential, and the cost of ES and reanalysis of ES-negative results is currently still lower than that of GS alone. Therefore, singleton or trio ES is the more cost-effective option for the initial investigation of individuals with GDD/ID in clinical practice compared to a staged approach or GS alone. Based on these updated evidence, we proposed an evaluation algorithm with ES as the first-tier evaluation for unexplained GDD/ID.
Collapse
|
25
|
Cancelliere S, Heung T, Fischbach S, Klaiman P, Bassett AS. Adult-onset obstructive sleep apnea and pediatric pharyngoplasty in 22q11.2 deletion syndrome. Sleep Med 2023; 104:49-55. [PMID: 36889031 DOI: 10.1016/j.sleep.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE/BACKGROUND We aimed to evaluate adult-onset obstructive sleep apnea (OSA) and related risk factors, including history of pediatric palatal/pharyngeal surgery to remediate velopharyngeal dysfunction, in 22q11.2 deletion syndrome (22q11.2DS). PATIENTS/METHODS Using a retrospective cohort design and standard sleep study-based criteria, we determined presence of adult-onset OSA (age ≥16 years) and relevant variables through comprehensive chart review in a well-characterized cohort of 387 adults with typical 22q11.2 microdeletions (51.4% female, median age 32.3, interquartile range 25.0-42.5, years). We used multivariate logistic regression to identify independent risk factors for OSA. RESULTS Of the 73 adults with sleep study data, 39 (53.4%) met criteria for OSA at median age 33.6 (interquartile range 24.0-40.7) years, indicating a minimum OSA prevalence of 10.1% in this 22q11.2DS cohort. History of pediatric pharyngoplasty (odds ratio 2.56, 95% confidence interval 1.15-5.70) was a significant independent predictor of adult-onset OSA, while accounting for other significant independent predictors (asthma, higher body mass index, older age), and for male sex. An estimated 65.5% of those prescribed continuous positive airway pressure therapy were reported as adherent. CONCLUSIONS In addition to factors of known importance in the general population, delayed effects of pediatric pharyngoplasty may contribute to risk of adult-onset OSA in individuals with 22q11.2DS. The results support increased index of suspicion for OSA in adults with a 22q11.2 microdeletion. Future research with this and other homogeneous genetic models may help to improve outcomes and to better understand genetic and modifiable risk factors for OSA.
Collapse
Affiliation(s)
- Sabrina Cancelliere
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tracy Heung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Simone Fischbach
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Department of Plastic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paula Klaiman
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Department of Plastic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada; Department of Mental Health, University Health Network, Toronto, Ontario, Canada; Toronto Congenital Cardiac Centre for Adults, Division of Cardiology, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
White LK, Crowley TB, Finucane B, McClellan EJ, Donoghue S, Garcia-Minaur S, Repetto GM, Fischer M, Jacquemont S, Gur RE, Maillard AM, Donald KA, Bassett AS, Swillen A, McDonald-McGinn DM. Gathering the Stakeholder's Perspective: Experiences and Opportunities in Rare Genetic Disease Research. Genes (Basel) 2023; 14:169. [PMID: 36672911 PMCID: PMC9859499 DOI: 10.3390/genes14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Research participant feedback is rarely collected; therefore, investigators have limited understanding regarding stakeholders' (affected individuals/caregivers) motivation to participate. Members of the Genes to Mental Health Network (G2MH) surveyed stakeholders affected by copy number variants (CNVs) regarding perceived incentives for study participation, opinions concerning research priorities, and the necessity for future funding. Respondents were also asked about feelings of preparedness, research burden, and satisfaction with research study participation. METHODS Modified validated surveys were used to assess stakeholders´ views across three domains: (1) Research Study Enrollment, Retainment, Withdrawal, and Future Participation; (2) Overall Research Experience, Burden, and Preparedness; (3) Research Priorities and Obstacles. Top box score analyses were performed. RESULTS A total of 704 stakeholders´ responded from 29 countries representing 55 CNVs. The top reasons for initial participation in the research included reasons related to education and altruism. The top reasons for leaving a research study included treatment risks and side effects. The importance of sharing research findings and laboratory results with stakeholders was underscored by participants. Most stakeholders reported positive research experiences. CONCLUSIONS This study provides important insight into how individuals and families affected with a rare CNV feel toward research participation and their overall experience in rare disease research. There are clear targets for areas of improvement for study teams, although many stakeholders reported positive research experiences. Key findings from this international survey may help advance collaborative research and improve the experience of participants, investigators, and other stakeholders moving forward.
