1
|
Pang J, Yu Q, Chen Y, Yuan H, Sheng M, Tang W. Integrating Single-cell RNA-seq to construct a Neutrophil prognostic model for predicting immune responses in non-small cell lung cancer. J Transl Med 2022; 20:531. [PMCID: PMC9673203 DOI: 10.1186/s12967-022-03723-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractNon-small cell lung cancer (NSCLC) is the most widely distributed tumor in the world, and its immunotherapy is not practical. Neutrophil is one of a tumor’s most abundant immune cell groups. This research aimed to investigate the complex communication network in the immune microenvironment (TIME) of NSCLC tumors to clarify the interaction between immune cells and tumors and establish a prognostic risk model that can predict immune response and prognosis of patients by analyzing the characteristics of Neutrophil differentiation. Integrated Single-cell RNA sequencing (scRNA-seq) data from NSCLC samples and Bulk RNA-seq were used for analysis. Twenty-eight main cell clusters were identified, and their interactions were clarified. Next, four subsets of Neutrophils with different differentiation states were found, closely related to immune regulation and metabolic pathways. Based on the ratio of four housekeeping genes (ACTB, GAPDH, TFRC, TUBB), six Neutrophil differentiation-related genes (NDRGs) prognostic risk models, including MS4A7, CXCR2, CSRNP1, RETN, CD177, and LUCAT1, were constructed by Elastic Net and Multivariate Cox regression, and patients’ total survival time and immunotherapy response were successfully predicted and validated in three large cohorts. Finally, the causes of the unfavorable prognosis of NSCLC caused by six prognostic genes were explored, and the small molecular compounds targeted at the anti-tumor effect of prognostic genes were screened. This study clarifies the TIME regulation network in NSCLC and emphasizes the critical role of NDRGs in predicting the prognosis of patients with NSCLC and their potential response to immunotherapy, thus providing a promising therapeutic target for NSCLC.
Collapse
|
2
|
Casula L, Sinico C, Valenti D, Pini E, Pireddu R, Schlich M, Lai F, Maria Fadda A. Delivery of beclomethasone dipropionate nanosuspensions with an electronic cigarette. Int J Pharm 2021; 596:120293. [PMID: 33497704 DOI: 10.1016/j.ijpharm.2021.120293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
The aim of this work was to ascertain the ability of electronic nicotine delivery systems (ENDS) to deliver drug nanocrystals through the produced aerosol. A nanocrystal nanosuspension of beclomethasone dipropionate, a synthetic chlorinated corticosteroid diester commonly used by inhalation in the treatment of asthma and chronic obstructive pulmonary disease, was prepared with a wet media milling technique using Poloxamer 188 as stabilizer. The obtained nanosuspension was thoroughly characterized by different techniques: transmission electron microscopy, photon correlation spectroscopy, X-ray powder diffractometry and Fourier transform infrared spectroscopy. The nanosuspension was then loaded in the cartomizer of the electronic cigarette and the produced aerosol was collected and analysed, confirming the presence of drug nanocrystals. The results of this study suggested the possible alternative use of ENDS as medical device for the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Luca Casula
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Chiara Sinico
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Donatella Valenti
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Elena Pini
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, Milano 20133, Italy
| | - Rosa Pireddu
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Michele Schlich
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy; Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesco Lai
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy.
| | - Anna Maria Fadda
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| |
Collapse
|
3
|
Abstract
This literature review updates the reader on the new studies regarding steroid therapy over the last year in stable COPD and in exacerbations. In stable COPD, we critique the 2011 update and 2013 revision of the GOLD guidelines, discuss why combining inhaled corticosteroids (ICS) with long-acting beta-agonists (LABA) (ICS/LABA) is preferable over LABA alone and review the literature for intraclass differences, finding that the evidence does not clearly support superiority of any particular ICS/LABA. We also address other comparisons against ICS/LABA, including triple therapy. We briefly review which type of inhaler should be chosen. For exacerbations, we report the REDUCE trial findings favouring a 5-day course of systemic steroids, and other trials addressing which steroid and route to use, including in an intensive care setting. Lastly, the future lies in new anti-inflammatories and re-phenotyping the heterogeneous amalgamation of COPD. A Spanish guideline recommends distinguishing steroid-responsive eosinophilic exacerbators from other phenotypes.
Collapse
Affiliation(s)
- Daan A De Coster
- Department of Primary Care and Population Health, University College London, Upper 3rd Floor, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, UK NW3 2PF
| | - Melvyn Jones
- Department of Primary Care and Population Health, University College London, Upper 3rd Floor, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, UK NW3 2PF
| |
Collapse
|