1
|
Tetzlaff EJ, Ioannou LG, O'Connor FK, Kaltsatou A, Ly V, Kenny GP. Practical Considerations for Using Personal Cooling Garments for Heat Stress Management in Physically Demanding Occupations: A Systematic Review and Meta-Analysis Using Realist Evaluation. Am J Ind Med 2025; 68:3-25. [PMID: 39498663 DOI: 10.1002/ajim.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Due to rising temperature extremes, workplaces are seeking new solutions, such as using personal cooling garments (PCG) to mitigate and manage workplace heat exposure. This systematic review sought to assess the physiological and perceptual effects of PCGs on workers in standard work clothing performing moderate-to-heavy intensity tasks in hot environments. METHODS A peer-reviewed search strategy was conducted in MEDLINE, Embase, CINAHL, Scopus, Global Health, and Business Source Complete with no language or time limits. A meta-analysis using a realist evaluation framework was then performed to evaluate the effectiveness of the PCGs. RESULTS Thirty-three studies with 764 participants (98% male; average 21 ± 34 participants per study), conducted primarily in a laboratory setting (76%) were included. The studies were 193 ± 190 min in duration and consisted of a moderate-to-heavy work effort of 3.3 ± 1.0 METs in hot ambient conditions (temperature: 35.9 ± 3.3°C, 51.4 ± 12.1% relative humidity, wet bulb globe temperature [WBGT] 31.2 ± 2.6°C). The PCGs (n = 67) facilitated heat exchange through conduction (n = 39), evaporation (n = 4), convection (n = 2), radiation (n = 2), or hybrid combinations (n = 20). Conductive and hybrid PCGs offered the greatest thermoregulatory benefit, whereby core temperature (Tc) and heart rate (HR) reductions were consistently observed (Conductive: Tc: -0.3°C, HR: -12 bpm; Hybrid: Tc:-0.2°C, HR: -10 bpm), while PCGs directed at enhancing evaporative and radiative heat exchange had no or minimal effect on the physiological outcomes assessed (i.e., TC < 0.1°C, HR: < 0.7 bpm). CONCLUSION While the PCGs had a positive overall effect, conductive options offered the most consistent benefit to workers. WBGT, clothing insulation, and duration of wear significantly affected some physiological and perceptual outcomes.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Leonidas G Ioannou
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
| | - Antonia Kaltsatou
- Functional Architecture of Mammals in their Environment Laboratory, School of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Valentina Ly
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Otani H, Goto T, Kobayashi Y, Goto H, Hosokawa Y, Tokizawa K, Shirato M. The fan cooling vest use reduces thermal and perceptual strain during outdoor exercise in the heat on a sunny summer day. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1625-1635. [PMID: 38771319 DOI: 10.1007/s00484-024-02690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
The fan cooling vest is coming into very common use by Japanese outdoor manual workers. We examined that to what extent using this vest reduces thermal strain and perception during outdoor exercise in the heat on a sunny summer day. Ten male baseball players in high school conducted two baseball training sessions for 2-h with (VEST) or without (CON) a commercially available fan cooling vest on a baseball uniform. These sessions commenced at 10 a.m. on separate days in early August. The fan airflow rate attached the vest was 62 L·s-1. Neither ambient temperature (Mean ± SD: VEST 31.9 ± 0.2°C; CON 31.8 ± 0.7°C), wet-bulb globe temperature (VEST 31.2 ± 0.4°C; CON 31.4 ± 0.5°C) nor solar radiation (VEST 1008 ± 136 W·m-2; CON 1042 ± 66 W·m-2) was different between trials. Mean skin temperature (VEST 34.5 ± 1.1°C; CON 35.1 ± 1.4°C), infrared tympanic temperature (VEST 38.9 ± 0.9°C; CON 39.2 ± 1.2°C), heart rate (VEST 127 ± 31 bpm; CON 139 ± 33 bpm), body heat storage (VEST 140 ± 34 W·m-2; CON 160 ± 22 W·m-2), thermal sensation (- 4-4: VEST 0 ± 2; CON 3 ± 1) and rating of perceived exertion (6-20: VEST 11 ± 2; CON 14 ± 2) were lower in VEST than CON (all P < 0.05). Total distance measured with a global positioning system (VEST 3704 ± 293 m; CON 3936 ± 501 m) and body fluid variables were not different between trials. This study indicates that the fan cooling vest use can reduce thermal strain and perception during outdoor exercise in the heat on a sunny summer day. Cooling with this vest would be effective to mitigate thermal risks and perceptual stress in athletes and sports participants under such settings.