Collapse
Affiliation(s)
- Lauren K. White
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Emily J. McClellan
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Donoghue
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sixto Garcia-Minaur
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, 28046 Madrid, Spain
| | | | - Matthias Fischer
- Clinic and Policlinic for Psychiatry and Psychotherapy, University of Rostock, 18147 Rostock, Germany
- Sigma-Zentrum, 79713 Bad Säckingen, Germany
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Raquel E. Gur
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Rondebosch, Cape Town 7700, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | - Anne S. Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON M5S 2S1, Canada
- Division of Cardiology, Department of Medicine, and Centre for Mental Health, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Ann Swillen
- Center for Human Genetics, University Hospital UZ Leuven, and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Donna M. McDonald-McGinn
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Biology and Medical Genetics, Sapienza University, 00185 Roma, Italy
| |
Collapse
|
27
|
Maihofer AX, Engchuan W, Huguet G, Klein M, MacDonald JR, Shanta O, Thiruvahindrapuram B, Jean-Louis M, Saci Z, Jacquemont S, Scherer SW, Ketema E, Aiello AE, Amstadter AB, Avdibegović E, Babic D, Baker DG, Bisson JI, Boks MP, Bolger EA, Bryant RA, Bustamante AC, Caldas-de-Almeida JM, Cardoso G, Deckert J, Delahanty DL, Domschke K, Dunlop BW, Dzubur-Kulenovic A, Evans A, Feeny NC, Franz CE, Gautam A, Geuze E, Goci A, Hammamieh R, Jakovljevic M, Jett M, Jones I, Kaufman ML, Kessler RC, King AP, Kremen WS, Lawford BR, Lebois LAM, Lewis C, Liberzon I, Linnstaedt SD, Lugonja B, Luykx JJ, Lyons MJ, Mavissakalian MR, McLaughlin KA, McLean SA, Mehta D, Mellor R, Morris CP, Muhie S, Orcutt HK, Peverill M, Ratanatharathorn A, Risbrough VB, Rizzo A, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rutten BPF, Schijven D, Seng JS, Sheerin CM, Sorenson MA, Teicher MH, Uddin M, Ursano RJ, Vinkers CH, Voisey J, Weber H, Winternitz S, Xavier M, Yang R, McD Young R, Zoellner LA, Salem RM, Shaffer RA, Wu T, Ressler KJ, Stein MB, Koenen KC, Sebat J, Nievergelt CM. Rare copy number variation in posttraumatic stress disorder. Mol Psychiatry 2022; 27:5062-5069. [PMID: 36131047 PMCID: PMC9763110 DOI: 10.1038/s41380-022-01776-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a heritable (h2 = 24-71%) psychiatric illness. Copy number variation (CNV) is a form of rare genetic variation that has been implicated in the etiology of psychiatric disorders, but no large-scale investigation of CNV in PTSD has been performed. We present an association study of CNV burden and PTSD symptoms in a sample of 114,383 participants (13,036 cases and 101,347 controls) of European ancestry. CNVs were called using two calling algorithms and intersected to a consensus set. Quality control was performed to remove strong outlier samples. CNVs were examined for association with PTSD within each cohort using linear or logistic regression analysis adjusted for population structure and CNV quality metrics, then inverse variance weighted meta-analyzed across cohorts. We examined the genome-wide total span of CNVs, enrichment of CNVs within specified gene-sets, and CNVs overlapping individual genes and implicated neurodevelopmental regions. The total distance covered by deletions crossing over known neurodevelopmental CNV regions was significant (beta = 0.029, SE = 0.005, P = 6.3 × 10-8). The genome-wide neurodevelopmental CNV burden identified explains 0.034% of the variation in PTSD symptoms. The 15q11.2 BP1-BP2 microdeletion region was significantly associated with PTSD (beta = 0.0206, SE = 0.0056, P = 0.0002). No individual significant genes interrupted by CNV were identified. 22 gene pathways related to the function of the nervous system and brain were significant in pathway analysis (FDR q < 0.05), but these associations were not significant once NDD regions were removed. A larger sample size, better detection methods, and annotated resources of CNV are needed to explore this relationship further.
