1
|
Yang M, Jiang Y, Shao X. Case Report: A Novel Homozygous Frameshift Mutation of the SKIV2L Gene in a Trichohepatoenteric Syndrome Patient Presenting With Short Stature, Premature Ovarian Failure, and Osteoporosis. Front Genet 2022; 13:879899. [PMID: 35571060 PMCID: PMC9094698 DOI: 10.3389/fgene.2022.879899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Trichohepatoenteric syndrome (THES) is a rare Mendelian autosomal recessive genetic disease characterized by intractable diarrhea, woolly hair, facial abnormality, immune dysfunction, and intrauterine growth restriction. THES mutations are found in the TTC37 and SKIV2L genes, which encode two components of the human superkiller (SKI) complex. Methods and results: We report one case of a 32-year-old woman of Chinese descent with THES, who was born with a low weight (2000 g). She had intractable diarrhea during the neonatal period and was allergic to cow’s milk and condensed milk, but did not require total parenteral nutrition. She experienced menarche at age 12 and amenorrhea at age 28. In May 2019, the patient presented with a left fibular head fracture and was diagnosed with osteoporosis. Genetic testing showed a novel mutation in exon1 [p.E5Afs∗37 (c.12_13del)] of SKIV2L, which is composed of 28 exons. After the diagnosis, hormone replacement therapy was prescribed, in addition to the routine calcium and vitamin D supplements. Conclusion: This case expands the clinical characteristic and phenotype spectrum of THES, providing further understanding of SKIV2L and its autoimmune influence.
Collapse
Affiliation(s)
- Minyi Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
2
|
Benincá C, Zanette V, Brischigliaro M, Johnson M, Reyes A, Valle DAD, J Robinson A, Degiorgi A, Yeates A, Telles BA, Prudent J, Baruffini E, S F Santos ML, R de Souza RL, Fernandez-Vizarra E, Whitworth AJ, Zeviani M. Mutation in the MICOS subunit gene APOO (MIC26) associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive impairment and autistic features. J Med Genet 2021; 58:155-167. [PMID: 32439808 PMCID: PMC7116790 DOI: 10.1136/jmedgenet-2020-106861] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/13/2020] [Accepted: 04/12/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the 'mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. METHODS We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. RESULTS A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. CONCLUSION This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies.
Collapse
Affiliation(s)
- Cristiane Benincá
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
- Department of Genetics, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vanessa Zanette
- Department of Genetics, Federal University of Parana, Curitiba, Paraná, Brazil
| | | | - Mark Johnson
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Aurelio Reyes
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | | | - Alan J Robinson
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Andrea Degiorgi
- Department of Chemistry, University of Parma, Parma, Emilia-Romagna, Italy
| | - Anna Yeates
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | | | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Enrico Baruffini
- Department of Chemistry, University of Parma, Parma, Emilia-Romagna, Italy
| | | | | | | | | | - Massimo Zeviani
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
- Department of Neurosciences, University of Padova, Padova, Veneto, Italy
| |
Collapse
|
3
|
McCann EP, Henden L, Fifita JA, Zhang KY, Grima N, Bauer DC, Chan Moi Fat S, Twine NA, Pamphlett R, Kiernan MC, Rowe DB, Williams KL, Blair IP. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J Med Genet 2020; 58:jmedgenet-2020-106866. [PMID: 32409511 DOI: 10.1136/jmedgenet-2020-106866] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with phenotypic and genetic heterogeneity. Approximately 10% of cases are familial, while remaining cases are classified as sporadic. To date, >30 genes and several hundred genetic variants have been implicated in ALS. METHODS Seven hundred and fifty-seven sporadic ALS cases were recruited from Australian neurology clinics. Detailed clinical data and whole genome sequencing (WGS) data were available from 567 and 616 cases, respectively, of which 426 cases had both datasets available. As part of a comprehensive genetic analysis, 853 genetic variants previously reported as ALS-linked mutations or disease-associated alleles were interrogated in sporadic ALS WGS data. Statistical analyses were performed to identify correlation between clinical variables, and between phenotype and the number of ALS-implicated variants carried by an individual. Relatedness between individuals carrying identical variants was assessed using identity-by-descent analysis. RESULTS Forty-three ALS-implicated variants from 18 genes, including C9orf72, ATXN2, TARDBP, SOD1, SQSTM1 and SETX, were identified in Australian sporadic ALS cases. One-third of cases carried at least one variant and 6.82% carried two or more variants, implicating a potential oligogenic or polygenic basis of ALS. Relatedness was detected between two sporadic ALS cases carrying a SOD1 p.I114T mutation, and among three cases carrying a SQSTM1 p.K238E mutation. Oligogenic/polygenic sporadic ALS cases showed earlier age of onset than those with no reported variant. CONCLUSION We confirm phenotypic associations among ALS cases, and highlight the contribution of genetic variation to all forms of ALS.
