1
|
Salzler R, DiLillo DJ, Saotome K, Bray K, Mohrs K, Hwang H, Cygan KJ, Shah D, Rye-Weller A, Kundu K, Badithe A, Zhang X, Garnova E, Torres M, Dhanik A, Babb R, Delfino FJ, Thwaites C, Dudgeon D, Moore MJ, Meagher TC, Decker CE, Owczarek T, Gleason JA, Yang X, Suh D, Lee WY, Welsh R, MacDonald D, Hansen J, Guo C, Kirshner JR, Thurston G, Huang T, Franklin MC, Yancopoulos GD, Lin JC, Macdonald LE, Murphy AJ, Chen G, Olsen O, Olson WC. CAR T cells based on fully human T cell receptor-mimetic antibodies exhibit potent antitumor activity in vivo. Sci Transl Med 2025; 17:eado9371. [PMID: 40138458 DOI: 10.1126/scitranslmed.ado9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/19/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Monoclonal antibody therapies have transformed the lives of patients across a diverse range of diseases. However, antibodies can usually only access extracellular proteins, including the extracellular portions of membrane proteins that are expressed on the cell surface. In contrast, T cell receptors (TCRs) survey the entire cellular proteome when processed and presented as peptides in association with human leukocyte antigen (pHLA complexes). Antibodies that mimic TCRs by recognizing pHLA complexes have the potential to extend the reach of antibodies to this larger pool of targets and provide increased binding affinity and specificity. A major challenge in developing TCR mimetic (TCRm) antibodies is the limited sequence differences between the target pHLA complex relative to the large global repertoire of pHLA complexes. Here, we provide a comprehensive strategy for generating fully human TCRm antibodies across multiple HLA alleles, beginning with pHLA target discovery and validation and culminating in the engineering of TCRm-based chimeric antigen receptor T cells with potent antitumor activity. By incorporating mass spectrometry, bioinformatic predictions, HLA-humanized mice, antibody screening, and cryo-electron microscopy, we have established a pipeline to identify additional pHLA complex-specific antibodies with therapeutic potential.
Collapse
Affiliation(s)
- Robert Salzler
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Haun Hwang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kamil J Cygan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Darshit Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Anna Rye-Weller
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kunal Kundu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ashok Badithe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoqin Zhang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elena Garnova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Marcela Torres
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Frank J Delfino
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Courtney Thwaites
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tomasz Owczarek
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John A Gleason
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoran Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Richard Welsh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Douglas MacDonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jessica R Kirshner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew C Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Olav Olsen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William C Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
2
|
Qi YA, Maity TK, Cultraro CM, Misra V, Zhang X, Ade C, Gao S, Milewski D, Nguyen KD, Ebrahimabadi MH, Hanada KI, Khan J, Sahinalp C, Yang JC, Guha U. Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma. Mol Cell Proteomics 2021; 20:100136. [PMID: 34391887 PMCID: PMC8724932 DOI: 10.1016/j.mcpro.2021.100136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitors and adoptive lymphocyte transfer–based therapies have shown great therapeutic potential in cancers with high tumor mutational burden (TMB), such as melanoma, but not in cancers with low TMB, such as mutant epidermal growth factor receptor (EGFR)–driven lung adenocarcinoma. Precision immunotherapy is an unmet need for most cancers, particularly for cancers that respond inadequately to immune checkpoint inhibitors. Here, we employed large-scale MS-based proteogenomic profiling to identify potential immunogenic human leukocyte antigen (HLA) class I-presented peptides in melanoma and EGFR-mutant lung adenocarcinoma. Similar numbers of peptides were identified from both tumor types. Cell line and patient-specific databases (DBs) were constructed using variants identified from whole-exome sequencing. A de novo search algorithm was used to interrogate the HLA class I immunopeptidome MS data. We identified 12 variant peptides and several classes of tumor-associated antigen-derived peptides. We constructed a cancer germ line (CG) antigen DB with 285 antigens. This allowed us to identify 40 class I-presented CG antigen–derived peptides. The class I immunopeptidome comprised more than 1000 post-translationally modified (PTM) peptides representing 58 different PTMs, underscoring the critical role PTMs may play in HLA binding. Finally, leveraging de novo search algorithm and an annotated long noncoding RNA (lncRNA) DB, we developed a novel lncRNA-encoded peptide discovery pipeline to identify 44 lncRNA-derived peptides that are presented by class I. We validated tandem MS spectra of select variant, CG antigen, and lncRNA-derived peptides using synthetic peptides and performed HLA class I-binding assays to demonstrate binding to class I proteins. In summary, we provide direct evidence of HLA class I presentation of a large number of variant and tumor-associated peptides in both low and high TMB cancer. These results can potentially be useful for precision immunotherapies, such as vaccine or adoptive cell therapies in melanoma and EGFR-mutant lung cancers. Proteogenomics identified ∼35,000 class I-presented peptides. CG antigen and PTM peptides identified in melanoma and lung cancer. De novo search identified variant and lncRNA-derived peptides. A new strategy to identify class I-presented lncRNA-derived peptides developed.
