2
|
Rico LG, Juncà J, Ward MD, Bradford JA, Petriz J. Flow cytometric significance of cellular alkaline phosphatase activity in acute myeloid leukemia. Oncotarget 2019; 10:6969-6980. [PMID: 31857851 PMCID: PMC6916750 DOI: 10.18632/oncotarget.27356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
In this prospective hospital-based cohort study that included 43 newly diagnosed patients with acute myeloid leukemia, flow cytometric cellular alkaline phosphatase (ALP) activity within primitive leukemic cells allowed us to identify two groups of patients at diagnosis according to the numbers of leukemic blasts expressing ≥ 12% of ALP+ cells (27 patients, Group A) and less than 12% of ALP+ cells (16 patients, Group B). Differences in outcome for complete response, relapse or treatment resistance, and exitus were statistically analyzed and were significant, when comparing the two groups. The overall survival (OS) and event-free survival (EFS) differences between Group A and B were statistically significant. The survival of Group A patients was significantly shorter than those for Group B. No significant relationship was detected in outcome when comparing ELN prognostic-risk group based on cytogenetic and molecular profile (patients in the favorable, intermediate, and adverse risk groups). Flow cytometric cellular ALP activity at diagnosis may be used to estimate relapses and disease persistence more accurately. The limitations of our study include the small number of patients enrolled and a short follow-up, due to its prospective nature.
Collapse
Affiliation(s)
- Laura G. Rico
- Functional Cytomics Group, Institut de Recerca contra la Leucèmia Josep Carreras, IJC Campus ICO-Germans Trias i Pujol, Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Jordi Juncà
- Functional Cytomics Group, Institut de Recerca contra la Leucèmia Josep Carreras, IJC Campus ICO-Germans Trias i Pujol, Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, UAB, Badalona, Spain
- Institut Català d’Oncologia, Hospital Germans Trias i Pujol (HGTiP), Badalona, Spain
| | | | | | - Jordi Petriz
- Functional Cytomics Group, Institut de Recerca contra la Leucèmia Josep Carreras, IJC Campus ICO-Germans Trias i Pujol, Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| |
Collapse
|
3
|
Smith PJ, Darzynkiewicz Z, Errington RJ. Nuclear cytometry and chromatin organization. Cytometry A 2018; 93:771-784. [PMID: 30144297 DOI: 10.1002/cyto.a.23521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The nuclear-targeting chemical probe, for the detection and quantification of DNA within cells, has been a mainstay of cytometry-from the colorimetric Feulgen stain to smart fluorescent agents with tuned functionality. The level of nuclear structure and function at which the probe aims to readout, or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of detection modalities and analytical methods. These methods are invariably limited in terms of the resolution attainable versus the volume occupied by targeted chromatin structures. The scalar challenge arises from the need to understand the extent and different levels of compaction of genomic DNA and how such structures can be re-modeled, reported, or even perturbed by both probes and drugs. Nuclear cytometry can report on the complex levels of chromatin order, disorder, disassembly, and even active disruption by probes and drugs. Nuclear probes can report defining features of clinical and therapeutic interest as in NETosis and other cell death processes. New cytometric approaches continue to bridge the scalar challenges of analyzing chromatin organization. Advances in super-resolution microscopy address the resolution and depth of analysis issues in cellular systems. Typical of recent insights into chromatin organization enabled by exploiting a DNA interacting probe is ChromEM tomography (ChromEMT). ChromEMT uses the unique properties of the anthraquinone-based cytometric dye DRAQ5™ to reveal that local and global 3D chromatin structures effect differences in compaction. The focus of this review is nuclear and chromatin cytometry, with linked reference to DNA targeting probes and drugs as exemplified by the anthracenediones.
Collapse
Affiliation(s)
- Paul J Smith
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, New York, 10595
| | - Rachel J Errington
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
4
|
Prasanphanich AF, White DE, Gran MA, Kemp ML. Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay. PLoS Comput Biol 2016; 12:e1005188. [PMID: 27851764 PMCID: PMC5113006 DOI: 10.1371/journal.pcbi.1005188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity.
