1
|
Yang Y, Shangguan Y, Wang X, Liu R, Shen Z, Tang M, Jiang G. The efficacy and safety of third-generation antiseizure medications and non-invasive brain stimulation to treat refractory epilepsy: a systematic review and network meta-analysis study. Front Neurol 2024; 14:1307296. [PMID: 38264091 PMCID: PMC10804851 DOI: 10.3389/fneur.2023.1307296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Background The new antiseizure medications (ASMs) and non-invasive brain stimulation (NIBS) are controversial in controlling seizures. So, this network meta-analysis aimed to evaluate the efficacy and safety of five third-generation ASMs and two NIBS therapies for the treatment of refractory epilepsy. Methods We searched PubMed, EMBASE, Cochrane Library and Web of Science databases. Brivaracetam (BRV), cenobamate (CNB), eslicarbazepine acetate (ESL), lacosamide (LCM), perampanel (PER), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) were selected as additional treatments for refractory epilepsy in randomized controlled studies and other cohort studies. Randomized, double-blind, placebo-controlled, add-on studies that evaluated the efficacy or safety of medication and non-invasive brain stimulation and included patients with seizures were uncontrolled by one or more concomitant ASMs were identified. A random effects model was used to incorporate possible heterogeneity. The primary outcome was the change in seizure frequency from baseline, and secondary outcomes included the proportion of patients with ≥50% reduction in seizure frequency, and the rate of treatment-emergent adverse events. Results Forty-five studies were analyzed. The five ASMs and two NIBS decreased seizure frequency from baseline compared with placebo. The 50% responder rates of the five antiseizure drugs were significantly higher than that of placebo, and the ASMs were associated with fewer adverse events than placebo (p < 0.05). The surface under the cumulative ranking analysis revealed that ESL was most effective in decreasing the seizure frequency from baseline, whereas CNB provided the best 50% responder rate. BRV was the best tolerated. No significant publication bias was identified for each outcome index. Conclusion The five third-generation ASMs were more effective in controlling seizures than placebo, among which CNB, ESL, and LCM were most effective, and BRV exhibited better safety. Although rTMS and tDCS did not reduce seizure frequency as effectively as the five drugs, their safety was confirmed. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/ (CRD42023441097).
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Yafei Shangguan
- Department of Neurology, The First People’s Hospital of Guiyang, Guiyang, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ruihong Liu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Kerr WT, Auvin S, Van der Geyten S, Kenney C, Novak G, Fountain NB, Grzeskowiak C, French JA. Time-to-event clinical trial designs: Existing evidence and remaining concerns. Epilepsia 2023; 64:1699-1708. [PMID: 37073881 PMCID: PMC10524279 DOI: 10.1111/epi.17621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
Well-designed placebo-controlled clinical trials are critical to the development of novel treatments for epilepsy, but their design has not changed for decades. Patients, clinicians, regulators, and innovators all have concerns that recruiting for trials is challenging, in part, due to the static design of maintaining participants for long periods on add-on placebo when there are an increasing number of options for therapy. A traditional trial maintains participants on blinded treatment for a static period (e.g., 12 weeks of maintenance), during which participants on placebo have an elevated risk of sudden unexpected death in epilepsy compared to patients on an active treatment. Time-to-event trials observe participants on blinded treatment until a key event occurs (e.g., post-randomization seizure count matches pre-randomization monthly seizure count). In this article, we review the evidence for these designs based on re-analysis of prior trials, one published trial that used a time-to-second seizure design, and experience from an ongoing blinded trial. We also discuss remaining concerns regarding time-to-event trials. We conclude that, despite potential limitations, time-to-event trials are a potential promising mechanism to make trials more patient friendly and reduce placebo exposure, which are urgent needs to improve safety and increase recruitment to trials.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stéphane Auvin
- Assistance Publique-Hôpitaux de Paris, Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France
- Université Paris-Cité, Institut National de la Santé et de la Recherche Médicale NeuroDiderot, Paris, France
- Institut Universitaire de France, Paris, France
| | - Serge Van der Geyten
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Gerald Novak
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nathan B. Fountain
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Caitlin Grzeskowiak
- Research and New Therapies Program, Epilepsy Foundation of America, Maryland, USA
| | - Jacqueline A. French
- Comprehensive Epilepsy Center, New York University, New York City, New York, USA
| |
Collapse
|
3
|
Strzelczyk A, Schubert-Bast S. Psychobehavioural and Cognitive Adverse Events of Anti-Seizure Medications for the Treatment of Developmental and Epileptic Encephalopathies. CNS Drugs 2022; 36:1079-1111. [PMID: 36194365 PMCID: PMC9531646 DOI: 10.1007/s40263-022-00955-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
