1
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zeng M, Pi C, Li K, Sheng L, Zuo Y, Yuan J, Zou Y, Zhang X, Zhao W, Lee RJ, Wei Y, Zhao L. Patient-Derived Xenograft: A More Standard "Avatar" Model in Preclinical Studies of Gastric Cancer. Front Oncol 2022; 12:898563. [PMID: 35664756 PMCID: PMC9161630 DOI: 10.3389/fonc.2022.898563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains the third most common cause of cancer-related death in humans. The establishment of relevant animal models of gastric cancer is critical for further research. Due to the complexity of the tumor microenvironment and the genetic heterogeneity of gastric cancer, the commonly used preclinical animal models fail to adequately represent clinically relevant models of gastric cancer. However, patient-derived models are able to replicate as much of the original inter-tumoral and intra-tumoral heterogeneity of gastric cancer as possible, reflecting the cellular interactions of the tumor microenvironment. In addition to implanting patient tissues or primary cells into immunodeficient mouse hosts for culture, the advent of alternative hosts such as humanized mouse hosts, zebrafish hosts, and in vitro culture modalities has also facilitated the advancement of gastric cancer research. This review highlights the current status, characteristics, interfering factors, and applications of patient-derived models that have emerged as more valuable preclinical tools for studying the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yonggen Zou
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing, China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Reddavid R, Corso S, Moya-Rull D, Giordano S, Degiuli M. Patient-Derived Orthotopic Xenograft models in gastric cancer: a systematic review. Updates Surg 2020; 72:951-966. [PMID: 32253687 DOI: 10.1007/s13304-020-00751-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 01/23/2023]
Abstract
Patient-Derived Xenografts (PDXs) are, so far, the best preclinical model to validate targets and predictors of response to therapy. While subcutaneous implantation very rarely allows metastatic dissemination, orthotopic implantation (Patient-Derived Orthotopic Xenograft-PDOX) increases metastatic capability. Using a modified tool to analyze model validity, we performed a systematic review of Embase, PubMed, and Web of Science up to December 2018 to identify all original publications describing gastric cancer (GC) PDOXs. We identified ten studies of PDOX model validation from January 1981 to December 2018 that fulfilled the inclusion and exclusion criteria. Most models (70%) were derived from human GC cell lines rather than tissue fragments. In 90% of studies, the implantation was performed in the subserosal layer. Tumour engraftment rate ranged from 0 to 100%, despite the technique. Metastases were observed in 40% of PDOX models implanted into the subserosal layer, employing either cell suspension or cell line-derived tumour fragments. According to our modified model validity tool, half of the studies were defined as unclear because one or more validation criteria were not reported. Available GC PDOX models are not adequate according to our model validity tool. There is no demonstration that the submucosal site is more effective than the subserosal layer, and that tissue fragments are better than cell suspensions for successful engraftment and metastatic spread. Further studies should strictly employ model validity tools and large samples with orthotopic implant sites mirroring as much as possible the donor tumour characteristics.
Collapse
Affiliation(s)
- Rossella Reddavid
- Department of Oncology, Division of Surgical Oncology and Digestive Surgery, San Luigi University Hospital, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Maurizio Degiuli
- Department of Oncology, Division of Surgical Oncology and Digestive Surgery, San Luigi University Hospital, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
| |
Collapse
|
4
|
Mattar M, McCarthy CR, Kulick AR, Qeriqi B, Guzman S, de Stanchina E. Establishing and Maintaining an Extensive Library of Patient-Derived Xenograft Models. Front Oncol 2018. [PMID: 29515970 PMCID: PMC5825907 DOI: 10.3389/fonc.2018.00019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patient-derived xenograft (PDX) models have recently emerged as a highly desirable platform in oncology and are expected to substantially broaden the way in vivo studies are designed and executed and to reshape drug discovery programs. However, acquisition of patient-derived samples, and propagation, annotation and distribution of PDXs are complex processes that require a high degree of coordination among clinic, surgery and laboratory personnel, and are fraught with challenges that are administrative, procedural and technical. Here, we examine in detail the major aspects of this complex process and relate our experience in establishing a PDX Core Laboratory within a large academic institution.
Collapse
Affiliation(s)
- Marissa Mattar
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Craig R McCarthy
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Amanda R Kulick
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean Guzman
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
5
|
Wu Y, Yuan M, Su W, Zhu M, Yao X, Wang Y, Qian H, Jiang L, Tao Y, Wu M, Pang J, Chen Y. The constitutively active PKG II mutant effectively inhibits gastric cancer development via a blockade of EGF/EGFR-associated signalling cascades. Ther Adv Med Oncol 2018; 10:1758834017751635. [PMID: 29434677 PMCID: PMC5802699 DOI: 10.1177/1758834017751635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) is a membrane-anchored enzyme expressed mainly in the intestinal mucosa and the brain, and is associated with various physiological or pathological processes. Upregulation of PKG II is known to induce apoptosis and inhibit proliferation and metastasis of cancer cells. The inhibitory effect of PKG II has been shown to be dependent on the inhibition of the activation of epidermal growth factor receptor (EGFR) and blockade of EGFR downstream signal transduction in vitro. However, it remains unclear whether similar phenomena/mechanisms exist in vivo and whether these effects are independent of cGMP or cGMP analogues. In the present work, nude mice with transplanted orthotopic tumours were infected with adenovirus encoding cDNA of constitutively active PKG II mutant (Ad-a-PKG II) and the effect of constitutively active PKG II (a-PKG II) on tumour development was detected. The results showed that a-PKG II effectively ameliorated gastric tumour development through delaying the growth, inducing the apoptosis, and inhibiting the metastasis and angiogenesis. The effect was related to blockade of EGFR activation and abrogation of the downstream signalling cascades. These findings provide novel insight which will benefit the development of new cancer therapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; and The Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Miaomiao Yuan
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Wenbin Su
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Xiaoyuan Yao
- Department of Basic Medicine, Changchun Medical College, Changchun, China
| | - Ying Wang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Lu Jiang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yan Tao
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Min Wu
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Ji Pang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|