Collapse
Affiliation(s)
- Adam F. Prasanphanich
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Douglas E. White
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Gran
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Szepesi Á, Matula Z, Szigeti A, Várady G, Szabó G, Uher F, Sarkadi B, Német K. ABCG2 is a selectable marker for enhanced multilineage differentiation potential in periodontal ligament stem cells. Stem Cells Dev 2015; 24:244-52. [PMID: 25101689 DOI: 10.1089/scd.2014.0177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth.
Collapse
Affiliation(s)
- Áron Szepesi
- 1 Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Protocols for purification of murine male germ cells by FACS based on Hoechst 33342 (Ho342) dye staining have been reported and optimized. However, the protocols are often challenging to follow, partly due to difficulties related to sample preparation, instrument parameters, data display, and selection strategies. In addition, troubleshooting of flow cytometry experiments usually requires some fluency in technical principles and instrument specifications and settings. This unit describes setup and procedures for analysis and sorting of male meiotic prophase I (MPI) cells and other germ cells. Included are procedures that guide data acquisition, display, gating, and back-gating critical for optimal data visualization and cell sorting. Additionally, a flow cytometry analysis of spermatogenesis-defective testis is provided to illustrate the applicability of the technique to the characterization and purification of cells from mutant testis.
Collapse
Affiliation(s)
- Valeriya Gaysinskaya
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland.,Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| |
Collapse
|
7
|
Aloisio GM, Nakada Y, Saatcioglu HD, Peña CG, Baker MD, Tarnawa ED, Mukherjee J, Manjunath H, Bugde A, Sengupta AL, Amatruda JF, Cuevas I, Hamra FK, Castrillon DH. PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 2014; 124:3929-44. [PMID: 25133429 PMCID: PMC4153705 DOI: 10.1172/jci75943] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of A(single) spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of A(single) spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.
Collapse
Affiliation(s)
- Gina M. Aloisio
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yuji Nakada
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hatice D. Saatcioglu
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher G. Peña
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael D. Baker
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Edward D. Tarnawa
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jishnu Mukherjee
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hema Manjunath
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abhijit Bugde
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anita L. Sengupta
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - James F. Amatruda
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ileana Cuevas
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - F. Kent Hamra
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| | - Diego H. Castrillon
- Department of Pathology, Department of
Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility,
Department of Cell Biology, Departments of Internal
Medicine, Molecular Biology, and Pediatrics, and Department of Pharmacology,
UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Dobbin ZC, Landen CN. Isolation and characterization of potential cancer stem cells from solid human tumors--potential applications. CURRENT PROTOCOLS IN PHARMACOLOGY 2013; 63:14.28.1-14.28.19. [PMID: 24510756 PMCID: PMC4041697 DOI: 10.1002/0471141755.ph1428s63] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells within a heterogeneous tumor that have enhanced biologic properties, e.g., increased capacity for self-renewal, increased tumorigenicity, enhanced differentiation capacity, and resistance to chemo- and radiotherapies. This unit describes protocols to isolate and characterize potential cancer stem cells from a solid tumor. These involve creating a single-cell suspension from tumor tissue, tagging the cell subpopulations of interest, and sorting them into different populations. The sorted subpopulations can be evaluated for their ability to meet the functional requirements of a CSC, which primarily include increased tumorigenicity in an in vivo xenograft assay. Use of the protocols described in this unit makes it possible to study populations of cells that may have properties of CSCs.
Collapse
Affiliation(s)
- Zachary C. Dobbin
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Wallace Tumor Institute, 1824 6 Avenue South, Birmingham, AL 35233
| | - Charles N. Landen
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Wallace Tumor Institute, 1824 6 Avenue South, Birmingham, AL 35233,Zachary Dobbin: , 205-934-2049, Charles Landen: , 205-934-0473
| |
Collapse
|