Collapse
Affiliation(s)
- Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
| | - Worrawat Engchuan
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
- The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, Ontario, Canada
| | - Guillaume Huguet
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey R MacDonald
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
| | - Omar Shanta
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Martineau Jean-Louis
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Zohra Saci
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Sebastien Jacquemont
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
- Department of Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Stephen W Scherer
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
- University of Toronto, McLaughlin Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Allison E Aiello
- Department of Epidemiology, Robert N Butler Columbia Aging Center, Columbia University, New York, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Esmina Avdibegović
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jonathan I Bisson
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Richard A Bryant
- Department of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Graça Cardoso
- Lisbon Institute of Global Mental Health and Comprehensive Health Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jurgen Deckert
- University Hospital of Wuerzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Douglas L Delahanty
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
- Research and Sponsored Programs, Kent State University, Kent, OH, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Faculty of Medicine, Centre for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alma Dzubur-Kulenovic
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alexandra Evans
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Aarti Gautam
- Walter Reed Army Institute of Research, Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Silver Spring, MD, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Aferdita Goci
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Rasha Hammamieh
- Walter Reed Army Institute of Research, Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Silver Spring, MD, USA
| | - Miro Jakovljevic
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Marti Jett
- US Medical Research & Development Comm, Fort Detrick, MD, USA
- Walter Reed Army Institute of Research, Headquarter, Silver Spring, MD, USA
| | - Ian Jones
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Anthony P King
- Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruce R Lawford
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Catrin Lewis
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bozo Lugonja
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Michael J Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | | | | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Divya Mehta
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, Australia
| | - Rebecca Mellor
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Charles Phillip Morris
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Seid Muhie
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York, NY, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Albert Rizzo
- University of Southern California, Institute for Creative Technologies, Los Angeles, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing and Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, Limburg, the Netherlands
| | - Dick Schijven
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Julia S Seng
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Michael A Sorenson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Joanne Voisey
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, Australia
| | - Heike Weber
- University Hospital of Wuerzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Miguel Xavier
- Universidade Nova de Lisboa, Nova Medical School, Lisboa, Portugal
| | - Ruoting Yang
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, Australia
| | - Lori A Zoellner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Rany M Salem
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Richard A Shaffer
- Department of Epidemiology and Health Sciences, Naval Health Research Center, San Diego, CA, USA
| | - Tianying Wu
- Division of Epidemiology and Biostatistics, San Diego State University, School of Public Health, San Diego, CA, USA
- University of California, San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Karestan C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. School of Public Health, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
28
|
Abstract
I suggest that the current study of autism is problematic, due to: (1) its failure to pursue a medical model of disease causation, with protocols for differential diagnoses of causes; (2) a notable incidence of unrecognized false positive diagnoses in children; (3) the conceptual equating of autism with sets of traits that have been shown to be genetically and phenotypically unrelated to one another; and (4) the expansion of use of the terms "autism" and "autism traits" to psychiatric conditions that have no substantive etiological or symptomatic overlap with autism. These problems can be alleviated by, like Kanner, considering autism as a syndrome, a constellation of traits, conceptualized as differences rather than deficits, some set of which is found in each affected individual to some degree. The original, prototypical form of autism can be delineated based on the "hallmarks" of autism: a set of core traits, originally explicated by Kanner, that defines a relatively-homogeneous group, and that connects with the larger set of autism symptoms. The hallmarks of autism provide a touchstone for research that is unambiguous, historically continuous to the present, and linked with major theories for explaining the causes and symptoms of autism. Use of the hallmarks of autism does not impact recognition and treatment of individuals with DSM diagnosed autism, or individuals with the many disorders that involve social deficits. This perspective is compatible with the research domain criteria approach to studying autism, via analyses of autism's constituent traits and the differential diagnosis of its individual-specific causes.
Collapse
Affiliation(s)
- Bernard J. Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
29
|
Curtis D. Clinical features of UK Biobank subjects carrying protein-truncating variants in genes implicated in schizophrenia pathogenesis. Psychiatr Genet 2022; 32:156-161. [PMID: 35749744 DOI: 10.1097/ypg.0000000000000318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The SCHEMA consortium has identified 10 genes in which protein-truncating variants (PTVs) confer a substantial risk of schizophrenia. This study aimed to determine whether carrying these PTVs was associated with neuropsychiatric impairment in the general population. METHODS Phenotype fields of exome-sequenced participants in the UK Biobank who carried PTVs in these genes were studied to determine to what extent they demonstrated features of schizophrenia or had neuropsychiatric impairment. RESULTS Following automated quality control and visual inspection of reads, 251 subjects were identified as having well-supported PTVs in one of these genes. The frequency of PTVs in CACNA1G was higher than that had been observed in SCHEMA cases, casting doubt on its role in schizophrenia pathogenesis, but otherwise rates were similar to those observed in SCHEMA controls. Numbers were too small to allow formal statistical analysis but in general carriers of PTVs did not appear to have high rates of psychiatric illness or reduced educational or occupational functioning. One subject with a PTV in SETD1A had a diagnosis of schizophrenia, one with a PTV in HERC1 had psychotic depression and two subjects seemed to have developmental disorders, one with a PTV in GRIN2A and one with a PTV in RBCC1. There seemed to be somewhat increased rates of affective disorders among carriers of PTVs in HERC1 and RB1CC1 . CONCLUSION Carriers of PTVs did not appear to have subclinical manifestations of schizophrenia. Although PTVs in these genes can substantially increase schizophrenia risk, their effect seems to be dichotomous and most carriers appear psychiatrically well. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London and Centre for Psychiatry, Queen Mary University of London, London, UK
| |
Collapse
|