The developmental and epileptic encephalopathies encompass a group of rare syndromes characterised by severe drug-resistant epilepsy with onset in childhood and significant neurodevelopmental comorbidities. The latter include intellectual disability, developmental delay, behavioural problems including attention-deficit hyperactivity disorder and autism spectrum disorder, psychiatric problems including anxiety and depression, speech impairment and sleep problems. Classical examples of developmental and epileptic encephalopathies include Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. The mainstay of treatment is with multiple anti-seizure medications (ASMs); however, the ASMs themselves can be associated with psychobehavioural adverse events, and effects (negative or positive) on cognition and sleep. We have performed a targeted literature review of ASMs commonly used in the treatment of developmental and epileptic encephalopathies to discuss the latest evidence on their effects on behaviour, mood, cognition, sedation and sleep. The ASMs include valproate (VPA), clobazam, topiramate (TPM), cannabidiol (CBD), fenfluramine (FFA), levetiracetam (LEV), brivaracetam (BRV), zonisamide (ZNS), perampanel (PER), ethosuximide, stiripentol, lamotrigine (LTG), rufinamide, vigabatrin, lacosamide (LCM) and everolimus. Bromide, felbamate and other sodium channel ASMs are discussed briefly. Overall, the current evidence suggest that LEV, PER and to a lesser extent BRV are associated with psychobehavioural adverse events including aggressiveness and irritability; TPM and to a lesser extent ZNS are associated with language impairment and cognitive dulling/memory problems. Patients with a history of behavioural and psychiatric comorbidities may be more at risk of developing psychobehavioural adverse events. Topiramate and ZNS may be associated with negative effects in some aspects of cognition; CBD, FFA, LEV, BRV and LTG may have some positive effects, while the remaining ASMs do not appear to have a detrimental effect. All the ASMs are associated with sedation to a certain extent, which is pronounced during uptitration. Cannabidiol, PER and pregabalin may be associated with improvements in sleep, LTG is associated with insomnia, while VPA, TPM, LEV, ZNS and LCM do not appear to have detrimental effects. There was variability in the extent of evidence for each ASM: for many first-generation and some second-generation ASMs, there is scant documented evidence; however, their extensive use suggests favourable tolerability and safety (e.g. VPA); second-generation and some third-generation ASMs tend to have the most robust evidence documented over several years of use (TPM, LEV, PER, ZNS, BRV), while evidence is still being generated for newer ASMs such as CBD and FFA. Finally, we discuss how a variety of factors can affect mood, behaviour and cognition, and untangling the associations between the effects of the underlying syndrome and those of the ASMs can be challenging. In particular, there is enormous heterogeneity in cognitive, behavioural and developmental impairments that is complex and can change naturally over time; there is a lack of standardised instruments for evaluating these outcomes in developmental and epileptic encephalopathies, with a reliance on subjective evaluations by proxy (caregivers); and treatment regimes are complex involving multiple ASMs as well as other drugs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Cho HY, Chuang TH, Wu SN. Evidence for Inhibitory Perturbations on the Amplitude, Gating, and Hysteresis of A-Type Potassium Current, Produced by Lacosamide, a Functionalized Amino Acid with Anticonvulsant Properties. Int J Mol Sci 2022; 23:1171. [PMID: 35163091 PMCID: PMC8835568 DOI: 10.3390/ijms23031171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Lacosamide (Vimpat®, LCS) is widely known as a functionalized amino acid with promising anti-convulsant properties; however, adverse events during its use have gradually appeared. Despite its inhibitory effect on voltage-gated Na+ current (INa), the modifications on varying types of ionic currents caused by this drug remain largely unexplored. In pituitary tumor (GH3) cells, we found that the presence of LCS concentration-dependently decreased the amplitude of A-type K+ current (IK(A)) elicited in response to membrane depolarization. The IK(A) amplitude in these cells was sensitive to attenuation by the application of 4-aminopyridine, 4-aminopyridine-3-methanol, or capsaicin but not by that of tetraethylammonium chloride. The effective IC50 value required for its reduction in peak or sustained IK(A) was calculated to be 102 or 42 µM, respectively, while the value of the dissociation constant (KD) estimated from the slow component in IK(A) inactivation at varying LCS concentrations was 52 µM. By use of two-step voltage protocol, the presence of this drug resulted in a rightward shift in the steady-state inactivation curve of IK(A) as well as in a slowing in the recovery time course of the current block; however, no change in the gating charge of the inactivation curve was detected in its presence. Moreover, the LCS addition led to an attenuation in the degree of voltage-dependent hysteresis for IK(A) elicitation by long-duration triangular ramp voltage commands. Likewise, the IK(A) identified in mouse mHippoE-14 neurons was also sensitive to block by LCS, coincident with an elevation in the current inactivation rate. Collectively, apart from its canonical action on INa inhibition, LCS was effective at altering the amplitude, gating, and hysteresis of IK(A) in excitable cells. The modulatory actions on IK(A), caused by LCS, could interfere with the functional activities of electrically excitable cells (e.g., pituitary tumor cells or hippocampal neurons).
