1
|
Kan Y, Chen L, Lin D, Bu X, Mo M, Yan L, Yang Z, Yuan L, Wu L, He Y. Replication of DNA Containing Mirror-Image Thymidine in E. coli Cells. Chem Res Toxicol 2020; 33:2276-2285. [PMID: 32812424 DOI: 10.1021/acs.chemrestox.9b00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA damage can occur naturally or through environmental factors, leading to mutations in DNA replication and genomic instability in cells. Normally, natural d-nucleotides were selected by DNA polymerases. The template l-thymidine (l-T) has been shown to be bypassed by several types of DNA polymerases. However, DNA replication fidelity of nucleotide incorporation opposite l-thymidine in vivo remains unknown. Here, we constructed plasmids containing a restriction enzyme (PstI) recognition site in which the l-T lesion was site-specifically located within the PstI recognition sequence (CTGCAG). Further, we assessed the efficiencies of nucleotide incorporation opposite the l-T site and l-T lesion bypass replication in vitro and in vivo. We found that recombinants containing the l-T lesion site inhibited DNA replication. In addition, A was incorporated opposite the l-T lesion by routine PCR assay, whereas preference for nucleotide incorporation opposite the l-T site was A (13%), T (22%), C (46%), and G (19%), and no nucleotide insertion and deletions were detected in E. coli cells. In particular, a novel restriction enzyme-mediated method for detection of the mutagenic properties of DNA lesion was established, which allows us to readily detect restriction-digestion of the l-T-bearing plasmids. The study provided significant insight into how mirror-image nucleosides perturb the fidelity of DNA replication in vivo and whether they elicit mutagenic effects, which may help to understand both how DNA damage interferes with the flow of genetic information during DNA replication and development of diseases caused by gene mutation.
Collapse
Affiliation(s)
- Yuhe Kan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Chen
- School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110000, P. R. China
| | - Dao Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinya Bu
- School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110000, P. R. China
| | - Mengwu Mo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Longfei Yuan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Xiao Y, Liu Q, Tang X, Yang Z, Wu L, He Y. Mirror-Image Thymidine Discriminates against Incorporation of Deoxyribonucleotide Triphosphate into DNA and Repairs Itself by DNA Polymerases. Bioconjug Chem 2017; 28:2125-2134. [PMID: 28686433 DOI: 10.1021/acs.bioconjchem.7b00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA polymerases are known to recognize preferably d-nucleotides over l-nucleotides during DNA synthesis. Here, we report that several general DNA polymerases catalyze polymerization reactions of nucleotides directed by the DNA template containing an l-thymidine (l-T). The results display that the 5'-3' primer extension of natural nucleotides get to the end at chiral modification site with Taq and Phanta Max DNA polymerases, but the primer extension proceeds to the end of the template catalyzed by Deep Vent (exo-), Vent (exo-), and Therminator DNA polymerases. Furthermore, templating l-nucleoside displays a lag in the deoxyribonucleotide triphosphate (dNTP) incorporation rates relative to natural template by kinetics analysis, and polymerase chain reactions were inhibited with the DNA template containing two or three consecutive l-Ts. Most interestingly, no single base mutation or mismatch mixture corresponding to the location of l-T in the template was found, which is physiologically significant because they provide a theoretical basis on the involvement of DNA polymerase in the effective repair of l-T that may lead to cytotoxicity.
Collapse
Affiliation(s)
- Yating Xiao
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qingju Liu
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Li Wu
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yujian He
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| |
Collapse
|