Collapse
Affiliation(s)
- Emily P McCann
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lyndal Henden
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer A Fifita
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katharine Y Zhang
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie A Twine
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Roger Pamphlett
- Discipline of Pathology and Department of Neuropathology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly L Williams
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Gui B, Song Y, Su Z, Luo FH, Chen L, Wang X, Chen R, Yang Y, Wang J, Zhao X, Fan L, Liu X, Wang Y, Chen S, Gong C. New insights into 5α-reductase type 2 deficiency based on a multi-centre study: regional distribution and genotype-phenotype profiling of SRD5A2 in 190 Chinese patients. J Med Genet 2019; 56:685-692. [PMID: 31186340 DOI: 10.1136/jmedgenet-2018-105915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The 5α-reductase type 2 (5α-RD2) deficiency caused by mutations in the steroid 5α-reductase 2 (SRD5A2) gene results in variable degrees of undervirilisation in patients with 46,XY disorders of sex development. This study aims to profile the regional distribution and phenotype-genotype characteristics of SRD5A2 in a large Chinese 5α-RD2 deficiency cohort through multi-centre analysis. METHODS 190 subjects diagnosed with 5α-RD2 deficiency were consecutively enrolled from eight medical centres in China. Their clinical manifestations and genetic variants were analysed. RESULTS Hypospadias (isolated or combined with microphallus and/or cryptorchidism) was fairly common in the enrolled subjects (66.32%). 42 variants, including 13 novel variants, were identified in SRD5A2. Homozygous and compound heterozygous mutations presented in 38.42% and 61.58% of subjects, respectively, and predominated in exons 1, 4 and 5. The most prevalent variant was c.680G > A (52.37%), followed by c.16C > T, (10.79%), c.607G > A, (9.21%) and c.737G > A, (8.95%). However, their distributions were different: c.680G > A was more common in South China than in North China (62.62% vs 39.16%, p < 0.001), whereas the regional prevalence of c.16C > T was reversed (6.07% vs 16.87%, p = 0.001). Furthermore, c.680G > A prevailed in cases with normal meatus (68.75%) or distal hypospadias (66.28%), compared with those with proximal hypospadias (35.54%, p < 0.001). However, cases with proximal hypospadias showed a higher frequency of c.16C > T (20.48%) than those with normal meatus (3.13%) or distal hypospadias (3.49%, p < 0.001). CONCLUSIONS This study profiled variable phenotypic presentation and wide mutational spectrum of SRD5A2, revealing its distinctive regional distribution in Chinese patients and further shaping the founder effect and genotype-phenotype correlation of SRD5A2.
Collapse
Affiliation(s)
- Baoheng Gui
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanning Song
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | - Zhe Su
- Department of Endocrinology and Metabolism, Shenzhen Children's Hospital, Shenzhen, China
| | - Fei-Hong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Shanghai Jiao Tong Univ, Shanghai, China
| | - Linqi Chen
- Department of Endocrinology, Metabolism, and Genetic Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Yu Yang
- Department of Endocrine Genetics and Metabolism, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Jin Wang
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiu Zhao
- Department of Endocrinology, Metabolism, and Genetic Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Lijun Fan
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | - Xia Liu
- Department of Endocrinology and Metabolism, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Wang
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | - Shaoke Chen
- Department of Pediatrics Endocrinology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunxiu Gong
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China .,Beijing Key Laboratory for Genetics of Birth Defects, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. mBio 2018; 9:mBio.01399-18. [PMID: 30401775 PMCID: PMC6222132 DOI: 10.1128/mbio.01399-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protozoan parasites of the genus Leishmania adapt to environmental change through chromosome and gene copy number variations. Only little is known about external or intrinsic factors that govern Leishmania genomic adaptation. Here, by conducting longitudinal genome analyses of 10 new Leishmania clinical isolates, we uncovered important differences in gene copy number among genetically highly related strains and revealed gain and loss of gene copies as potential drivers of long-term environmental adaptation in the field. In contrast, chromosome rather than gene amplification was associated with short-term environmental adaptation to in vitro culture. Karyotypic solutions were highly reproducible but unique for a given strain, suggesting that chromosome amplification is under positive selection and dependent on species- and strain-specific intrinsic factors. We revealed a progressive increase in read depth towards the chromosome ends for various Leishmania isolates, which may represent a nonclassical mechanism of telomere maintenance that can preserve integrity of chromosome ends during selection for fast in vitro growth. Together our data draw a complex picture of Leishmania genomic adaptation in the field and in culture, which is driven by a combination of intrinsic genetic factors that generate strain-specific phenotypic variations, which are under environmental selection and allow for fitness gain.IMPORTANCE Protozoan parasites of the genus Leishmania cause severe human and veterinary diseases worldwide, termed leishmaniases. A hallmark of Leishmania biology is its capacity to adapt to a variety of unpredictable fluctuations inside its human host, notably pharmacological interventions, thus, causing drug resistance. Here we investigated mechanisms of environmental adaptation using a comparative genomics approach by sequencing 10 new clinical isolates of the L. donovani, L. major, and L. tropica complexes that were sampled across eight distinct geographical regions. Our data provide new evidence that parasites adapt to environmental change in the field and in culture through a combination of chromosome and gene amplification that likely causes phenotypic variation and drives parasite fitness gains in response to environmental constraints. This novel form of gene expression regulation through genomic change compensates for the absence of classical transcriptional control in these early-branching eukaryotes and opens new venues for biomarker discovery.
Collapse
|