Collapse
Affiliation(s)
- Hidenori Otani
- Faculty of Health Care Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo, 670-8524, Japan.
| | - Takayuki Goto
- National Institute of Technology, Akashi College, Uozumi-Cho, 679-3 Nishioka, Akashi, Hyogo, 674-0084, Japan
| | - Yuki Kobayashi
- National Institute of Technology, Akashi College, Uozumi-Cho, 679-3 Nishioka, Akashi, Hyogo, 674-0084, Japan
| | - Heita Goto
- Kyushu Kyoritsu University, 1-8 Jiyugaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka, 807-8585, Japan
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1164, Japan
| | - Ken Tokizawa
- National Institute of Occupational Safety and Health, 1-4-6 Umezono, Kiyose, Tokyo, 204-0024, Japan
| | - Minayuki Shirato
- Meiji Gakuin University, 1-2-37 Shiroganedai, Minato-Ku, Tokyo, 108-8636, Japan
| |
Collapse
|
3
|
Del Ferraro S, Falcone T, Morabito M, Bonafede M, Marinaccio A, Gao C, Molinaro V. Mitigating heat effects in the workplace with a ventilation jacket: Simulations of the whole-body and local human thermophysiological response with a sweating thermal manikin in a warm-dry environment. J Therm Biol 2024; 119:103772. [PMID: 38145612 DOI: 10.1016/j.jtherbio.2023.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Climate change is increasingly affecting human well-being and will inevitably impact on occupational sectors in terms of costs, productivity, workers' health and injuries. Among the cooling garment developed to reduce heat strain, the ventilation jacket could be considered for possible use in workplaces, as it is wearable without limiting the user's mobility and autonomy. In this study, simulations with a sweating manikin are carried out to investigate the effects of a short-sleeved ventilation jacket on human thermophysiological responses in a warm-dry scenario. Simulations were performed in a climatic chamber (air temperature = 30.1 °C; air velocity = 0.29 m/s; relative humidity = 30.0 %), considering two constant levels of metabolic rate M (M1 = 2.4 MET; M2 = 3.2 MET), a sequence of these two (Work), and three levels of fan velocities (lf = 0; lf=2; lf=4). The results revealed a more evident impact on the mean skin temperature (Tsk) compared to the rectal temperature (Tre), with significant decreases (compared to fan-off) at all M levels, for Tsk from the beginning and for Tre from the 61st minute. Skin temperatures of the torso zones decreased significantly (compared to fan-off) at all M levels, and a greater drop was registered for the Back. The fans at the highest level (lf=4) were significantly effective in improving whole-body and local thermal sensations when compared to fan-off, at all M levels. At the intermediate level (lf=2), the statistical significance varied with thermal zone, M and time interval considered. The results of the simulations also showed that the Lower Torso needs to be monitored at M2 level, as the drop in skin temperature could lead to local overcooling and thermal discomfort. Simulations showed the potential effectiveness of the ventilation jacket, but human trials are needed to verify its cooling power in real working conditions.
Collapse
Affiliation(s)
- Simona Del Ferraro
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Tiziana Falcone
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Marco Morabito
- Institute of BioEconomy (IBE), National Research Council, Via Madonna Del Piano 10, 50019, Sesto Fiorentino, FI, Italy; Centre of Bioclimatology, University of Florence, Piazzale Delle Cascine 18, 50144, Florence, Italy.
| | - Michela Bonafede
- Laboratory of Occupational and Environmental Epidemiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Alessandro Marinaccio
- Laboratory of Occupational and Environmental Epidemiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Chuansi Gao
- Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Sölvegatan 26, Lund, Sweden.
| | - Vincenzo Molinaro
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
4
|
Samani AS, Ghavamabadi LI, Dehaghi BF. Application of the thermoelectric cooling system in making a cooling belt: A case of heat stress control measure device. Work 2024; 78:797-805. [PMID: 38277330 DOI: 10.3233/wor-230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Climate change and global warming are emerging as new challenges worldwide. The World Meteorological Organization has reported that the temperature is expected to rise by an average of 1.2°C between 2021-2025. This increase in temperature will expose more and more workers to extreme heat. OBJECTIVE This study aimed to explore the possibility of using thermoelectric coolers for cooling the water circulation circuit of a cooling belt, which can be used for extended periods in high-temperature environments. METHODS A cooling belt was designed using thermoelectric coolers (TEC) and two blowers. The TECs were equipped with heat sinks and heat exchange block made of aluminum at hot and cold sides to exchange heat effectively. RESULTS The experiment was conducted under actual environmental temperature conditions during three different time periods, with mean temperatures of 31, 48, and 41°C. The mean temperature of the belt section was recorded as 20.73, 24.52, and 21.38°C, respectively. The maximum average difference between the inlet air temperature and the inside cooling belt temperature was 40.45°C. CONCLUSION The experiment revealed that the cooling performance of the designed prototype remained within an acceptable range (18°C) despite the increase in ambient temperature. Moreover, the cooling system can be utilized in high-heat environments to reduce thermal stress.
