1
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Wei W, Ma D, Li L, Zhang L. Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Front Pharmacol 2021; 12:724718. [PMID: 34326775 PMCID: PMC8313804 DOI: 10.3389/fphar.2021.724718] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesion in CNS and cause physical disorders. Although environmental factors and susceptibility genes are reported to play a role in the pathogenesis of MS, its etiology still remains unclear. At present, there is no complete cure, but there are drugs that decelerate the progression of MS. Traditional therapies are disease-modifying drugs that control disease severity. MS drugs that are currently marketed mainly aim at the immune system; however, increasing attention is being paid to the development of new treatment strategies targeting the CNS. Further, the number of neuroprotective drugs is presently undergoing clinical trials and may prove useful for the improvement of neuronal function and survival. In this review, we have summarized the recent application of drugs used in MS treatment, mainly introducing new drugs with immunomodulatory, neuroprotective, or regenerative properties and their possible treatment strategies for MS. Additionally, we have presented Food and Drug Administration-approved MS treatment drugs and their administration methods, mechanisms of action, safety, and effectiveness, thereby evaluating their treatment efficacy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Simkins TJ, Duncan GJ, Bourdette D. Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep 2021; 21:26. [PMID: 33835275 DOI: 10.1007/s11910-021-01110-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). Inflammatory attacks in MS lead to both demyelination and axonal damage. However, due to incomplete remyelination most MS lesions remain chronically demyelinated. In parallel, there is axonal degeneration in the CNS of MS patients, contributing to progressive disability. There are currently no approved therapies that adequately restore myelin or protect axons from degeneration. In this review, we will discuss the pathophysiology of axonal loss and chronic demyelination in MS and how understanding this pathophysiology is leading to the development of new MS therapeutics. RECENT FINDINGS Ongoing research into the function of oligodendrocytes and myelin has revealed the importance of their relationship with neuronal health. Demyelination in MS leads to a number of pathophysiologic changes contributing to axonal generation. Among these are mitochondrial dysfunction, persistent neuroinflammation, and the effects of reactive oxygen and nitrogen species. With this information, we review currently approved and investigational therapies designed to restore lost or damaged myelin and protect against neuronal degeneration. The development of therapies to restore lost myelin and protect neurons is a promising avenue of investigation for the benefit of patients with MS.
Collapse
Affiliation(s)
- Tyrell J Simkins
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA. .,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA. .,Department of Neurology, Portland VA Medical Center, Portland, OR, USA.
| | - Greg J Duncan
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA.,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA.,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
4
|
Alrashdi B, Dawod B, Schampel A, Tacke S, Kuerten S, Marshall JS, Côté PD. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2019; 16:215. [PMID: 31722722 PMCID: PMC6852902 DOI: 10.1186/s12974-019-1622-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) model of MS, the Nav1.6 voltage-gated sodium (Nav) channel isoform has been implicated as a primary contributor to axonal degeneration. Following demyelination Nav1.6, which is normally co-localized with the Na+/Ca2+ exchanger (NCX) at the nodes of Ranvier, associates with β-APP, a marker of neural injury. The persistent influx of sodium through Nav1.6 is believed to reverse the function of NCX, resulting in an increased influx of damaging Ca2+ ions. However, direct evidence for the role of Nav1.6 in axonal degeneration is lacking. METHODS In mice floxed for Scn8a, the gene that encodes the α subunit of Nav1.6, subjected to EAE we examined the effect of eliminating Nav1.6 from retinal ganglion cells (RGC) in one eye using an AAV vector harboring Cre and GFP, while using the contralateral either injected with AAV vector harboring GFP alone or non-targeted eye as control. RESULTS In retinas, the expression of Rbpms, a marker for retinal ganglion cells, was found to be inversely correlated to the expression of Scn8a. Furthermore, the gene expression of the pro-inflammatory cytokines Il6 (IL-6) and Ifng (IFN-γ), and of the reactive gliosis marker Gfap (GFAP) were found to be reduced in targeted retinas. Optic nerves from targeted eyes were shown to have reduced macrophage infiltration and improved axonal health. CONCLUSION Taken together, our results are consistent with Nav1.6 promoting inflammation and contributing to axonal degeneration following demyelination.
Collapse
Affiliation(s)
- Barakat Alrashdi
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Biology, Al-Jouf University, Sakaka, Saudi Arabia
| | - Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Andrea Schampel
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Tacke
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
5
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 2016; 15:1089-102. [PMID: 27571160 DOI: 10.1016/s1474-4422(16)30165-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs.
Collapse
Affiliation(s)
| | - Peter K Stys
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Denis Vivien
- INSERM U919, University of Caen Normandy, Caen, France
| | - Stuart A Lipton
- Scintillon Institute San Diego, CA, USA; Scripps Research Institute, La Jolla, CA, USA; School of Mecicine, University of California, San Diego, CA, USA
| | | |
Collapse
|