Collapse
Affiliation(s)
- Hsin-Yen Cho
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Tzu-Hsien Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
5
|
Hou L, Peng B, Zhang D, Yang J, Wang Y, Tong L, Li S, Wang Q, Zhao J. Clinical Efficacy and Safety of Lacosamide as an Adjunctive Treatment in Adults With Refractory Epilepsy. Front Neurol 2021; 12:712717. [PMID: 34925202 PMCID: PMC8677652 DOI: 10.3389/fneur.2021.712717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Lacosamide (LCM), a novel AED (antiepileptic drug), was used as an adjunctive treatment in patients with partial-onset seizures or without secondary generalization. However, no meta-analysis was performed to evaluate the efficacy of LCM as an adjunctive treatment in post-marketing clinical studies. Aims: To assess the safety and efficacy of LCM as an adjunctive treatment in adults with refractory epilepsy, a systematic review and meta-analysis of randomized controlled trials (RCTs) and real-world studies were performed. Methods: All studies were identified from electronic databases. Both RCTs and observational prospective studies were included. Primary outcomes included responder rate, adverse effects (AEs) and withdraw rate. The pooled rates (PR) with their corresponding 95% confidence intervals (CI) were calculated. Publication bias was assessed with Begg's or Egger's tests. Results: Total 16 studies (3,191 patients) including 5 RCTs and 11 real-word studies were enrolled. The pooled 50% responder rate and seizure-free rate were 48% (95% CI: 0.42, 0.54) and 9% (95% CI: 0.06, 0.11) in all studies, respectively. Subgroup analysis showed that the pooled 50% responder rate were 53% (95% CI: 0.44, 0.62) from observational studies and 38% (95% CI: 0.35, 0.42) from RCTs, respectively; the pooled seizure-free rate were 13% (95% CI: 0.09, 0.18) from observational studies and 4% (95% CI: 0.06, 0.11) from RCTs, respectively. Similar incidence of AEs were reported in real-world studies (0.57, 95% CI: 0.43, 0.72) and RCTs (0.59, 95% CI: 0.42–0.76). Finally, a total of 13% (95%CI: 0.09, 0.16) and 13% (95% CI: 0.08, 0.16) of all patients prescribed with LCM was withdrawn in RCTs and real-world studies, respectively, due to the occurrence of AEs. Furthermore, similar to the 50% responder rate, seizure-free rate, incidence of AEs and withdraw rate were reported at 6-month or at least 12-month of LCM adjunction. Publication bias was not detected in these studies. Conclusions: Our results revealed that LCM adjunctive therapy even with long-term treatment was efficacious and well tolerated in adults with refractory epilepsy.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, China
| | - Bingjie Peng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Defu Zhang
- Office of Academic Affairs, Dalian Medical University, Dalian, China
| | - Jingjing Yang
- Department of Neurology, The First Affiliated Hospital of DaLian Medical University, Dalian, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of DaLian Medical University, Dalian, China
| | - Li Tong
- School of Public Health, Dalian Medical University, Dalian, China
| | - Sheng Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|