Collapse
Affiliation(s)
- Ali Sahraneshin Samani
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Occupational Health, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Behzad Fouladi Dehaghi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Occupational Health, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Ding Y, Zhang Z, Chen Z. Effect of local ventilation temperature and speed under garments on the thermal response of humans at different metabolic rates. APPLIED ERGONOMICS 2023; 113:104102. [PMID: 37506619 DOI: 10.1016/j.apergo.2023.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Ventilation under garments is one of the effective solutions to alleviate heat stress in the human body, but ventilation preferences and cooling effects in different body segments at different metabolic rates are not thoroughly studied. Eighteen participants performed three metabolic intensities of cycling exercise at 30 °C, RH 35%, where five body segments underwent adjustable ventilation. The ventilation preferences, psychological and physiological responses, and energy consumption were analyzed. The preferred ventilation temperature was approximately 24.5 ± 1.9 °C and the preferred ventilation speed was 1.56 ± 0.29-1.68 ± 0.27 m s-1. At low and moderate metabolic intensities, the five body segments preferred similar ventilation temperatures. At high metabolic intensity, the back preferred lower ventilation temperatures and higher ventilation speeds than the lower limbs. Additionally, the lower back and chest are considered optimal ventilation body segments to achieve higher overall thermal comfort. This study contributes to the optimization of personal ventilated cooling garments for different metabolism scenarios.
Collapse
Affiliation(s)
- Yifan Ding
- College of Fashion and Design, Donghua University, 1882 West Yan'an Road, Changning District, Shanghai, 200051, China.
| | - Zhaohua Zhang
- College of Fashion and Design, Donghua University, 1882 West Yan'an Road, Changning District, Shanghai, 200051, China; Key Laboratory of Clothing Design & Technology (Donghua University), Ministry of Education, West Yan'an Road, Changning District, Shanghai, 200051, China.
| | - Zhirui Chen
- College of Fashion and Design, Donghua University, 1882 West Yan'an Road, Changning District, Shanghai, 200051, China.
| |
Collapse
|
6
|
Naito T, Saito T, Ohhashi M, Hayashi S. Recovery with a fan-cooling jacket after exposure to high solar radiation during exercise in hot outdoor environments. Front Sports Act Living 2023; 5:1106882. [PMID: 36860733 PMCID: PMC9968796 DOI: 10.3389/fspor.2023.1106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
The study aimed to investigate the effect of body cooling with a fan-cooling jacket on body temperature responses during recovery after exercise when exposed to high solar radiation in a hot outdoor environment. Nine males cycled using ergometer until their rectal temperature increased to 38.50 °C in hot outdoor environments, followed by body cooling recovery in warm indoor environments. Subjects repeatedly performed the cycling exercise protocol, which consisted of one set of 5 min at a load of 1.5 watt/kg body weight and 15 min at a load of 2.0 watt/kg body weight at 60 rpm. Body cooling recovery consisted of cold water ingestion (10°C: CON) or cold water ingestion + wearing a fan-cooling jacket (FAN) until the rectal temperature decreased to 37.75°C. The time for the rectal temperature to reach 38.5°C did not differ between the two trials. The rate of decrease in rectal temperature at recovery tended to be higher in FAN trial than in CON trial (P = 0.082). The rate of decrease in tympanic temperature was higher in FAN trials than in CON trials (P = 0.002). The rate of decrease in mean skin temperature at the first 20 min of recovery was higher in FAN than in CON trial (P = 0.013). Body cooling recovery with a fan-cooling jacket in addition to cold water ingestion may be effective in reducing elevated tympanic and skin temperatures after exercise in the heat under a clear sky, but may be difficult to decrease rectal temperature.
Collapse
Affiliation(s)
- Takashi Naito
- Faculty of Law, Hokkai-Gakuen University, Sapporo, Japan,Correspondence: Takashi Naito
| | - Tatsuya Saito
- Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Sotaro Hayashi
- Faculty of Urban Management, Fukuyama City University, Fukuyama, Japan
| |
Collapse
|