Collapse
Affiliation(s)
- Yue A Qi
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA.
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Vikram Misra
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Catherine Ade
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Shaojian Gao
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - David Milewski
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Khoa D Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Mohammad H Ebrahimabadi
- Cancer Data Science Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA; Department of Computer Science, Indiana University, Bloomington, Indiana, USA
| | - Ken-Ichi Hanada
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA; Bristol-Myers Squibb, Lawrenceville, New Jersey, USA.
| |
Collapse
|
3
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
4
|
Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, Primeau T, Myers N, Vickery TL, Sturmoski M, Hagemann IS, Miller CA, Ellis MJ, Mardis ER, Hansen T, Fleming TP, Goedegebuure SP, Gillanders WE. Breast Cancer Neoantigens Can Induce CD8 + T-Cell Responses and Antitumor Immunity. Cancer Immunol Res 2017; 5:516-523. [PMID: 28619968 DOI: 10.1158/2326-6066.cir-16-0264] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing technologies have provided insights into the biology and mutational landscape of cancer. Here, we evaluate the relevance of cancer neoantigens in human breast cancers. Using patient-derived xenografts from three patients with advanced breast cancer (xenografts were designated as WHIM30, WHIM35, and WHIM37), we sequenced exomes of tumor and patient-matched normal cells. We identified 2,091 (WHIM30), 354 (WHIM35), and 235 (WHIM37) nonsynonymous somatic mutations. A computational analysis identified and prioritized HLA class I-restricted candidate neoantigens expressed in the dominant tumor clone. Each candidate neoantigen was evaluated using peptide-binding assays, T-cell cultures that measure the ability of CD8+ T cells to recognize candidate neoantigens, and preclinical models in which we measured antitumor immunity. Our results demonstrate that breast cancer neoantigens can be recognized by the immune system, and that human CD8+ T cells enriched for prioritized breast cancer neoantigens were able to protect mice from tumor challenge with autologous patient-derived xenografts. We conclude that next-generation sequencing and epitope-prediction strategies can identify and prioritize candidate neoantigens for immune targeting in breast cancer. Cancer Immunol Res; 5(7); 516-23. ©2017 AACR.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Kim
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - John M Herndon
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Allegra A Petti
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Savas D Soysal
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mike D McLellan
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Tina Primeau
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nancy Myers
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Tammi L Vickery
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Sturmoski
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Chris A Miller
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew J Ellis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.,Lester and Sue Smith Breast Care Center, Oncology/Medicine and MCB, Baylor College of Medicine, Houston, Texas
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ted Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri. .,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Liu B, Chen W, Natarajan K, Li Z, Margulies DH, Zhu C. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur J Immunol 2015; 45:2099-110. [PMID: 25944482 DOI: 10.1002/eji.201445358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/30/2015] [Indexed: 11/12/2022]
Abstract
T cells recognize antigens at the two-dimensional (2D) interface with antigen-presenting cells (APCs), which trigger T-cell effector functions. T-cell functional outcomes correlate with 2D kinetics of membrane-embedded T-cell receptors (TCRs) binding to surface-tethered peptide-major histocompatibility complex molecules (pMHCs). However, most studies have measured TCR-pMHC kinetics for recombinant TCRs in 3D by surface plasmon resonance, which differs drastically from 2D measurements. Here, we compared pMHC dissociation from native TCR on the T-cell surface to recombinant TCR immobilized on glass surface or in solution. Force on TCR-pMHC bonds regulated their lifetimes differently for native than recombinant TCRs. Perturbing the cellular environment suppressed 2D on-rates but had no effect on 2D off-rate regardless of whether force was applied. In contrast, for the TCR interacting with its monoclonal antibody, the 2D on-rate was insensitive to cellular perturbations and the force-dependent off-rates were indistinguishable for native and recombinant TCRs. These data present novel features of TCR-pMHC kinetics that are regulated by the cellular environment, underscoring the limitations of 3D kinetics in predicting T-cell functions and calling for further elucidation of the underlying molecular and cellular mechanisms that regulate 2D kinetics in physiological settings.
Collapse
Affiliation(s)
- Baoyu Liu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kannan Natarajan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Zhenhai Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David H Margulies
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|